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Abstract The shakedown of a functionally graded (FG) plate subjected to coupled constant mechanical load
and cyclically varying temperature is analyzed comprehensively. The material of the plate is composed of an
elastoplastic matrix and elastic particles, and the particle volume fraction varies through the thickness. The
distributions of the effective mechanical and thermal properties of the composites through the thickness are
evaluated with mean-field approaches and described with an exponential law. The temperature dependence of
the material properties is taken into account. The distribution of temperature change and the shakedown of
a typical FG Bree plate are analyzed. The comparison with the results of its homogeneous counterpart and
that without considering the temperature dependence of the material properties exhibits marked qualitative
and quantitative difference. The effect of the temperature dependence of the elastic properties of materials
is also investigated. Since FG structures are usually subject to severe coupled thermal-mechanical loadings,
the approach developed and the results obtained are significant for the analysis and design of such kind of
structures.

1 Introduction

Functionally graded materials (FGMs) are a class of composites characterized by the gradual variation in
composition, microstructure and material properties [1]. FGMs emerged from the need to enhance material
performance with the concept of taking advantages of the properties of the attendant constituents. Because of
the advantages and the technical potential, FGMs have been increasingly used in many fields of the modern
industries [2–4]. Motivated by increasing applications, FGMs also attracted increasing research interests in
recent years, which focused mainly on the thermomechanical behavior of FGMs and the characteristics of
FG structures [1,5–11]; crack and fracture [12–15]; transient thermal stress [2,16–19]; static and dynamic
responses [20–27]; thermomechanical creep, instability and buckling [28–32], etc. The shakedown of an FG
structure subjected to coupled varying thermal and mechanical loading was first investigated by Peng et al.
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[33], where, as an initial analysis and in order to avoid complexity, the temperature dependence of material
properties was not taken into account. It may limit the application in the case of severe temperature change
where the effect of temperature on material properties cannot be neglected. Since the shakedown is an essential
problem for FG structures subjected to coupled varying thermal and mechanical loading, the corresponding
approach should necessarily be developed.

The shakedown of an FG Bree plate is analyzed comprehensively in this paper. The plate is subjected
to coupled constant mechanical load and cyclically varying temperature change. The material of the plate is
composed of an elastoplastic matrix and elastic particles, with particle volume fraction varying through the
thickness. The distributions of the effective mechanical and thermal properties of the composites are evaluated
with mean-field approaches. The temperature dependence of the yield strength and the coefficient of thermal
expansion (CTE) is taken into account. The boundary of elasticity and the boundaries related to incremental
collapse and reversed plasticity are analyzed. The comparison with the result of the homogeneous counterparts
and the result without taking into account the temperature dependence of material properties shows remarkable
difference, indicating the significance of taking into account the temperature dependence of material properties
in the shakedown analysis of FG structures.

2 Constitutive model and static and kinematic shakedown theorems

Assuming small deformation and for initially isotropic and plastically incompressible materials, the constitutive
model adopted can be expressed as

εi j = εe
i j + ep

i j + εθ
i j , (1)

where εi j is strain and εe
i j , ep

i j and εθ
i j are its elastic, plastic and thermal components, respectively, which are

determined with

εe
i j = 1

E

[
(1 + v)σi j − vσkkδi j

]
, εθ

i j = α(θ − θ0)δi j , dep
i j = dλsi j , (2.1–3)

where E, ν and α are Young’s modulus, Poisson’s ratio and CTE, respectively, σi j and si j are stress and its
deviatoric component, θ and θ0 are temperature and reference temperature, respectively, δi j is the Kronecker
delta, and [34]

dλ = dζ

f (λ)s0
y

with dζ =
√

dep
i j dep

i j , (3)

s0
y is a material constant related to initial yield and f (λ) is a function describing isotropic hardening. The

following hardening function is adopted in the following analysis:

f (λ) = d − (d − 1)e−βλ with f (0) = 1 and d ≥ 1. (4)

Keeping in mind that λ is non-negative and non-decreasing in any plastic deformation process, it can be
seen in Eqs. (3) and (4) that f (λ) increases with the development of plastic deformation and tends to its
asymptotic value d corresponding to the ultimate strength σy = d · σ 0

y as plastic deformation fully develops
when λ → ∞, indicating a saturated state of isotropic hardening. Substituting Eqs. (3) into (2.3) yields the
following Mises-type yield condition:

si j si j =
[

f (λ)s0
y

]2
. (5)

