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The crossed cube is an important variant of the most popular hypercube network for
parallel computing. In this paper, we consider the problem of embedding a long fault-free
cycle in a crossed cube with more faulty nodes. We prove that for n � 5 and f � 2n − 7,
a fault-free cycle of length at least 2n − f − (n − 5) can be embedded in an n-dimensional
crossed cube with f faulty nodes. Our work extends some previously known results in the
sense of the maximum number of faulty nodes tolerable in a crossed cube.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The interconnection network provides an effective
mechanism for exchanging data between processors in a
parallel computing system. An interconnection network is
usually represented as a graph, where nodes and edges
correspond processors and communication links between
processors, respectively.

In the design and analysis of an interconnection net-
work, its graph embedding ability is a major concern. An
ideal interconnection network (host graph) is expected to
possess excellent graph embedding ability, which helps
efficiently execute parallel algorithms with regular task
graphs (guest graphs) on this network [13]. The cycle and
path are recognized as important guest graphs because a
great number of parallel algorithms have been developed
on cycle/path-structured task graphs.

As the size of a parallel computing system increases,
it becomes much likely that there exist faulty processors
and faulty communication links in such a system. Conse-
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quently, the graph-embedding ability of an interconnection
network should be studied in the situation where faulty el-
ements arise.

Due to some appealing features such as shorter diame-
ter than their hypercube counterpart, the crossed cube net-
work has received considerable research attention [1,3,4,6,
18]. In particular, the fault-tolerant cycle/path embedding
ability of the crossed cube has been examined extensively
in the literature [7–12,15–17].

However, almost all the previous results on fault-
tolerant cycle/path embedding in the crossed cube could
not tolerate faulty nodes more than the node degree n of
the network. Yang et al. [17] proved that there exists a
fault-free cycle of every length from 4 to 2n − f v in an
n-dimensional crossed cube (CQn) with f v faulty nodes
and fe faulty edges, where f v + fe � n − 2. Ma et al. [12]
showed that there exists a fault-free path of every length
from 2n−1 − 1 to 2n − f v − 1 between any two distinct
fault-free nodes in CQn with f v faulty nodes and fe faulty
edges, where f v + fe � n − 3. Huang et al. [11] broke that
limitation for link faults, they found that CQn is fault-
tolerant Hamiltonian with up to 2n − 5 faulty edges. To
our knowledge, no results has been reported on the fault-
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Fig. 1. Two examples of crossed cubes.
tolerant cycle embedding in CQn with more faulty nodes
than the node degree n of the network.

In this paper, we consider the problem of embedding
a long fault-free cycle in CQn with more faulty nodes. We
prove that a fault-free cycle of length at least 2n − f −
(n − 5) can be embedded in CQn with f faulty nodes,
where n � 5 and f � 2n−7. Our work extends some previ-
ously known results in the sense of the maximum number
of faulty nodes tolerable in a crossed cube.

The rest of this paper is organized as follows. Section 2
gives definitions and other preliminaries. Section 3 estab-
lishes the main result. Section 4 concludes the paper.

2. Definitions and preliminaries

For our purpose, an interconnection network is rep-
resented by a graph, where nodes and edges represent
processors and communication links between processors,
respectively. The node set and edge set of a graph G are
denoted by V (G) and E(G), respectively. A Hamiltonian
cycle (respectively, a Hamiltonian path) in a graph is a cy-
cle (respectively, a path) that passes every node of the
graph exactly once. Two paths (respectively, two cycles)
in a graph are disjoint if they do not share any common
nodes. For other basic graph–theoretic notations and ter-
minology, the reader is referred to Ref. [2].

Definition 2.1. (See [5].) An n-dimensional (n-D, for short)
crossed cube, denoted CQn , is defined recursively as fol-
lows: CQ1 is a complete graph on two nodes labeled with
0 and 1, respectively. For n � 2, let CQ0

n−1 (respectively,

CQ1
n−1) denote an (n − 1)-D crossed cube with the label

of each node being preceded by 0 (respectively, 1). Then,
CQn is built from CQ0

n−1 and CQ1
n−1 by adding all those

edges (u, v) such that

(1) u = un−1un−2 · · · u0 ∈ V (CQ0
n−1), V = vn−1 vn−2 · · · v0

∈ V (CQ1
n−1),

(2) un−2 = vn−2 if n is even, and
(3) for 0 � i � �(n − 1)/2� − 1, (u2i+1u2i, v2i+1 v2i) ∈

{(00,00), (10,10), (01,11), (11,01)}.

Fig. 1 plots two examples of crossed cubes.
An edge (u, v) ∈ E(CQn) such that u ∈ V (CQ0

n−1) and

v ∈ V (CQ1 ) is called a bridge edge, and u and v are called
n−1
counterparts of each other. There exist 2n−1 disjoint bridge
edge between CQ0

n−1 and CQ1
n−1.

