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A reduced-order method for estimating the 
stability region of power systems with 
saturated controls 
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In a modern power system, there is often large difference in the decay speeds of 
transients. This could lead to numerical problems such as heavy simulation burden 
and singularity when the traditional methods are used to estimate the stability re-
gion of such a dynamic system with saturation nonlinearities. To overcome these 
problems, a reduced-order method, based on the singular perturbation theory, is 
suggested to estimate the stability region of a singular system with saturation 
nonlinearities. In the reduced-order method, a low-order linear dynamic system 
with saturation nonlinearities is constructed to estimate the stability region of the 
primary high-order system so that the singularity is eliminated and the estimation 
process is simplified. In addition, the analytical foundation of the reduction method 
is proven and the method is validated using a test power system with 3 buses and 5 
machines. 

saturation nonlinearity, power system stabilizer, linear matrix inequality, singular perturbation method, reduced-order 
method 

1  Introduction 

Saturation nonlinearities are ubiquitous since the physical actuator or sensor is subject to satura-
tion owing to its maximum and minimum limits which are either intentionally designed or result 
from the limitations of equipment[1―3]. Most, if not all, power system controls are subject to satu-
ration nonlinearities[4―6]. For example, the outputs of a PSS (power system stabilizer) and excita-
tion control all have saturation[7―9]. As early as 1995, Mohler[10] has indicated that the perform-
ance of power system controls may not meet the expectation of control design if the controls are 
subjected to saturation. The assertion is not surprising, as later simulation results of ref. [8] also 
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verified it. Chinese scholars first explored the saturation control design in power systems[7,11]. In 
fact, any nonlinearity in a dynamic system has impact on the stability of the system[12,13]. Thus, 
the saturation nonlinearity in power system controls may have a nontrivial impact on power sys-
tem stability. Unfortunately, this issue has long been ignored by many. Therefore, quantifying the 
impact of saturation nonlinearities on power system stability is a fundamental question. As such, 
the analytical approach from the viewpoint of the stability region is receiving more and more 
attention. 

It is of difficulty to characterize the saturated stability region[12]. Progress, mainly based on the 
classical theory of Lyapunov, has been made in recent years[14,15]. In particular, the work of Hu et 
al.[12,16] introduced a LMI optimization to seek Lyapunov functions and the estimated stability 
region solution is improved. This approach was later applied to power systems[17] to evaluate the 
performance of a PSS. The importance of this result is that it permits a quantitative evaluation of 
saturated PSS performance, opening a new way to analyze the impact of control limits on power 
system stability. 

An advantage of the above result is that it is applicable to rather general saturated linear sys-
tems. However, it could be a disadvantage. For a system with fast controls, the difference be-
tween the maximum and minimum eigenvalues can be very large[18]. Thus, the decay speeds of 
fast and slow manifolds are very different[19,20]. If applied to such singular systems, the above 
method requires a very large computational burden and it suffers some other numerical problems 
(such as truncation error, etc.). A power system stability model described here can exhibit the 
singularity[21]. This work proposes a solution to this problem.  

Singular perturbation is a popular method for separating the fast and slow manifolds of dy-
namic systems including power systems[19,22]. To extend the results presented in refs. [12,17,23], 
we describe an order-reduction method for singular saturated systems. We prove that, under cer-
tain conditions, the reduced-order system produces exactly the same stability analysis result. 
Since the fast manifolds in a saturated system are globally stable and decay rapidly, one only 
needs to perform stability analysis on the reduced-order system, achieving a number of objectives, 
namely, elimination of the singularity and reduction of computational effort.  

In this work, an order-reduction method for the singular saturated system is first introduced by 
taking PSS performance analysis as an example. An application of the proposed method is then 
described. A numerical example is presented to further illustrate the suggested result.  

Nomenclature.  Given any vector , nR∈x y , ( )≤ ≥x y , the elements, such as i ix y− , are 
(non)negative; matrix 0A > ( 0A≥ ) means that matrix A is (semi)positive definite; symbol 
“⇔ ” means “if and only if”. 

2  Basic saturation model and traditional methods for its stability re-
gion estimation 

2.1  Power system singular perturbation model with saturation nonlinearities 

In a power system, the control system of excitation usually includes the additional signal of a PSS 
control system, as shown in Figure 1.  

As shown in Figure 1, we consider that the excitations’ and PSSs’ outputs are subject to satura-
tion nonlinearities of which the characteristics are shown in Figure 2 and described by the fol-
lowing saturation function in this paper. 
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Figure 1  The control system of a generator system. 
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Figure 2  A saturation function. 
 
Generally, due to the high gain and the fast transient requirement in the control systems, the 

decay speeds of their transients are faster than those of the generators. Thus, considering the ef-
fect of saturation nonlinearities and the large difference in the decay speeds of transients, the dy-
namic model for analyzing the small signal stability of a closed-loop power system can be for-
mulated as[24] 
 11 12 13 1 1sat( ),A A A B K= + + +x x y z y  (2) 

 21 22 23 2 2sat( ),A A A B Kε = + + +y x y z z  (3) 

 31 33 ,A Aε = +z x z  (4) 

where 1nR∈x  denotes the state variables of generators, 2nR∈y  and 3nR∈z  are the state 

variables of excitation and PSS, respectively; Rε +∈  is a small parameter, which denotes the 
large difference of decay speeds of the state variables between the control systems and the gen-
erators; sat( )⋅  is a saturation vector function whose expression is sat( )η = 1 1 2 2[sat ( ),  sat ( ),η η  

Tsat ( )]s sη . 
Let  
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Thus, systems (2)―(4) can be rewritten as the following compact expression: 
 sat( ).A B K= +ξ ξ ξ  (7) 
Define a linear set F and the stability region Ω  as follows:  
 { | },F K= − ≤ ≤ξ u ξ u  (8) 

 { | ( ) 0},tΩ ϕ= →ξ ξ  (9) 

where mR∈u  is composed of the upper-bound of the saturation function sat ( )i ⋅ , such as iu  

( 1,2,i m= ), and the inequalities in eq. (8) are on the basis of element by element; ( )tϕ ξ  de-

notes the trajectory of system (7) starting from ξ . The term ( )tϕ ξ  is a continuous function due 
to the continuity of sat( )⋅ [25]. 