Introducing the loading function

F
(
si j , k

) = √
si j si j − ks0

y , with 1 ≤ k ≤ d, (6)

it can be seen that any state of stress should satisfy F
(
si j , k

) ≤ 0, andF
(
si j , k

) = 0 defines a loading surface.
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Given a set of actual stress and hardening states, si j , k, and a set of allowable stress and hardening states,
s∗

i j , k∗, which satisfy

F
(
si j , k

) = 0, 1 ≤ k ≤ d;
F

(
s∗

i j , k∗
)

≤ 0, 1 ≤ k∗ ≤ d,
(7)

and making use of the following inequality

(si j − s∗
i j )dep

i j ≥ 0, (8)

one can prove that [35]

(s∗
i j − si j )dep

i j ≤ s0
y(k

∗ − k)dζ. (9)

Static Shakedown Theorem: If there exist a time-independent residual stress field ρ̄i j and a time-
independent field k∗ such that for all the load variations within a given load domain �, the following condition
holds

F
(

s E
i j + ρ̄i j , k∗) ≤ 0, (10)

then the total energy dissipated in any allowable load path is bounded [33].
In (10) s E

i j is the purely elastic solution of the deviatoric stress determined by external loads, and 1 ≤ k∗ ≤ d .

Kinematic Shakedown Theorem: If there exist, over a certain time interval (t1, t2), a history of load resulting
in a history of purely elastic stress s E

i j (x, t), and a history of plastic strain ēi j (x, t) resulting in a kinematically
admissible increment such that


ēi j (x) = ēi j (x, t2) − ēi j (x, t1) = 1

2
(
ūi, j + 
ū j,i ), (11)

with 
ūi = 0 on Su (the boundary where displacement is prescribed), and if shakedown occurs to the given
structure, the condition

t2∫

t1

∫

V

s E
i j (x, t) ˙̄ei j (x, t)dV dt ≤

t2∫

t1

∫

V

D
( ˙̄ei j (x, t)

)
dV dt, (12)

should be satisfied for all kinematically admissible plastic strain cycles [33].
In (12),

D
( ˙̄ei j (x, t)

) = s̄i j (x, t) ˙̄ei j (x, t) (13)

is a dissipation function.
The following relationship was suggested for practical application by substituting Eqs. (2.3) and (3) into

(12), following the definition by König [36],

∫

V

d · s0
y
ζ̄dV −

m∑

k=1

∫

V

αk(x)Jk(x)dV ≥ 0, (14)

where


ζ̄ = ∥
∥
ēi j

∥
∥ , Jk(x) = s E

i j (x)
ēi j (x), αk =
{

β+
k if Jk(x) > 0,

β−
k if Jk(x) < 0,

(15)

and a set of inequalities β−
k ≤ βk ≤ β+

k (k = 1, 2, . . ., m) defines the domain � of loads.
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Fig. 1 The Bree plate

3 Analysis for shakedown of an FG Bree plate

A plate (Fig. 1) of thickness h is subjected to loads (Px , Py) per unit length in two mutually orthogonal
directions. The surfaces of the plate are subjected to temperatures θ2 and θ1 which vary cyclically as shown
in Fig. 1. The cycle time 
t is assumed large compared to the characteristic heat conduction time, and the
change, between θ0 (a reference temperature) and θ0 + 
θ̄ , is assumed to take place sufficiently slowly for
steady state conditions to prevail. The strain εx and εy are assumed to be uniform throughout the thickness of
the plate. The problem is a simulation of the behavior of a thin- walled tube, in the context of a nuclear fuel
can design problem by Bree [37] for homogeneous material and perfect plasticity.

3.1 Distribution and temperature dependence of material properties

In this paper, both the spatial change and the temperature-dependence of yield strength and CTE,
and the special variation of thermal conductivity and Young’s modulus are considered. The spatial varia-
tion and the temperature-dependence of Poisson’s ratio is ignored, for its variation and effect is less significant
in the interesting ranges of particle volume fraction and temperature change, but taking it into account may add
much complicity to analysis. The temperature dependence of the elastic properties of the material involved is
temporarily ignored in Sects. 3 and 4, because, to the authors’ knowledge, no static shakedown theorem in the
literature is available for materials having elastic properties varying with temperature. An exception seems to
be the theorem suggested by König [38], which is, however, practically inapplicable due to its too restrictive
assumption, i.e., temperature increases monotonically at every point of a structure. In the discussion in Sect. 5,
the temperature dependence of the elastic properties is considered in the shakedown analyses with (1) the
adopted kinematic shakedown theorem and (2) a direct extension of the adopted static shakedown theorem,
and the results obtained are compared to the results without taking into account the temperature dependence
of elastic property.