As mentioned before, we assume that only node faults
occurs in this paper. An edge (u, v) ∈ E(CQn) is regarded
to be fault-free if and only if both u and v are fault-free.
The following properties of the crossed cube will be useful
in this paper.

Lemma 2.1. (See [10].) For n � 3, there exists a fault-free Hamil-
tonian cycle in a CQn with f � n − 2 faulty nodes, and there
exists a fault-free Hamiltonian path between any pair of fault-
free nodes in a CQn with f � n − 3 faulty nodes.

Lemma 2.2. (See [14].) For any two pairs of nodes (x1, x2) and
(y1, y2) in CQn, n � 5, there exist two disjoint paths P and Q
satisfying that (1) P joins x1 to y1 and Q joins x2 to y2 , and
(2) V (P ∪ Q ) = V (CQn).

3. Main result

This section deals with the fault-free cycle embedding
in a crossed cube with faulty nodes. The main result of this
paper is established as follows.

Theorem 3.1. For n � 5 and f � 2n − 7, a fault-free cycle of
length at least 2n − f − (n − 5) can be embedded in CQn with
f faulty nodes.

Proof. We argue by induction on n. By Lemma 2.1, the as-
sertion holds for n = 5. Suppose the assertion is true for
n = k (k � 5). Now, we consider CQk+1 with f � 2k − 5
faulty nodes. Let f0 and f1 denote the numbers of faulty
nodes in CQ0

k+1 and CQ1
k+1, respectively. Without loss of

generality, we may assume that f0 � f1. Next we will con-
struct a fault-free cycle of length at least 2k+1 − f − (k −4)

in CQk+1.

Case 1. f0 � k − 3 (see Fig. 2).
Since there exist 2k > 2k − 3 � f + 2 bridge edges

between CQ0
k+1 and CQ1

k+1, we can find two fault-free
bridge edges (x0, x1) and (y0, y1). According to Lemma 2.1,
there exists a fault-free Hamiltonian path P0 between x0
and y0 in CQ0

k+1, and there exists a fault-free Hamil-

tonian path P1 between x1 and y1 in CQ1 . Hence,
k+1
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Fig. 2. The fault-free cycle in Case 1.

Fig. 3. The fault-free cycle in Case 2 and Case 3.1.

〈x0, P0, y0, y1, P1, x1, x0〉 forms a fault-free Hamiltonian
cycle in CQk+1.

Case 2. k − 2 � f0 � 2k − 7 (see Fig. 3).
According to the inductive hypothesis, CQ0

k+1 admits a

fault-free cycle C0 of length at least 2k − f0 − (k − 5). We
claim that we can find an edge (x0, y0) on C0, such that
(x0, x1) and (y0, y1) are both fault-free bridge edges. The
existence of such an edge is due to the fact that there
are at least 2k − f0 − (k − 5) candidate edges on C0, and
there are f1 � k − 3 < 	(2k − f0 − (k − 5))/2
 faulty nodes
in CQ1

k+1, each of which can "block" at most two candi-
dates. We may write C0 as 〈x0, P0, y0, x0〉, then the length
of path P0 is l0 � 2k − f0 − (k − 5) − 1.

Note that f1 = f − f0 � k − 3. By Lemma 2.1, there ex-
ists a fault-free path P1 of length l1 = 2k − f1 − 1 between
x1 and y1 in CQ1

k+1. Thus, 〈x0, P0, y0, y1, P1, x1, x0〉 forms

a fault-free cycle of length l0 + l1 + 2 � 2k − f0 − (k − 4) in
CQk+1.

Case 3. f0 = 2k − 6.
Imagine one arbitrary faulty node z in CQ0

k+1 to be
fault-free. Then according to the inductive hypothesis,
there exists a fault-free cycle C0 of length at least 2k −
( f0 − 1) − (k − 5) in CQ0

k+1.

Case 3.1. z is not incident to C0.
The proof of this case is similar to that of Case 2 (see

Fig. 3).
Fig. 4. The fault-free cycle in Case 3.2.1.

Fig. 5. The fault-free cycle in Case 3.2.2.

Case 3.2. z is incident to C0.
Let the two neighbor nodes of z on C0 be x0 and y0,

and let the counterparts of x0 and y0 in CQ1
k+1 be x1

and y1.

Case 3.2.1. x1 and y1 are both fault-free (see Fig. 4).
We may write C0 as 〈x0, z, y0, P0, x0〉, then the length

of path P0 is l0 � 2k − ( f0 − 1) − (k − 5) − 2. Note that
f1 � f − f0 � 1 � k − 3. By Lemma 2.1, there exists a fault-
free path P1 of length l1 = 2k − f1 − 1 between x1 and y1
in CQ1

k+1. Hence, 〈x0, P0, y0, y1, P1, x1, x0〉 forms a fault-

free cycle of length l0 + l1 + 2 � 2k − f0 − (k − 4) in CQk+1.