In the subsequent analysis, we need two assumptions: 
Assumption 1.  For system (7), the origin is a hyperbolic stable equilibrium point when satu-

ration nonlinearities are ignored and set F is not empty, i.e. A BK+  is a stable (Hurtiwz) matrix 
and 0iu >  hold for all i , 1,2,i m= . 

Assumption 2.  Matrices 22A  and 33A  are stable (Hurtiwz) matrices. 
From Assumption 1, it can be concluded that the stability region Ω  is not empty, but may 

only be a neighborhood of the origin due to the effect of saturation nonlinearities[12,25]. In addition, 
system (7) behaves as an asymptotically linear system only when the state variables are within set 
F. Outside F, the dynamic behaviors are difficult to catch directly. In fact, when designing a con-
trol system in power systems, the saturation effects are usually ignored. This leads to reduce the 
expected performance of a control system. Thus, it is important to analyze the stability region of a 
closed-loop system with saturation nonlinearities.  

2.2  Traditional methods for the stability region estimation 

Suppose that there exists a high-dimension ellipsoid, say 0Ω′ , such that 0Ω′  is an invariant set 
of system (7) and is a subset of F. Since system (7) behaves as the corresponding linear system in 
set F, the trajectories starting from 0Ω′  converge to the origin when Assumption 1 holds[25]. In 

other words, 0Ω′  is a subset of the stability region of system (7). Therefore, an invariant set of 
system (7) in set F can be taken as the estimated stability region. This is the basic idea of the 
work reported in refs. [12,16]. 

Suppose further that the expected initial states after a transient disturbance in a power system 
can be contained by an ellipse as follows: 
 T 2

0 0{ | },X P β′= ≤ξ ξ ξ  (10) 

where 0P′  is a (semi)positive definite symmetric matrix; 0β >  is a variable. 
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Remark 1.  For the small-signal model of a power system, though the possible initial states 
cannot be obtained exactly after a transient disturbance, the shape of the set (the expected set of 
initial states) made up of the initial states can be roughly decided. Since X0 is an ellipse with fixed 
shape and variable size, we can choose an appropriate X0 to contain the expected set of initial 
states. Hence, it is reasonable to assume that X0 contains the expected set of initial states. 

Clearly, the larger X0 which can be contained by the estimated stability region is, the more ini-
tial states the estimated stability region can contain. Thus, the more powerful the saturated control 
system is. On the other hand, the smaller the X0 which can be contained by the estimated stability 
region is, the fewer disturbances the control system can stabilize and thus the more conservative 
the results are. Hence, to evaluate the control system objectively, one needs to reduce the conser-
vation in the estimation process. In short, the estimated stability region must contain the largest 
possible X0, i.e. to get the largest β . In refs. [12,17], this procedure is done via an optimization 
which is formulated as: 
 *

0
max  ,
P

β β
>

=  (11) 

 s.t.  T
0 0( ) { | },a X P cΩ′⊂ = <ξ ξ ξ  

   (b) 0 ,FΩ′ ⊂  

   (c) T 0,A P PA+ <  
where constraint (a) means that the estimated 0Ω′  contains set X0 of expected initial states; con-

straints (b) and (c) mean that 0Ω′  is in F and is an invariant set of system (7), respectively. 
Using the Schur complements of matrices, the above optimization problem can be transformed 

into a simple LMI (Linear Matrix Equalities) optimization problem which can be solved eas-
ily[12,17]. Hence, an optimal set of problem (11), say T

0 { | }P cΩ′ = ≤ξ ξ ξ , can contain the largest 
X0 with a fixed shape and it is also the optimal stability region estimation. 

3  Theories for reducing the order of the singular saturated system 

In a power system, due to the existence of small parameter ε , there could be a large difference 
in the decay speeds of transients. System matrix A has two groups of eigenvalues with a large 
difference in numerical values so system (7) could be fundamentally singular. If the traditional 
methods in refs. [12,17] are directly used to deal with model (11), extra computational effort is 
required and conservative results can be expected. In this section, we will use the singular per-
turbation theory to reduce the order of optimization model (11) to overcome the singularity 

3.1  Integral manifold theories for singular saturated systems 

Suppose that matrixes ( )yL ε  and ( )zL ε  satisfy 

 1 21 22 23 2 2

2 31 33

( ) 0,

0,
y z y x

z z x

A A L A B K L L A

A A L L A

Γ ε

Γ ε

= + + + − =⎧⎪
⎨

= + − =⎪⎩
 (12) 

where 11 12 13 1 1x y z yA A A L A L B K L= + + + .  

Clearly 1Γ  and 2Γ  are smooth functions with respect to matrix variables yL  and zL . 
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Since the matrix 
T

22 23 2 21 2

33
0

( , )
( , )y z

A A B KΓ Γ
AL L

ε =

+⎡ ⎤∂
= ⎢ ⎥

∂ ⎢ ⎥⎣ ⎦0
 is not singular by Assumption 2, it can be 

concluded from the implicit function theorem that[25]: there exists * 0ε >  such that for every 
*[0, ]ε ε∈ , matrices ( )yL ε  and ( )zL ε  satisfying expression (12) exist uniquely; ( )yL ε  and 

( )zL ε  are smooth functions with respect to ε . Hence, let us do the following coordinate trans-
formation: 

 1

1

0 0
( ) 0 .

( ) 0
y

z

I
L I

L I

ε

ε

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

x x
y y
z z

 (13) 

Since ( )yL ε  and ( )zL ε  satisfy eq. (12) in the new coordinates, systems (2)―(4) is changed 

to  
 ( )11 12 13 1 1 12 1 13 1 1 2 1( , ),y z yA A L A L B K L A A B q= + + + + + +x x y z x y  (14) 

 1 22 1 23 1 2 1 1 1 2 1( , ) ( , ),yA A B q L B qε ε= + + −y y z x z x y  (15) 

 ( )1 33 1 1 2 1, ,zA L B qε ε= −z z x y  (16) 

where ( )1 1 2 1 2 2( , ) sat z zq K K L K L= + −x z z x x , ( )2 1 1 1 1 1( , ) sat y yq K K L K L= + −x y y x x . 

