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Abstract

A novel segmentation method based on wavelet transform is presented for gray matter, white matter and cerebrospinal fluid in thin-sliced

single-channel brain magnetic resonance (MR) scans. On the basis of the local image model, multicontext wavelet-based thresholding

segmentation (MCWT) is proposed to classify 2D MR data into tissues automatically. In MCWT, the wavelet multiscale transform of local

image gray histogram is done, and the gray threshold is gradually revealed from large-scale to small-scale coefficients. Image segmentation is

independently performed in each local image to calculate the degree of membership of a pixel to each tissue class. Finally, a strategy is

adopted to integrate the intersected outcomes from different local images. The result of the experiment indicates that MCWT outperforms

other traditional segmentation methods in classifying brain MR images.
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1. Introduction

Magnetic resonance (MR) imaging is an advanced

medical technology in brain anatomy research. It can

provide rich information about human brain anatomy in

two dimensions in a noninvasive way. White matter (WM),

gray matter (GM) and cerebrospinal fluid (CSF) are three

basic tissues in the brain. Brain tissue segmentation consists

of assigning a label to each pixel of a thin-sliced single-

channel brain MR scan. This label indicates which class a

pixel belongs to. The goal is to obtain a partition of the

image that is composed of homogeneous regions, with each

partition representing a class. It is an important preprocess-

ing step in brain research and clinical applications because

these contrasts define the boundaries of most brain

structures. Currently, many available methods for MR

image segmentation have been developed, especially from

classical, statistical, fuzzy and neural network techniques
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[1–3]. Classical techniques include threshold, edge-based

and pixel-based techniques. These approaches extract tissue

that is defined by intensity transitions or by gradients of

intensity transitions and have been used to manually or

semiautomatically outline cortical and subcortical structures

[4,5]. Pixel-based methods used in previous publications

have been successful in partitioning CSF from brain

parenchyma. Then, a threshold is defined based on the

histogram of the brain image. Pixels with intensity above the

threshold belong to a particular tissue while other pixels

belong to the other tissue.

Unfortunately, intensity inhomogeneities in brain MR

images, which can change the absolute intensity for a given

tissue class in different locations, are a major obstacle to

any automatic method for MR imaging segmentation

and make it difficult to obtain accurate segmentation results

[5]. Traditional thresholding techniques for segmentation

based on the histogram of the MR images do not work

well because of the presence of random noise and magnetic

field inhomogeneities [6]. On the basis of the local image

model, the wavelet multiscale transform of local image gray

histogram is done and the gray threshold is gradually

revealed from large-scale to small-scale coefficients [7,8].
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Fig. 1. (A) Original image. (B) Image after filtering and brain shelling.
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An ideal segmentation method based on wavelet presents

overlapping multigrid brain images and is applicable to

our large database. It has been applied in a brain imaging

toolkit that we developed. It is automated, fast, reliable

and valid.

This article is organized as follows. Section 2 presents a

local image model instead of a global model. By simplifying

the model into its local version, the adverse impact is

eliminated. Based on the local model, a new method is

presented in Section 3 to classify 2D data effectively and

reliably while avoiding the possibility of removing useful

information. In Section 4, experimental results on real 2D

MR images are presented. The final section is devoted to

discussion and conclusions.
2. Hypotheses of local image model

The key to our classification model is the idea of

local image model. Estimation and correction for inhomo-

geneities are not necessary because a local version of the

model can be deduced to eliminate the adverse effect of

intensity inhomogeneities.

With this in mind, the following hypotheses were found

to be necessary:
Hypothesis 1. There are only pure pixels throughout the

putamen area.

Hypothesis 2. Within the context of the brain area of the

image, the tissues exit together and each tissue’s pixels

are considerable.

Hypothesis 3. All pixels of the same kind of tissues have

similar intensities within a context.

Hypothesis 4. After preprocessing of the original brain

image, there are only GM, WM and little CSF left in the

brain area.
3. Method

3.1. Preprocessing

Images were filtered with 3D anisotropic filters (number

of iteration=4, k=10, no bias) to improve signal-to-noise

ratio and the contrast-to-noise ratio of the images [9,10].

The filtering process smoothens out the regions without

disturbing the regional boundaries and reduces the variance

of the intensities of tissues without altering the means

of intensities.

Brain shelling means separating the cerebrum from

external skull, bone, dura, brain stem and cerebellum of the

MR scans. Based on an active brain template from the head

scans, one can obtain the brain area of the image. A brain

model composed of separate models of the left and right

cerebellum and the cerebrum is used here (Fig. 1).

As the surface wipes off, the earlier selected threshold

removes the background pixels and most CSF pixels that are
below the threshold. Therefore, there are only GM, WM and

little CSF left in the brain area of the MR scans.

3.2. Wavelet-based thresholding segmentation (WTS)

The basic idea of traditional histogram-based thresh-

olding technique is that images consist of regions

with different features [3]. The histogram of an image

indicates combined probability distributions of constituent

tissue types.

The gray-level histogram of an image may have one or

more peak values. By choosing one or more thresholds of

gray level, the object regions can be classified for further

processing. If the histogram has obvious peak values,

we can get the thresholds easily. Nevertheless, because of

noise in practice, we could not always make a good choice

of the threshold. The threshold could easily be influenced

by the noise.