We assume that the material properties can be expressed as

C = C(z,
θ) = M(z)T (
θ), (16)

where M(z) and T (
θ) describe the spatial variation and the temperature dependence of C , respectively,

θ = θ − θ0 is temperature change, with θ and θ0 being working temperature and reference temperature,
respectively.

The spatial variation of the properties is expressed as [39]

M(z) = M0m(z), m(z) = M
−

(
1
2 + z

h

)

0 M
1
2 + z

h
h = q

1
2 + z

h ,

(
−h

2
≤ z ≤ h

2

)
, (17)
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Fig. 2 Heat transfer in a Bree plate

where M0 = M (−h/2) , Mh = M (h/2) and q = Mh/M0, respectively. Replacing M with E, α, s0
y and λ

(thermal conductivity), replacing m with m E , mα, my and mλ, and q with qE , qα, qy and qλ, one obtains

E(z) = E0m E (z), α(z) = α0mα(z), s0
y(z) = s0

y0ms(z), λ(z) = λ0mλ(z)

m E (z) = q
1
2 + z

h
E , mα(z) = q

1
2 + z

h
α , my(z) = q

1
2 + z

h
y , mλ(z) = q

1
2 + z

h
λ

(− h
2 ≤ z ≤ h

2

)
,

qE = E(h/2)
E(−h/2)

, qα = α(h/2)
α(−h/2)

, qy = s0
y (h/2)

s0
y (−h/2)

, qλ = λ(h/2)
λ(−h/2)

,

(18)

for the distributions of Young’s modulus, CTE, yield strength and thermal conductivity, respectively.
The temperature dependence of yield strength and CTE takes the following linear form, assuming moderate

change of temperature:

Ti (
θ) = ai (θ0) + bi
θ, (19)

where ai and bi are material constants. The subscript i can be replaced with y and α for yield strength and
CTE, respectively.

3.2 Temperature distribution

Assuming steady-state heat transfer, the distribution of the temperature can be determined with the following
heat conduction equation without considering source heat:

∇ · {λ(x,
θ)∇θ} = 0. (20)

For uniaxial heat transfer, as shown in Fig. 2, and neglecting the temperature dependence of thermal conduc-
tivity, Eq. (20) can be simplified as

d

dz

{
λ(z)

dθ

dz

}
= 0. (21)

Keeping in mind Eqs. (17) and (18), and making use of the thermal boundary condition shown in Fig. 1, the
distribution of temperature change can be obtained as


θ(z) = (1 − q
1
2 − z

h
λ )

1 − qλ


θ̃, (22)

with


θ̃ =
{

0 (n + 0.5)
t ≤ t ≤ (n + 1)
t,

θ̄ n
t ≤ t ≤ (n + 0.5)
t.

(23)
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3.3 Purely elastic solutions of mechanical and thermal stress distributions

We will be concerned with the solution when the displacement in y-direction is fixed, i.e., εy = 0 [37]. In this
case, we have

σx = E(z)

1 − ν2 [εx − α(z, 
θ) (1 + ν)
θ(z)] . (24)

If Px is applied individually, i.e., θ(z) is fixed at each point in the plate, the corresponding stress distribution
can be obtained as

σP = σx |
θ̄=0 = E(z)

E0

ln qE

qE − 1

Px

h
, (25)

It can be seen that the stress is no longer distributed uniformly in the cross-section because of the non-uniform
distribution of the elastic property.

If 
θ̄ is applied individually, the neutral plane of the plate will not coincide with its geometrically sym-
metrical plane, due to the non-uniform distribution of the material properties. Assuming at the neutral plane,
z = a, keeping in mind that σx (a) = 0 and εx (z) = εx (a) = ε0, ε0 can be determined with the following
equation by making use of Eq. (24) and the equilibrium condition,

∫
A σx dA = 0:

ε0 = (1 + ν)
∫ h/2
−h/2 E(z)α(z, 
θ)
θ(z)dz

∫ h/2
−h/2 E(z)dz

= α0 (1 + ν) ln qE

qE − 1
�1

(

θ̃

)