Let ( )tx  denote coordinates x  of the trajectories of systems (14)―(16). In fact, ( )tx  is 
also dependent on parameter ε . For the simplicity of the symbols, we omit ε  when no 
misunderstanding exists and this abbreviation is applied later as well.  

In the terminology of singular perturbation theory, systems (15)―(16) is termed as the system 
of boundary layer[25]. The terms yL=y x  ( 1 0=y ) and zL=z x  ( 1 0=z ) are the integral mani- 

folds. It can be determined that the time scale of x  is t and the time scale of 1 1,y z  is tτ ε=  

so when ε  is small, there is large difference between the decay speeds of 1 1,y z  and x . For 
this reason, y  and z  are termed as the fast variables and x  is termed as the slow variable.  

Define further a set F2 as follows:  

 1
2

2

( )
.

( )
y

z

K L
F

K L

ε

ε

⎧ ⎫⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

≤ ≤x u x u  (17) 

Due to the special characteristics of the saturation function, we can have the following conclu-
sions about the integral manifolds of systems (2)―(4). 

Lemma 1.  Suppose that the following conditions are satisfied: 
(1) Assumption 1 and Assumption 2 hold; 
(2) 0ε >  is sufficiently small and 2( )t F∈x  is always satisfied for 0t∀ ≥ . 

Then systems (15)―(16) is globally exponentially stable and its time-scale is tτ ε= . Namely, 

the trajectories of systems (15)―(16) satisfy 

 1
1( )t le γ τ−≤y , 1

1( )t le γ τ−≤z  for 0
1∀y  and 0

1∀z , (18) 
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where 0l >  and 1 0γ >  are constants independent of ε . 
Proof.  Readers can refer to ref. [26] for details. 
Remark 2.  As shown later, if initial state x(0) satisfies some conditions then it can be guar-

anteed that the second condition of this lemma holds. 
Lemma 1 shows that when Assumption 1 and Assumption 2 hold and parameter ε  is small 

enough, the integral manifolds of systems (2)―(4) are uniquely existent in set F2. Moreover, the 
fast variables ,y z  converge to the corresponding integral manifolds exponentially and the 

time-scale of the convergence is tτ ε= .  

3.2  Fundamental theories for stability region estimation 

Construct a low-order system as follows: 
 ( ) ,xA ε=x x  (19) 

where 11 12 13 1 1x y z yA A A L A L B K L= + + + . 

The following lemma shows that xA  is a stable matrix when parameter ε  is small enough. 

Lemma 2.  If Assumption 1 and Assumption 2 hold, then there exists * 0ε >  such that xA  

is a stable matrix for every *[0, ]ε ε∈ . 
Proof.  Readers can refer to ref. [26] for details. 
Let ( )l tx  denote coordinates x  of the trajectories of system (19). Thus, we can obtain the 

relationship between ( )tx  and ( )l tx  based on Lemma 1 and Lemma 2.  
Theorem 1.  Suppose that the following conditions are satisfied: 
(1) Assumption 1 and Assumption 2 hold; 
(2) The initial states of system (19) and the initial states of eqs. (14)― (16) satisfy 

(0) (0)l=x x ; 

(3) 0ε >  is sufficiently small and 2( )t F∈x  is always satisfied for 0t∀ ≥ . 

Then the relationship between ( )tx  and ( )l tx  is 

 ( ) ( ) ( )lt t O ε= +x x , 0,t∀ ≥  (20) 

and ( ) ( )lt t→x x  as t →∞ ; 
In particular, if the third condition is changed to 0ε >  is sufficiently small and there exists 

0t′ >  such that 2( )t F∈x  is always satisfied for [0, ]t t′∀ ∈ , then  

 ( ) ( ) ( )lt t O ε= +x x , [0, ].t t′∀ ∈  (21) 
Proof.  Readers can refer to ref. [26] for details. 
To transform the condition 2( )t F∈x  to the conditions that ( )l tx , the trajectories of system 

(19) satisfies, we further define the following set which is a subset of F2:  

 1
3

2

( )
( ) ,

( )
y

z

K L
F

K L

ε
ε σ σ

ε

⎧ ⎫⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

≤ ≤x u x u  (22) 

where σ  is a parameter and it satisfies 0 1σ< < . For example, we can choose 0.95σ = . 
When ε  is sufficiently small and if ( )l tx  resides in set F3, then ( )tx  also resides in set F2 



 

592 GAN DeQiang et al. Sci China Ser E-Tech Sci | Oct. 2007 | vol. 50 | no. 5 | 585-605 

due to the small error between the ( )l tx  and ( )tx  by Theorem 1. For this reason, we can ob-

tain the following conclusions about the stability region of systems (14)―(16).  
Lemma 3.  Suppose that the following conditions are satisfied: 
(1) Assumption 1 and Assumption 2 hold; 
(2) The initial states of system (19) and those of eqs. (14)―(16) satisfy (0) (0)l=x x ; 

(3) 0ε >  is sufficiently small and 3( )l t F∈x  is always satisfied for 0t∀ ≥ . 

Then 2( )t F∈x  is satisfied for 0t∀ ≥ . 

Proof.  We use a contradiction argument. Suppose that there exists an *[0, ]ε ε∈  such that 

3( )l t F∈x  holds for 0t∀ ≥  and 2( )t F∈x  is not always satisfied. The term * 0ε >  is a suf-
ficiently small constant to be evaluated later. 

Thus, since 2(0) F∈x  and ( )tx  is continuous with respect to t, there exists 0t′ >  such that 

( )t′x  crosses the boundary of set F2, say 2F∂ , from the definition of F2, i.e. 2( )t F′ ∈∂x  and 

2( )t F∈x  when t t′≤ . Thus from Theorem 3, there exists 0 0a > , independent of ε , such that  

 0|| ( ) ( ) || .lt t a ε′ ′− ≤x x  (23) 

On the other side, 2( )t F′ ∈∂x  implies that there exist some subscripts, say i , such that 

1| ( ( ) ( )) |y i iK L t uε ′ =x  or 1| ( ( ) ( )) |z i iK L t uε ′ =x  hold from the definition of set F2 where symbol 

( )i⋅  means the i-th element of a vector. 