Case 3.2.2. Either x1 or y1 is faulty (see Fig. 5).
Without loss of generality, we may assume that x1

is a faulty node. Let the other neighbor of x0 on C0
(excluding the faulty node z) be w0. The counterpart
of w0 in CQ1

k+1 must be fault-free. We may write C0
as 〈w0, x0, z, y0, P0, w0〉. Then the length of path P0 is
l0 � 2k − ( f0 − 1) − (k − 5) − 3.

By Lemma 2.1, there exists a fault-free path P1 of
length l1 = 2k − f1 − 1 between w1 and y1 in CQ1

k+1.
Therefore, 〈w0, P0, y0, y1, P1, w1, w0〉 forms a fault-free
cycle of length l = l0 + l1 + 2 � 2k+1 − f − (k − 4) in CQk+1.

Case 4. f0 = 2k − 5.
Imagine two arbitrary faulty nodes z and w in CQ0

k+1
to be fault-free. Then according to the inductive hypoth-
esis, there exists a fault-free cycle C0 of length at least
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Fig. 6. The fault-free cycle in Case 4.1.

Fig. 7. The fault-free cycle in Case 4.2.

2k − ( f0 − 2) − (k − 5) in CQ0
k+1. If either z or w is not in-

cident to C0, the proof is similar to that of Cases 1–3. Next
we consider the situation that both z and w are incident
to C0. We use dC0 (z, w) to denote the shorter distance
traversing from z to w along C0.

Case 4.1. dC0 (z, w) = 1 (see Fig. 6).
We may write C0 as 〈x0, z, w, y0, P0, x0〉. Then the

length of path P0 is l0 � 2k − ( f0 − 2)− (k − 5)− 3. Let the
counterparts of x0 and y0 in CQ1

k+1 be x1 and y1. Since
f1 = 0, x1 and y1 are obviously fault-free nodes.

By Lemma 2.1, there exists a fault-free path P1 of
length l1 = 2k − 1 between x1 and y1 in CQ1

k+1. Hence,
〈x0, P0, y0, y1, P1, x1, x0〉 forms a fault-free cycle of length
l = l0 + l1 + 2 � 2k+1 − f − (k − 4) in CQk+1.

Case 4.2. dC0 (z, w) = 2 (see Fig. 7).
We may write C0 as 〈x0, z, u, w, y0, P0, x0〉. Then the

length of path P0 is l0 � 2k − ( f0 − 2)− (k − 5)− 4. Let the
counterparts of x0 and y0 in CQ1

k+1 be x1 and y1. x1 and
y1 are obviously fault-free nodes.

By Lemma 2.1, there exists a fault-free path P1 of
length l1 = 2k − 1 between x1 and y1 in CQ1

k+1. Hence,
〈x0, P0, y0, y1, P1, x1, x0〉 forms a fault-free cycle of length
l = l0 + l1 + 2 � 2k+1 − f − (k − 4) in CQk+1.

Case 4.3 dC0 (z, w) � 3 (see Fig. 8).
We may write C0 as 〈x0, z, y0, P01, u0, w, v0, P02, x0〉.

Let the lengths of paths P01 and P02 be l01 and l02, then
l01 + l02 � 2k − ( f0 − 2) − (k − 5) − 4.
Fig. 8. The fault-free cycle in Case 4.3.

Let the counterparts of x0, y0, u0 and v0 in CQ1
k+1 be

x1, y1, u1 and v1. Since f1 = 0, x1, y1, u1 and v1 are
obviously fault-free nodes. By Lemma 2.2, there exist two
disjoint paths P11 and P12 satisfying that (1) P11 joins x1
to y1 and P12 joins u1 to v1, and (2) V (P11 ∪ P12) =
V (CQk+1). Let the lengths of paths P11 and Q 12 be l11
and l12, then l11 + l12 = 2k − 2.

Therefore, 〈x0, x1, P11, y1, y0, P01, u0, u1, P12, v1, v0,

P02, x0〉 forms a fault-free cycle of length l = l01 + l02 +
l11 + l12 + 4 � 2k+1 − f − (k − 4) in CQk+1.

The inductive proof of this theorem is complete. �
4. Conclusions

In this paper, we proved that for n � 5 and f � 2n − 7,
a fault-free cycle of length at least 2n − f − (n − 5) can
be embedded in an n-dimensional crossed cube with f
faulty nodes. As compared to [10], this paper significantly
improves the maximum number of faulty nodes tolerable.
However, the two bounds, the cycle length 2n − f − (n − 5)

and the number of faulty nodes f � 2n − 7 are not opti-
mal. According to our experience, we strongly conjecture
the optimal result as follows.

Conjecture 4.1. For n � 3 and f � 2n − 5, a fault-free cycle of
length at least 2n − f −1 can be embedded in CQn with f faulty
nodes.

We tried to prove this conjecture but failed. In our
opinion, the method developed in this paper is still use-
ful for the proof of the conjecture, but some more lemmas
should be established to support it.
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