θ̃, (26)

where

�1
(

θ̄

) =
�11

(

θ̃

)
+ �12

(

θ̃

)
+ �13

(

θ̃

)
+ �14

(

θ̃

)

(qλ − 1)3 ln qαE (ln qαE − 3 ln qλ) (ln qαE − 2 ln qλ) (ln qαE − ln qλ)
, (27)

�11

(

θ̃

)
= − (qλ − 1)3

(
aα + bα
θ̃

)
(ln qαE )3 , qαE = qαqE ,

�12

(

θ̃

)
= (qλ − 1)2

[
bα (4qλ − 6)
θ̃ + aα (5qλ + qαE − 6)

]
(ln qαE )2 ln qλ, (28)

�13

(

θ̃

)
= − (qλ − 1)

[
aα (qλ − 1) (6qλ + 5qαE − 11) + bα (11 − 2qαE + 3 (qλ − 4) qλ) 
θ̃

]
,

ln qαE (ln qλ)
2 ,

�14

(

θ̃

)
= 6 (qαE − 1)

[
aα (1 − qλ) + bα
θ̃

]
(1 − qλ) (ln qλ)

3 .

With ε0, a can be solved from the following equation obtained from Eq. (24)

ε0 = εx (a, 
θ(a)) = α(a,
θ(a))(1 + ν)
θ(a), (29)

and the thermal stress can be determined with

σθ = σx |Px =0 = E(z)

1 − ν2 [ε0 − α(z,
θ) (1 + ν)
θ(z)] , (30)

where 
θ(z) is determined with Eq. (22).

3.4 Static shakedown of the Bree plate

(1) Initial yield
No plastic deformation takes place provided

σP(z) + σθ (z, 
θ) ≤ σ 0
y (z, 
θ) for a ≤ z ≤ h/2,

σP(z) + σθ (z, 
θ) ≥ −σ 0
y (z, 
θ) for − h/2 ≤ z ≤ a,

and σP(z) ≤ σ 0
y (z, 0).

(31)

where σ 0
y (z, 
θ) = my(z)Ty(
θ)σ 0

y0 and σ 0
y0 is a material constant related to the initial yield of the plate

under the given loading condition. It should be noted that the boundary determined by Eq. (31) may not
be linear in thePx − 
θ̄ plane because of the non-linear nature of σP(z), σθ (z,
θ) and σ 0

y (z, 
θ).
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(2) Static shakedown analysis
Suppose there are a time-independent residual stress field ρ̄x (z, 
θ) and a time-independent field
k∗(1 ≤ k∗ ≤ d) in the plate, the plate will shakedown if the following condition is satisfied:

σP(z) + σθ (z, 
θ(z)) + ρ̄x (z) ≤ σy(z, 
θ(z)), a ≤ z ≤ h/2,
σP(z) + ρ̄x (z) ≤ σy(z, 0), −h/2 ≤ z ≤ a,
σP(z) + ρ̄x (z) ≥ −σy(z, 0) a ≤ z ≤ h/2,
σP(z) + σθ (z, 
θ(z)) + ρ̄x (z) ≥ −σy(z,
θ(z)), −h/2 ≤ z ≤ a.

(32)

In order to derive a maximal shakedown area, k∗ = d is adopted in the following analysis.
The shakedown boundaries of the plate include two parts: the boundary between the area of shakedown
and that of incremental collapse, and the boundary between the area of shakedown and that of reversed
plasticity.
(a) Shakedown boundary corresponding to incremental collapse

Incremental collapse may take place if Eqs. (32) become

σP(z) + σθ (z,
θ(z)) + ρ̄x (z) = σy(z, 
θ(z)), a ≤ z ≤ h/2,
σP(z) + ρ̄x (z) = σy(z, 0), −h/2 ≤ z ≤ a,
σP(z) + ρ̄x (z) ≥ −σy(z, 0) a ≤ z ≤ h/2,
σP(z) + σθ (z,
θ(z)) + ρ̄x (z) ≥ −σy(z, 
θ(z)), −h/2 ≤ z ≤ a.

(33)

Eqs. (33) indicate that, in the duration from n
t to (n + 0.5)
t , at each point in the region a ≤
z ≤ h/2 of the cross section, the stress σP(z) + σθ (z,
θ) + ρ̄x (z) reaches σy(z, 
θ), while in
the duration from (n + 0.5)
t to (n + 1)
t , at each point in the region −h/2 ≤ z ≤ a of the
cross section, the stress σP(z)+ ρ̄x (z) reaches σy(z, 0). The two parts of the cross section may flow
forward alternatively.