However, 3( )l t F′ ∈x  implies that both 1| ( ( ) ( )) |y i iK L t uε σ′ ≤x  and 1| ( ( ) ( )) |z iK L tε ′x  

iuσ≤  are satisfied. Therefore when 1| ( ( ) ( )) |y i iK L t uε ′ =x  holds,  

 1 1 1

1 1

|| ( ( )) || || ( ) ( ) || | ( ( ) ( )) ( ( ) ( )) |

| ( ( ) ( )) | | ( ( ) ( )) | (1 ) .
y i l y i y l i

y i y l i i

K L t t K L t K L t

K L t K L t u

ε ε ε

ε ε σ

′ ′ ′ ′⋅ − −

′ ′− −

≥

≥ ≥

x x x x

x x
 

(24)
 

Since ( )yL ε  is continuous with respect to ε , there exists a constant 0 0b >  independent of 

ε  such that 1 0|| ( ( )) ||y iK L bε ≤  is satisfied for [0, ]ε ε ′∀ ∈  where 0ε ′ >  is a sufficiently 

small constant. Hence, from expression (34), we get  
 1

0|| ( ) ( ) || (1 ) .l it t b uσ−′ ′− −≥x x  (25) 

Similarly, we also can get 1
0|| ( ) ( ) || (1 )l it t b uσ−′ ′− −≥x x  if 1| ( ( ) ( )) |z i iK L t uε ′ =x  is satis-

fied. 
Hence, if *ε  satisfies * 1 1

0 00 min{ (1 ) , }ia b uε σ ε− − ′< −≤ , then the conclusion of (23) is con-

tradictory to that of (25). Therefore, when ε  is a sufficiently small constant ( *[0, ]ε ε∈ ), 

2( )t F∈x  is also satisfied for 0t∀ ≥ . 
From this lemma, we know that when ε  is small enough and if it can be guaranteed that the 

trajectories of system (19) do not escape from set F3, and then the condition that Theorem 1 and 
Lemma 1 need can be satisfied, i.e. 2( )t F∈x  holds for 0t∀ ≥ . When ε  is small enough, 

Lemma 2 guarantees that for system (19) there exists an invariant set, say 0Ω , in set F3, i.e. 

3( )l t F∈x  holds for 0t∀ ≥  if 0(0)l Ω∈x . Hence, the condition that 2( )t F∈x  holds for 
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0t∀ ≥  does indeed hold. Based on this condition, we can obtain the following conclusions 
about the stability region of systems (14)―(16). 

Theorem 2.  Suppose that the following conditions are satisfied: 
(1) Assumption 1 and Assumption 2 hold; 
(2) Parameter σ  satisfies 0 1σ< < ; 
(3) Set 0Ω  is an invariant set of system (19) and a subset of F3. 

Then there exists * 0ε >  such that for every *[0, ]ε ε∈ , 0 yzΩ Ω Ω= ×  is a subset of the sta-

bility region of systems (14)―(16). Here, yzΩ  is a large enough bounded set of 2 3n n+  di-

mension.  
Proof.  For system (19), since 0Ω  is an invariant set in F3 and when ε  is small enough, 

matrix xA  is stable from Lemma 2. Thus, 0Ω  is a subset of the stability region of system 

(19)[12,17], i.e. for 0
0Ω∀ ∈x , 0( )l t Ω∈x  and ( )l t →0x  as t →∞ . Moreover, when ε  is 

small enough, 2( )t F∈x  holds for 0t∀ ≥  from Lemma 3. For an initial state 0
0(0) Ω= ∈x x , 

we get that ( ) ( )lt t→x x  as t →∞  from Theorem 1. Hence, we get ( ) 0t →x  as t →∞  for 

every 0
0(0) Ω= ∈x x  when ε  is small enough. 

Since set 0Ω  is an invariant set of system (19), 2( )t F∈x  is satisfied for 0
0(0)l Ω∀ = ∈x x  

from Lemma 3 when ε  is small enough. Thus, we get 1 1( ( ), ( )) (0,0)t t →y z  as t →∞  for 
0 0
1 1( , ) yzΩ∀ ∈y z  from Theorem 1 when ε  is small enough. 

Summarizing the previous analysis, when ε  is small enough, for 0 0 0
1 1 0( , , ) yzΩ Ω∀ ∈ ×x y z , 

the trajectories 1 1[ ( ), ( ), ( )]t t tx y z  of high dimension systems (14)―(16) will converge to the 

origin. In other words, there exists * 0ε >  such that for every *[0, ]ε ε∈ , 0 yzΩ Ω Ω= ×  is a 

subset of the stability region of systems (14)―(16). 
From this theorem, when ε  is small, if 0 3FΩ ⊂  is an invariant set of system (19), then 

0 yzΩ Ω Ω= ×  is a subset of the stability region of systems (14)―(16). Therefore, the stability 

region estimation of (14)―(16) can be changed to finding an invariant set 0Ω  in F3 based on the 
constructed system (19). Since Assumption 1 holds from Lemma 2, the changed problem is just 
what refs. [12] and [17] study, i.e. to find an invariant using the LMI optimization method. 

3.3  Theories for reducing the order of the set of initial states 

Consider expression (10) again, i.e. the expected initial states of system (2)―(4) reside in the 
following 1 2 3n n n+ +  dimension ellipse: 

 1 2 3 T 2
0 0{ | }.n n nX R P β+ + ′= ∈ ≤ξ ξ ξ  (26) 

Perform the following transformation: 
 1 =ξ x , T T T

2 1 1[ , ]=ξ y z , T T T[ , ] .yz y zL L L=  (27) 

From eqs. (10), (13) and (27), X0 under the new coordinates, 1 2( , )ξ ξ  can be expressed as 
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 { } 1 2 3

T 0 0
11 121 1 1( )T 2 2

0 0 0 0
2 2 221 22

,n n n P P
X P R

P P
β β+ +

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪′ ′ ′ ⎢ ⎥= = ∈⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

≤ ≤
ξ ξ ξ

ξ ξ ξ
ξ ξ ξ

 (28) 

where 1

2

⎡ ⎤′ = ⎢ ⎥
⎣ ⎦

ξ
ξ

ξ
, 

0 0
11 12

0 0 0
21 22

P P
P

P P

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

, 
0 0

11 12
0 0 0

21 22

P P
P

P P

⎡ ⎤′ ′
′ ⎢ ⎥=

′ ′⎢ ⎥⎣ ⎦
, 0 0 0 T 0

11 11 12 222 yz yz yzP P P L L P L′ ′ ′= + + , 

0 0 T 0 T 0
12 21 12 22( ) yzP P P L P′ ′= = + , 0 0

22 22P P′= . 

From the conclusion in the above sub-section, we know that the estimation process of the sta-
bility region of systems (14)―(16) can be changed to finding an invariant set in F3 based on sys-
tem (19). For this reason, similar to the methods in refs. [12,17], an optimization model for esti-
mating the stability region of system (19) with the least degree of conservatism can be formulated 
as  
 *

0
max .

x

β β
>

=
P

 (29) 

T
0 0s.t. (a) { | } ,xX P cΩ Ω Ω⊂ × = ×≤yz yzx x x  

   0 3(b) ,FΩ ⊂  

   
T(c) 0,x x x xA P P A+ <  

where 2 3n nRΩ +∈yz  is an arbitrary bounded set; constraint (a) means that the X0 is in the 

estimated stability region; constraints (b) and (c) mean that for system (19), 0Ω  is an invariant 
in F3.  

In problem (29), constraint (a) corresponds to the inequalities of the high dimension, so we 
further introduce the following lemma to simplify it. 

Lemma 4.  Suppose 
T

11 121 1 1
T

2 2 212 22

( , )
P P

E P
P P

ρ ρ
⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭

≤
ξ ξ ξ
ξ ξ ξ

 is a high-dimension el-

lipse whose projections on coordinate 1ξ  is denoted by 
1
( , )E Pξ ρ . Then the following conclu-

sions are satisfied:  
(1) 

1
( , )E Pξ ρ  is still an ellipse whose analytical expression is 

1

T
1 1 11{ | (E Pξ = −ξ ξ  

T 1
12 22 12 1) }P P P ρ− ≤ξ ; 

(2) 
21 1( , ) ( , )E P E Pρ ρ Ω⊂ × ξ  if and only if 

1 1 1( , ) ( , )E P E Pρ ρ⊂ξ  and 2ξ  is bounded 

where the dimension of 1 1( , )E P ρ  is the same as that of 1ξ  and 
2

Ωξ  is a large enough and 

bounded set. 
Proof.  We omit this process. Readers can refer to ref. [26]. 
From Lemma 3, the constraint (a) in optimization problem (29) can be changed to 

 0 2 0 1
0 0 1 0 1( , ) 0,xX E P P c PΩ Ω β Ω β − −⊂ × ⇔ ⊂ ⇔ − >yz  (30) 

where 0 0 0 0 1 0
1 11 12 22 21( )P P P P P−= − , 1 10

11
n nP R ×∈ , 1 20

12
n nP R ×∈ , 2 10

21
n nP R ×∈  and 2 20

22
n nP R ×∈  are 
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the partial matrices of 0P  in expression (28), i.e. 
0 0

11 120
0 0

21 22

P P
P

P P

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

. 

It is worth noting that if set X0 containing the expected initial states is not an ellipse but a 
polytype, we can also obtain a similar conclusion as that of Lemma 3. For this case, we do not 
discuss it further in this paper. 

4  Reduced-order method for estimating the stability region 

4.1  Reduced-order optimization model for stability region estimation 

Summarizing the analysis in section 3, when ε  is small enough, the traditional method for es-
timating the stability region can be changed to a reduced-order optimization model as follow: 
 *

0
max

x
xβ

>
=

P xβ  (31) 

2 0 1
1s.t. (a) 0,x xP c Pβ − −− >  

0 3(b) ,FΩ ⊂  
T(c) 0.x x x xA P P A+ <  

Perform a change of variables as follow: 
 2

x xγ β −= , 1
x xR c P−= . (32) 

By the Schur complements of matrices and eq. (32), optimization problem (31) can be trans-
formed to the following LMI convex optimization[12,17]: 
 *

0
min

x
xγ >
=

R xγ . (33) 

0
1s.t. (a) 0,x xP Rγ − >  

2 2 1 T
T(b) 0 0,i i

i i x i
i x

u g
u g R g

g R

σ
σ −⎡ ⎤

⇔ −⎢ ⎥
⎣ ⎦

≥ ≥  

T(c) 0,x x x xR A A R+ <  

where ig  is the i-th row of matrix 1

2

( )

( )
y

z

K L

K L

ε

ε
⎡ ⎤
⎢ ⎥
⎣ ⎦

, which appears in the definition of set F2 (F3). 

Remark 3.  (1) Since optimization problem (33) is of order n1-dimension and (11) is of order 

1 2 3( )n n n+ + -dimension, the calculation burden is evidently reduced. (2) Since matrix xA  of 
the constructed system is the system matrix of the slow dynamic system, the reduced-order 
method avoids the singularity. (3) There is no explicit information about the fast variables 1y  

and 1z  in the estimated stability region except that 1y  and 1z  are bounded, i.e. the estimated 

stability region can contain a sufficiently large 1y  and 1z . Hence, the reduced-order method 
can reduce the conservatism in the estimation. 

Moreover, in the real world, parameter ε  may be not sufficiently small and thereby the pa-
rameter σ  of set F3 needs to be adjusted to satisfy the conditions in Theorem 2. However, the 
change of σ  has the impact on the optimal solution of optimization problem (31) and optimiza-
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tion problem (31) needs to be recalculated with the changed σ . The recalculation inevitably re-
sults in redundant calculation. Fortunately, if 0σ > , we have the following conclusion about 
optimization problem (31) which can avoid the extra calculation mentioned above.  