(b) Shakedown boundary corresponding to reversed plasticity
It can be obtained from Eqs. (32) that

σθ (z,
θ(z)) ≤ σy(z, 
θ(z)) + σy(z, 0) a ≤ z ≤ h/2,
σθ (z,
θ(z)) ≥ −σy(z, 
θ(z)) − σy(z, 0) −h/2 ≤ z ≤ a.

(34)

The equality of both sides of any one in Eqs. (34) at any point in the cross section implies the equal-
ity of both sides of (32.1) and (32.3), or the equality of (32.2) and (32.4), indicating that reversed
plasticity occurs to this point in the cross section.

3.5 Kinematic shakedown analysis

Given a kinematically admissible strain increment 
ε̄ and keeping in mind Eqs. (24) and (25), one obtains the
following relationships from Eq. (15):

JP = σP
ε̄ = E(z)

E0

ln qE

qE − 1

Px

h

ε̄ > 0, −h/2 ≤ z ≤ h/2, (35a)

β−
P = 0, β+

P = 1, so that αP = β+
P = 1. (35b)

Similarly, keeping in mind Eqs. (26) and (30), one obtains

Jθ = E(z)
1−ν2 [ε0 − α(z,
θ) (1 + ν)
θ(z)] 
ε̄ > 0 for a ≤ z ≤ h/2, and αθ = β+

θ = 1

Jθ = E(z)
1−ν2 [ε0 − α(z,
θ) (1 + ν)
θ(z)] 
ε̄ < 0 for − h/2 ≤ z ≤ a, and αθ = β−

θ = 0.
(36)

Substituting Eqs. (35) and (36) into (14) yields the following inequality that determines the kinematic shake-
down boundary:

d · σ 0
y0h�2 ≥ Px + hE0ε0�3

1 − ν2 − E0α0h
θ̄

1 − ν

√
qαE

X1 + X2

(qλ − 1)3 ln qαE (ln qαE − ln qλ)
, (37)
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Fig. 3 Predicted and adopted mechanical properties of the Al/Al2O3 composite

where �3 = hq
1
2
E

ln qE

(
q

1
2
E − q

a
h
E

)
,

�2 = q
1
2
y

(qλ − 1)
(
ln qλ − ln qy

)
ln qy

{
[
ay (1 − qλ) + by
θ̄

]
(

q
a
h
y − q

1
2
y

)
ln qλ

+
[

ay (qλ − 1)

(
q

a
h
y − q

1
2
y

)
+ by
θ̄

(
q

1
2 − a

h
λ − 1

)
q

a
h
y

]
ln qy

}
+ 1

ln qy

(
q

1
2 + a

h
y − 1

)
, (38)

X1 = aα (qλ − 1)2 q
a
h
αE

[(
1 − q

1
2 − a

h
λ

)
ln qαE −

(
1 − q

1
2 − a

h
αE

)
ln qλ

]
,

X2 = −bα
θ̄ (qλ − 1) q
− 2a

h
λ

ln qαE − 2 ln qλ

{
−2q

a
h
αE q

1
2 + a

h
λ ln qαE (ln qαE − 2 ln qλ)

+q
2a
h

λ

(
q

a
h
αE (ln qαE − 2 ln qλ) (ln qαE − ln qλ) − 2

√
qαE (ln qλ)

2
)

+ q
a
h
αE qλ ln qαE (ln qαE − ln qλ)

}
.

Given 
θ̄ , the corresponding Px can easily be derived from Eq. (37).
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Table 1 Material constants

E (GPa) α(×10−6 K −1) σ 0
y ( MPa) λ(W/K m) ν d

E0 Eh α0 αh λ0 λh σ 0
y0 σ 0

yh

69.0 113.4 23.1 17.7 237.0 185.5 130.0 223.2 0.328 1.792

Table 2 Temperature dependence constants

α σy

aα bα ay by

1 7.091E-4 1 -1.262 E-3

4 Application to shakedown analysis of Bree plate made of Al/Al2O3 composite

4.1 Effective properties of the adopted material

The Bree plate is assumed to be made of functionally graded Al/Al2O3 composite. The thermal and
mechanical properties of each constituent at 20◦C and 600◦C can be found in [41,42]. The effective mechanical
and thermal properties of the composite are evaluated with mean field approaches.

If, in the plate, the volume fraction of particles, ξ , varies linearly from zero at the bottom surface to 30%
at the top surface, the variation of σy and E through the thickness of the plate can be determined and shown in
Figs. 3a and b, respectively, where it can be seen that the exponential rule (Eqs. (17) and (18)) can reasonably
describe the distribution of σy and E . The average of the Poisson’s ratio ν is about 0.328 and the variation and
its effect is negligible. The effective CTE and thermal conductivity are evaluated respectively with [40]

α = αm + (1/K − 1/Km)(αc − αm)

1/Km − 1/Kc
and λ = λm

[

1 + ξ(λc/λm − 1)

1 − 1
3 (1 − ξ)(λc/λm − 1)

]

, (39)

where the subscript “m” and “c” represent matrix and inclusion, respectively, Km, Kc and K are bulk moduli
of matrix, inclusion and composite, respectively. The distributions of α and λ are shown in Figs. 3c and d,
respectively. The constants, which are related to Fig. 3 and used in the analysis, are listed in Table 1. With
the material properties at different temperature [40,41], the temperature dependence of the CTE and the yield
strength is determined and the corresponding parameters are listed in Table 2.

4.2 Determination of shakedown boundaries

Although, in principle, the lower bound of shakedown loads of a structure can be determined by simply assum-
ing a residual stress field, in order to illustrate the importance of an appropriate shakedown analysis of FG
structures, a more accurate shakedown boundary is to be achieved by taking into account in detail the effect
of the non-linearity of the involved material properties and their temperature dependence on the shakedown
of the FG structure.

h = 60 mm is used in the example. In the determination of the shakedown boundaries, the thickness
of the plate is separated into 20 segments with identical increment, containing 21 points with coordinates
−h/2, . . ., −h/2 + (k − 1)h/20, . . ., h/2, k = 1, 2, . . ., 21. The conditions, which should be satisfied over
the thickness, are reduced to be satisfied at each point.

The boundary of pure elasticity can be determined with Eqs. (25), (30) and (31) and shown with the lines
marked with (E-S) in Fig. 4. The boundary consists of three segments, determined by the three inequalities in
Eq. (31), respectively. The distributions of σP , σθ , σ = σP + σθ , and σ 0

y at Points A, B, C, and D in Fig. 4 are
shown in Figs. 5a, b, c and d, respectively. In Fig. 5 and in the following, the zone bounded by “*” denotes the
elastic zone as 
θ̄ is applied, and the zone bounded by “×” denotes the elastic zone as 
θ̄ is removed, and
a′ = a/h. At point A (Fig. 4), Px = 0 (or σP = 0), σ = σθ reaches −σ 0

y at the bottom surface. At point B
(Fig. 4), σ = σP + σθ reaches σ 0

y at the upper surface while σ = σP + σθ reaches -σ 0
y at the bottom surface.

At point C (Fig. 4), σ = σP + σθ reaches σ 0
y at the upper surface as
θ̄ is applied, while σ = σP + σθ reaches

σ 0
y the lower surface as 
θ̄ is removed. At point D, 
θ̄ = 0, σ = σP equals σ 0

y at the lower surface.
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 (a) Stress distributions at A             (b) Stress distributions at B 
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(a) Residual stress filed               (b) Stress distributions 
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The boundary between shakedown and incremental collapse areas can be determined with Eqs. (33) by
the following steps: (a) Given a set of 
θ̄and Px , the residual stress ρ̄x can be estimated with the first two
equations in (33); (b) Check if the obtained residual stress field ρ̄x satisfies the last two inequalities in (33); (c)
Check if the residual stress field ρ̄x satisfies the self-equilibrium condition; and (d) if (b) or (c) is not satisfied,
adjust Px and then return to step (a). The determined boundary between shakedown and incremental collapse
areas is given in Fig. 4 with the line marked with (S-IC). The distributions of the residual stress ρ̄x , the stress
σP , σθ , and σ+ determined by the LHS of Eqs. (33.1) and (33.2), and σ− determined with (33.3) and (33.4), at
point G (Fig. 4) are shown in Fig. 6, where plastic deformation may take place if either σ+ or σ− reaches the
boundary. It can be seen that making use of the residual stress ρ̄x shown in Fig. 6a, the obtained σ+ throughout
the thickness of the plate reaches the yield stress σy , indicating plastic flow takes place in the direction of σ+.
In the opposite direction, σ− is far from −σy throughout the thickness, indicating no plastic flow will occur in
the direction.