Lemma 5.  For the optimization problem (31), the optimal solution, say, *
xβ , is in proportion 

to the parameter σ . Namely, if 0σ ρσ′′ ′= >  is satisfied, then the corresponding optimal 

solution satisfies * *
x xβ ρβ′′ ′= , where 0ρ >  and *

xβ ′  and *
xβ ′′  are the optimal solutions of eq.  

(31) when σ σ ′=  and σ σ ′′= , respectively. 
Proof.  Readers can refer to ref. [26]. 
Lemma 5 shows that the optimal solution *β  is in proportion to σ . Therefore, we can 

choose an arbitrary 0σ >  when handling optimization problem (31) and use the linear rela-

tionship to obtain the *β  corresponding to different σ . Thus it avoids the redundant calcula-
tions. 

4.2  Algorithm for the reduced-order method 

From previous analysis, when matrices yL  and zL  are derived, optimal solution *β  of 

optimization problem (11) can be easily handled via solving optimization problem (31). However, 
there is still a difficult problem: though Theorem 2 can guarantee that ( )yL ε  and ( )zL ε  exist 

when ε  is small, the analytical expressions of them are hard to derive. Considering that ( )yL ε  

and ( )zL ε  are the smooth functions with respect to ε , we can use Taylor’s expression to ap-
proximate these two matrixes. Let  

 
0 1 2

0 1 2

( ) ( ),

( ) ( ).
y y y

z z z

L L L O

L L L O

ε ε ε

ε ε ε

⎧ = + +⎪
⎨

= + +⎪⎩
 (34) 

Substitute eq. (34) into (12) and compare the order of ε  in both sides of the equality, we have 

 0ε : ( )0 0
21 22 23 2 2 0,y zA A L A B K L+ + + =  

0
31 33 0,zA A L+ =  

 1ε : ( )1 1 0
22 23 2 2 0 0,y z yA L A B K L L C+ + − =  

1 0
31 33 0 0,z zA A L L C+ − =  

where 0 0
0 11 13 12 1 1( )z yC A A L A B K L= + + + . 

Solve the above equations and we get 
 0 1

33 31zL A A−= − , ( )1 1 0
33 0 31 ,z zL A L C A−= −  (35) 

 ( )0 1 1 1
22 23 2 2 33 31 22 21,yL A A B K A A A A− − −= + −  (36) 

 ( )1 1 1 1 0
22 23 2 2 22 0.y z yL A A B K L A L C− −= − + +  (37) 

Thus from eqs. (35)―(37), we can obtain the first order approximation of the integral mani-
fold. To obtain the more accurate result, high-order approximation results can be applied.  

Thus, when ε  is small enough, the variables that the reduced-order method needs are all cal-



 

 GAN DeQiang et al. Sci China Ser E-Tech Sci | Oct. 2007 | vol. 50 | no. 5 | 585-605 597 

culated and the algorithm of the reduced-order method is as follows (Algorithm 1):  
Step 1: Set up the model as eqs. (2)―(4) and choose the fast variable and the slow variables; 
Step 2: Judge whether Assumption 2 is satisfied or not. If they are, then continue; otherwise, 

use the traditional method to estimate the stability region of the linear system with saturation 
nonlinearities;  

Step 3: Solve eqs. (36)―(37) to obtain the integral manifold, i.e. matrices ( )yL ε  and ( )zL ε ; 

Step 4: Set up optimization problem (31) and transform it to a simple LMI optimization prob-
lem via the changes of eq. (32). Solve this transformed problem and thus *

xβ  and the 
corresponding stability region are derived.  

5  Application to power systems  

In this section, we will use a test power system with detailed saturated PSS controller models as 
an example to validate the reduced-order method derived in previous sections.  

5.1  The model of PSS with saturated input 

Suppose that the power system under study consists of N buses and ng generators. Without loss of 
generality, to simplify the expressions in the following analysis, we number the generators in the 
descending order of Hi, i.e. i jH H≥  holds when i j< .  

In order to compare the results in this paper with those of the traditional method in ref. [17], 
we take the same models as the ones in ref. [17], i.e. the impedance model for loads, the models 
shown in Figures 3 and 4 for AVR and PSS systems, respectively.  

Consider the following saturated constraints: 
(1) The output fEΔ  of generator’s excitation; 

(2) The output 2y  of PSS controller. 
Namely, the constrained equations are 

 f f fE E E−Δ Δ Δ≤ ≤ , 2 2 2.− ≤ ≤y y y  (38) 

 
Figure 3  Transfer function of the excitation system. 

 

 
 

Figure 4  Diagram of the PSS’s transfer function. 
 

Consequently, when the saturated inputs are considered, the closed loop system after lineariza-
tion can be expressed as[17,24] 
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 ,Δ = Δδ ω  (39) 

 1 1
0 1 0 2 ,qM K D K Eω ω− − ′Δ = − Δ − Δ − Δω δ ω  (40) 

 4 3 sat( ),do q q fT E K K E E′ ′ ′Δ = − Δ − Δ + Δδ  (41) 

 5 6 2sat( ),A fd A A q fd AT E K K K K E E K′Δ = − Δ − Δ − Δ + yδ  (42) 

 1
1 1 0 2 1,w W W W qT K K K D K K Eω− ′= − Δ − Δ − Δ −y yδ ω  (43) 

 ( )1 1
2 2 1 0 2 1 1 2 ,TM TM TM q wT K K K D K K E I T Tω− −′= − Δ − Δ − Δ + − −y y yδ ω  (44) 

where dynamic eqs. (38)―(41) denote the flux decay model of the generators; dynamic eq. (41) 
is the excitation dynamic model, eqs. (43)― (44) describe the dynamic model for PSS; 

{ }1diagTM i si iK T K M= , { }diagW wi si iK T K M= , 0 2πfω = , diag{2 }iM H= ; the variables in 

eqs. (39)―(44) are partly labeled in Figures 3 and 4, others can be found in ref. [24]. 
In the excitation system, the constant AT  is very small and the constant AK  is very large. 