Different from the results shown in Fig. 6, corresponding to 
θ̄ = 0, the results corresponding to point F
(Fig. 4) are given in Fig. 7. Making use of the time-independent residual stress field shown in Fig. 7a, incre-
mental plastic deformation in the direction of Px can be obtained in each cycle of 
θ̄ . It can be seen that the
stress σ+ determined by the LHS of Eq. (33.1) reaches σy (the zone bounded by “*”) in the region a ≤ z ≤ h/2
as 
θ̄ is applied, and the stress determined by the LHS of Eq. (33.2) reaches σy (the boundary bounded by
“×”) in the region −h/2 ≤ z ≤ a as 
θ̄ is removed, alternatively. It implies that plastic flow takes place in
the direction of Px in the region a ≤ z ≤ h/2 during n
t and (n + 0.5)
t ; and in the region −h/2 ≤ z ≤ a
during (n + 0.5)
t and (n + 1)
t). In the opposite direction, σ− reaches −σy at z = −h/2, indicating plastic
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(a) Residual stress filed               (b) Stress distributions 
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Fig. 8 Stress distributions at point E in Fig. 4

deformation may occur at the lower surface, but in the other part of the section, the deformation in the direction
of σ− keeps purely elastic, implying that no overall plastic deformation takes place in the direction of σ−.
Plastic deformation develops in each cycle of 
θ̄ and increases monotonically with the increase of n.

The distributions of the residual stress ρ̄x , the stress σP , σθ , and σ+ determined by the LHS of Eqs. (32.1)
and (32.2) and σ− determined by the LHS of Ines. (32.3) and (32.4) under the condition of Ine. (34) are shown
in Fig. 8, respectively, corresponding to point E on the line marked with S-RP (the boundary between the area
of shakedown and that of reversed plasticity) in Fig. 4. In the duration when 
θ̄ is applied, the obtained σ−
reaches −σy at the lower surface, indicating that reversed plastic deformation may take place at this location.
It should be noted that, similar situation also occurs at point F in Fig. 4, the intersection of line S-IC and line
S-RP, corresponds to the thermal-mechanical loads resulting in overall incremental collapse and local reversed
plasticity.

The kinematic shakedown boundary determined with Ine. (37) is also given in Fig. 4 with dashed-circle
line marked with KM. It well coincides with the boundary marked with S-IC determined by static shakedown
analysis, indicating that S-IC should be a sufficiently exact shakedown boundary of this plate.

4.3 Comparison with the result of its homogeneous counterpart

In order to illustrate the difference between the result of the FG Bree plate and that of its counterpart made of
homogeneous materials, the shakedown boundaries of the Bree plate made of a homogeneous material is also
investigated, with the same material model, but the averaging material properties defined as

Ē = 1
h

h/2∫

−h/2
E(z)dz = qμ−1

ln(qμ)
E0, ᾱ = 1

h

h/2∫

−h/2
α(z)dz = qα−1

ln(qα)
α0,

σ̄ 0
y = 1

h

h/2∫

−h/2
σ 0

y (z)dz = qs−1
ln(qs)

σ 0
y0, λ̄ = 1

h

h/2∫

−h/2
λ(z)dz = qλ−1

ln(qλ)
λ0,

(40)

With the material constants given in Table 1 and Eq. (40), these averaging properties can be determined as

Ē = 89.377GPa, ᾱ = 2.03 × 10−5K−1, σ̄ o
y = 309.02MPa, λ̄ = 209.93W/K · m.

The purely elastic solution of the mechanical and thermal stress is obtained as

σP = Px

h
, σθ = 2z

h
σ̃θ , with σ̃θ = ᾱ Ē

2 (1 − ν)

θ̄. (41)

Given simple residual stress fields (Fig. 9), corresponding respectively to incremental collapse and reversed
plasticity, the shakedown boundaries can be determined and shown with solid lines in Fig. 10. In Fig. 9b,
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(a) For incremental collapse              (b) For reversed plasticity 
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Fig. 10 Shakedown areas of the Bree plate made of equivalent homogeneous material

the parameter m can be determined by the self-equilibrium condition. Comparing the shakedown boundaries
shown in Fig. 10 with that given in Fig. 4 (also exhibited in Fig. 10 with dashed lines), a remarkable difference
can be observed.