The time constant 2T  is much smaller than WT  in the PSS control system. Hence, for typical 

parameters as shown in the appendix and observing the time-scale in eqs. (39)―(44), we can find 
that: fEΔ  and 2y  belong to the fast variables; 1y , qE′Δ  and Δδ  belong to the slow vari-

ables. If Hi is not big enough, iωΔ  belongs to the fast variables category, if Hi cannot be viewed 

as a small parameter, iωΔ  and 1( )iy  should be classified to be the slow variables. In the next 

analysis, without loss of generality, we classify Δω  into slow variables for the simplicity of the 
following expressions.  

Let  
 T T T T T

1[ ]qE′= Δ Δ Δx yδ ω , fE= Δy , 2.=z y  (45) 

Substitute eq. (45) into eqs. (39)―(44), and the dynamic model is rewritten as  
 11 1sat( ),A B= +x x y  (46) 

 21 22 2sat( ),A A Bε = + +y x y z  (47) 

 31 33 ,A Aε = +z x z  (48) 
where  

1 1 1
1 2

11 1 1
4 3

1 1 1 1
1 2

0 0 0

0
;

0 0do do

s s s w

L

M K M D M K
A

T K T K

M K K M K D M K K T

− − −

− −

− − − −

−⎡ ⎤
⎢ ⎥
⎢ ⎥= − ⎢ ⎥′ ′⎢ ⎥
⎢ ⎥⎣ ⎦

 ( 1, 1)

1
;

1
ng ngL I − −

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

T1
1 0 0 0doB T −⎡ ⎤′= ⎣ ⎦ ; [ ]1

21 5 60 0A AA T K K Kε −= − ; 1
22 AA Tε −= − ; 

1
2 A AB T Kε −= ; 1

33 2A Tε −= − ; 1 1
31 2 1 2 1( )TM TM TM wA T K K K D K K T T Iε − −⎡ ⎤= − −⎣ ⎦ . 

Obviously, after the change of variables, dynamic systems (46)―(48) can be expressed as sys-
tems (2)―(4) studied in previous sections. Moreover, since AiT , 2iT  and iM  are all positive 
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constants, 22A  and 33A  are stable matrixes, i.e. the dynamic model of the power system satis-
fies Assumption 2 and the reduced-order method can be used to estimate its stability region. 
Moreover, the small parameter ε  is embedded in 1

AiTε −  and 1
2iTε − , and 1

AiT −  and 1
2iT −  are 

small constants. Thus the singularity, due to these small parameters in dynamic systems (46)―
(48), is eliminated.  

Remark 4.  (1) If iH  is not big enough, i.e. iM  is small, the corresponding variable iωΔ  

should be classified into the fast variables and 1iy  should also be classified into the fast vari-
ables. However, the dynamic equations corresponding to these two types of variables do not con-
tain the saturation nonlinearities, so these two types of variables can be taken for the part of vec-
tor z  and the structure of matrix 33A  is as follows:  

 

1

1
33

1
2

( )

* ( ) ,

* *

K

w K

M D

A T

T

ε

−

−

−

⎡ ⎤
⎢ ⎥

= − ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (49) 

where 1( )KM D−  denotes the diagonal matrix, whose elements are part of 1
i iM D−  which are 

the corresponding generators’ parameters classified into the fast variables. (2) If we take the dy-
namic models such as the motor model for some loads, the corresponding variables may need to 
be classified into the fast variables. However, it is easy to verify that systems (39)―(44) can still 
be rewritten as eqs. (46)―(48) and the structure of 33A  is still like that of eq. (49) except some 
elements added in the diagonal position. Moreover, if the inertial constants of the loads with the 
dynamic model are positive, 33A  is a stable matrix, i.e. Assumption 2 is satisfied so the re-
duced-order method still works.  

5.2  Simulation results 

The test power system is composed of 3 generators and 5 buses whose parameters are partly 
shown in Figure 5. Others are shown in the Appendix. This test system is also studied in ref. [17]. 

 
 

Figure 5  Diagram of the 3-machine, 5-bus system. 
 

5.2.1  Evaluation of the constructed dynamic model.  Choose 0.1ε = , 0.95σ = , and we get 
the reduced dynamic model via eqs. (36)―(37). For the same initial state, Figure 6 shows the 
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tδ −  curves and tω −  curves of the reduced-order system and the primary high-order system, 
respectively. Figure 7 shows that the fast variables approach the integral manifold rapidly. 

In Figure 6, for the slow variables such as the angles and the derivatives of the angle of the 
generators, we can find that the error between the reduced-order dynamic system and the primary 
high-order dynamic system is very small and is evanescent as time increases. This result is in ac-
cordance to the conclusion in Theorem 1. Hence, the impacts of fast variables on the slow vari-
ables can be ignored for this case. In other words in this test system, the small parameter satisfies 
the conditions which Theorem 1 needs. 

 

 
 
Figure 6  Results of the high-order system and the reduced-order system in the time domain. ―, Trajectories of the re-
duced-order system; ------, trajectories of the primary high-order system. 
 

From Figure 7, we can find that the decay speeds of fast variables are much rapid compared to 
those of the integral manifolds made up of the slow variables. It also can be found that 0.5 sec-
onds later, the fast variables have by and large converged to the integral manifolds. This phe-
nomenon validates the conclusions in Lemma 1 in which the fast variables converge to the corre-
sponding integral manifolds with time-scale t ε . Moreover in the same time-scale, we can ex-
plain this phenomenon from the viewpoint of the eigenvalues, i.e. the eigenvalues to which the 
fast variables corresponding are much smaller than the eigenvalues to which the slow variables 
are corresponding. This result is illustrated in Table 1, where the eigenvalues of the reduced-order 
dynamic system and of the high-order dynamic system are shown. 

In Table 1, the distribution of eigenvalues of the reduced system is much evener than that of 
the high-order system. This phenomenon indicates that the reduced-order method can alleviate 
the singularity of the high-order dynamic system. From this table, we also can see that the re-
duced-order system preserves the small eigenvalues which correspond to the slow modes (the 
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modes associated with the δ  and ω  terms of the generators). Hence, the reduced-order 
method does not lose the oscillation modes of slow variables, i.e. electromechanical oscillation 
modes, but ignores the fast variables of global stability. Moreover, this conclusion implies that the 
classification of the test power system under study is correct. 

 
 

Figure 7  Figures of fast variables converging to the integrated manifolds. ―, Trajectories of the reduced-order system; 
-----, integral manifolds. 
 
Table 1  Eigenvalues of the high-order system and the reduced-order system 

Eigenvalues of the primary system Eigenvalues of the reduced-order system 
−49.8653, −48.6570, −46.3741, 
−33.2216, −33.0554, −18.5341 — 

−4.8264, −1.8397 −4.6831, −1.8353 
−0.6689, −0.3899, −0.1217, −0.1889 −0.6687, −0.3917, −0.1217, −0.1889 
−0.0595±6.7262i, −0.1506±6.2715i −0.0610±6.7269i, −0.1706±6.2615i 

 
5.2.2  Results based on the reduced-order method.  The analysis of theory and simulation all 
show that the reduced-order dynamic system can approximate the primary high-order dynamic 
system well. In this subsection, we will show that the optimization results based on the re-
duced-order method are also correct. 

To compare the results of the reduced-order method with those of the traditional high-order 
method, we also consider that the set containing the expected initial states is the hyper-ball stud-
ied in ref. [17]. It should be noted that, due to renumbering the generators, the referenced ma-
chine of this paper is the first machine of the Appendix and in ref. [17] the referenced machine is 
the third machine. Moreover, ωΔ  in this paper is a nominal variable. In ref. [17], this variable is 

a per-unit value. Hence, if we let T
21 31 21 31[ , , , , ]δ δ ω ω= Δ Δ Δ Δξ  and 13 23[ , ,δ δ′ = Δ Δξ  
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T
13 23, , ]ω ω′ ′Δ Δ  denote the states of the dynamic system of this paper and those of ref. [17], 

then we have H′ =ξ ξ  and the set containing the expected initial states can be denoted by 
T T T( ,1) { | 1}E H H H H= ≤ξ ξ ξ , i.e. in expression (10) 0P′  satisfies T

0P H H′ = . Here, H is 

defined as 1
0

0 1 0 1
diag , ,

1 1 1 1
H Iω−⎧ − − ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= ⎨ ⎬⎢ ⎥ ⎢ ⎥− −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

. 

We can get the initial set with reduced order by eq. (28) and Lemma 3. We can get the optimal 
solution * 27.95 10xβ

−= ×  of eq. (31) by Algorithm 1 developed in section 4 based on the high- 

order dynamic system, if the optimal solution is * 28.22 10β −= × . Hence, for this case, the re-
duced-order method brings a small error, which also can be indicated by Figure 8, where the el-
lipses enclosed by the real lines and by the dash lines are the projections of the stability region 
based on the high-order dynamic system and the reduced-order method, respectively. In this fig-
ure, we can find that there are very small differences between the projections on the coordinates 
of slow variable δΔ  and ωΔ  of the estimated stability region based on the high-order system 
and those based on the reduced-order system. 

 
Figure 8  Projections of the attractive regions of the high-order and the reduced-order system. ―, Projection of the stability 
region of high-order system; ------, projection of the stability region of reduced-order system. 

 
In Figure 8, the projections on the coordinates of the slow variables are almost overlapped. 

However, from Theorem 2, we can get that the projections of the estimated stability region, via 
reduced-order method, on the coordinates of the fast variables are the global state space. More-
over, the corresponding projections of the stability region via the high-order method in ref. [17] 
are the areas enclosed by the ellipses as shown in Figure 9. In other words, the reduced-order 
method alleviates the conservation in the estimation since the method has used an underlying 
conclusion that fast variables converge to the corresponding integral manifolds globally.  

If the expected initial states can be contained in a low dimension ellipse, say 0X ′ , which is 
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independent of the slow variables, i.e. 0P′  has the structure as 0
0 22diag{0, }P P′ =  in eq. (10), 

then from Theorem 2 we know that the estimated stability region can contain a large enough 0X ′  
by the reduced-order method. Clearly, this conclusion cannot be drawn by the high-order method. 
However, this conclusion is important since it implies that under certain conditions in power sys-
tems, we need not pay much attention to the impact of the transient disturbance on the fast vari-
ables such as fdEΔ  and 2y  which are variables of the generator’s controls. 

 
 

Figure 9  Projections of the stability region based on the high-order system. 
 

6  Conclusion 

For a singular system with saturation nonlinearities, a reduced-order method is suggested based 
on the singular perturbation theory. The traditional methods for estimating the stability region of 
the singular, high-dimension system with saturation nonlinearities will meet with some difficult 
problems such as a heavy calculation burden, singularity and conservatism, etc. These problems 
can be solved to some extent by the method proposed in this paper. The reduced-order method 
was applied to test power systems with the saturated PSS controllers. Simulation results indicated 
the effectiveness of the method.  

Appendix 

In this appendix, we give the parameters of the generators, the PSS systems and the exciter’s 
control systems in Figure 5.  

Generator 1:  

1 1,P =  1 0.5,Q =  0.5,dx′ =  5 s,H =  0.005,D =  5.35;doT ′ =  6,AK =  0.02 s;AT =  
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1.0,sK =  5.0 s,wT =  1 0.35 s;T =  2 0.03 s;T =  1 6.2,fEΔ =  2 3.0.y =  

Generator 2:  

2 5,P =  2 1.05,U =  0.045,dx′ =  25 s,H =  0.025,D =  5.35;doT ′ =  10,AK =  0.02 s;AT =  

1.0,sK =  8.3 s,wT =  1 0.35 s,T =  2 0.03 s;T =  1 5.2,fEΔ =  2 3.0.y =  

Generator 3:  

3 0,θ =  3 1.05,U =  0.020,D =  20 s,H =  0.04,dx′ =  3.76;doT ′ =  17.5,AK =  0.02 s;AT =  

1.0,sK =  8.0 s,wT =  1 0.45 s,T =  2 0.05 s;T =  1 5.2,fEΔ =  2 3.0.y =  
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