4.4 Comparison with the result without considering the temperature dependence of material properties

In order to assess the effect of temperature dependence of material properties on the shakedown boundary,
the shakedown boundaries of the FG Bree plate are also analyzed with the material constants in Table 1 but
without taking into account the temperature dependence of material properties. The result is also shown in
Fig. 10 with dashed-circle lines. It can be seen that, the boundary between the area of shakedown and that of
reversed plasticity hoists markedly. The boundary of elasticity also changes distinctly. These differences indi-
cate the significance of taking into account the temperature dependence of material properties in the shakedown
analysis of FG structures.

5 Conclusions and discussion

The shakedown of a Bree plate is comprehensively analyzed. The effective thermal and mechanical properties
of the composite are obtained with mean-field approaches. The material properties distribute approximately
exponentially over the thickness. The effect of temperature on yield strength and CTE is considered. The tem-
perature distribution is obtained with heat conduction equation. As an example, the shakedown of an Al/Al2O3
FG Bree plate is analyzed.

The shakedown boundary of the FG Bree plate exhibits distinct difference from that of its homogeneous
counterpart and that without taking into account the effect of temperature on the yield strength and CTE in the
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Fig. 11 Comparison between the shakedown boundaries of the Bree plate obtained with different approaches

following main aspects: (1) For the FG Bree plate, the pure elasticity boundary is no longer a straight line, but
consists of several segments, corresponding to different yield criteria; (2) the homogeneous counterpart may
markedly overestimates the shakedown boundary, which may result in a improper failure of the structure; and
(3) the temperature dependence of the material properties plays an important role in the shakedown analysis
of the FG Bree plate and should be included in the shakedown analysis.

The shakedown capability of an FG structure is determined by both the structure geometry and the distri-
bution of material properties, which implies the possibility to enhance the shakedown capability of a structure
by optimizing the properties of the attendant constituents as well as the distribution of overall material proper-
ties. It should also be noted that FG structures are usually subjected to coupled severe mechanical and thermal
loads, and shakedown is an essential problem of such kind of structures, the approach developed and the results
obtained are, therefore, significant for the analysis and design of FG structures.

In the above analysis, the temperature dependence of Young’s modulus E was ignored. However, in the
case where temperature changes in a wide range, such effects might be rather remarkable. In order to estimate
the effect in the shakedown analysis, two additional approaches are adopted: (1) the kinematic shakedown the-
orem taking into account the temperature dependence of E , and (2) a direct extension of the static shakedown
theorem to the case involving the temperature dependence of E . The results obtained are compared with that
in Sect. 4.

The temperature dependence of E is also described with Eqs. (16) and (19), with aE = 1 and bE =
−5.32E − 4, identified with the experimental data [40,41]. The shakedown boundaries of the Bree plate under
the conditions identical with that in Sect. 4 are determined and shown in Fig. 11 (with solid line for the result
by approach (2) and “×” by for that by approach (1)). The results obtained in Sect. 4 are also shown in Fig. 11
with dashed lines for comparison.

For the boundaries related to incremental collapse, it can be seen that taking into account the temperature
dependence of E may slightly decrease the shakedown area at moderate temperature, but slightly increase the
shakedown area if the temperature approaches that when reversed plasticity occurs. Compared with the bound-
ary determined by the kinematic shakedown theorem taking into account the temperature dependence of E , it
can be seen that both the static shakedown theorem and its extension can provide reasonable approximations.

For the boundary related to reversed plasticity, there is a distinct difference between the boundaries with
and without considering the temperature dependence of E . However, the approach without taking into account
the temperature dependence of E seems to give more conservative boundary than its extension.

The distributions of ρx , σθ , σP , σ+, σ−, and σy at point F (Fig. 11) determined by the extension of the
static shakedown theorem are shown in Fig. 12, where the reduction of E at the lower surface is about 13%.
Compared with the results shown in Fig. 7, it can be seen that σθ and σP change from 483 and 252 MPa to 459
and 241 MPa, respectively at the upper surface, and change from −378 and 143 MPa to −395 and 147 MPa,
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respectively, at the lower surface, correspondingly the residual stress ρx changes from −334 to −300 MPa
at the upper surface, and from 90 to 86.2 MPa at the lower surface. The temperature dependence of E may
induce additional change in thermal-mechanical stresses due to the additional change of material properties
and redistribution of stress. For instance, it may markedly reduce the thermal stress at elevated temperature,
accounting for the higher boundary of reversed plasticity, as shown in Fig. 11.
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