A thresholding technique based on wavelet transform can

easily avoid the impact of the noise. The essential idea of

this method is as follows: first, decompose the gray-level

histogram of an image into the wavelet coefficients of

different hierarchy by a dyadic wavelet transform; then,

select the thresholds depending on the rule of segmentation

and the dyadic wavelet coefficients; finally, obtain the hard

segmentation via the thresholds. The thresholds of segmen-

tation are gradually revealed from large-scale to small-scale

coefficients [8,11].

For every integer jaZ (Z is integer union),

dj ¼ k
2 j ; kaZ

n o
express binary rational number at the

resolution j. Thus, for any jaZ, dj is a union of equidistant/

uniform samples on the real axis; if ib j, then di indicates

samples with low resolution. On the contrary, if iN j, then

di indicates samples with high resolution. We assume that

if an image is defined as a function f (x, y) and Dm is the

gray maximum in the image f (x, y), then the histogram can

be: hf (k)= |{(x, y): f (x, y)=k}|; ka[0,Dm], where b|. . .|Q is
the operation of count and hf(k) is the discrete function. Let

hf (x)=hf (k), xa[k,k+1], then the discrete function hf (k)

can be the continuous function hf (x) and hf (x) can be

thought of as piecewise constant functions on the interval

[0,1]. For jaZ, sampling hf at samples of {dj}, then hf
j is a
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histogram at resolution j. Now, we need to define the basis

for hf
j; it is given by the set of scaled and translated

function called Haar scaling function /(x), such that:

u xð Þ ¼
�
1; if xa 0; 1½ �
0; otherwise

ð1Þ

h
j
f xð Þ ¼

X
naZ

hf 2�jn
� �

u 2jx� n
� �

ð2Þ

Because the continuous function hf(x) consists of several

piecewise constant functions, we consider using a filter to

smooth the function hf(x) to eliminate its high-frequency

parts. hf(x) is described as follows:

hf xð Þ ¼
X
kaZ

akuj;k ; ð3Þ

where

akf g ¼ bhf ;uj;kN
� �

;uj;k ¼ 2j=2u 2jx� k
� �

: ð4Þ

Then, we can easily obtain the corresponding threshold

algorithm based on the dyadic wavelet transform.

3.3. Multigrid wavelet-based thresholding segmentation

(MGWT)

We consider performing WTS in a local manner. It is a

natural idea that the nonoverlapping multigrid version of

WTSmay be better [5]. One contextmeans one grid area here;

hence, for one pixel, there is only one context in this method.

This algorithm can prevent the WTS drawback of

missing some information, but it is only a single context.

Each pixel is completely decided by its local context and

cannot obtain information from neighboring contexts. For

this reason, MGWT is hypersensitive to the size of the

context and it cannot gain spatial continuity segmentation

result and statistical reliability. We can see some problems

from the hard segmentation result of MGWT applied on a

real MR image. The original image is divided into 4�4
nonoverlapping regions, as shown in Fig. 2. WTS is

implemented independently in every grid area. Then, we
Fig. 2. MGWT hard segmentation. (A) Original T1-weighted image. (B)

Segmentation result.
found that the biggest problem is that the variation of

intensity distributions of neighboring contexts would

lead to incompatible segmentation results across the

boundaries of the grid area. Take grid (2,3) and grid (3,3)

in Fig. 2B, for example, the segmentations of CSF are

obviously wrong.

If we change the size of the context, the result will be

consequentially different. Therefore, the determination of

the proper size of the context is different in this method

because the tissue distributions vary with the different slices

and because there are dissimilar contexts in one slice.

For the abovementioned problem, this method could not

be used widely.

3.4. Multicontext wavelet-based thresholding segmentation

(MCWT)

Most contexts could yield good soft judgments in the

method of MGWT, although there are some problems, as

mentioned above, for the complicated and convoluted

structures of the human brain. An idea is that multiple

segmentation for each pixel could suppress the adverse

impacts [5]. Such a consideration leads to the development

of a novel method called the MCWT, which not only can

take advantage of MGWT but also can keep the classi-

fications spatially continuous and statistically reliable.

In MCWT, the sharpness of the contexts has to be

decided in advance. Here, we select a rectangle for 2D MR

images. The only input parameter is the size of the context,

which is defined as:

g ¼ NcN

n� nbk
¼ cw � ch

Iw � Ih � nbk
; ð5Þ

where Iw and Ih are the width and height of the input image

and n is the total pixel number and the number of

background pixels whose intensities are zero. Calculation

of width cw and height ch of the rectangular context can be

made with the given parameter g. With this definition,

the absolute size of the context can be changed with the size

of the brain in the original input images. Then, we should

pay attention to make sure that these four parameters obey

the formula

cw

Iw
¼ ch

Ih
: ð6Þ

We move the local window step by step through the whole

image with the step length Sw from left to right and Sh from

top to bottom.

Sw ¼
cw

mw

ð7Þ

Sh ¼
ch

mh

ð8Þ

In practice, m=mw�mh=3�3 is enough for 2D images.

During the process, each pixel owns m in different contexts.

The calculation is performed along with the movement of



Fig. 3. WTS and MCWT hard segmentation and membership functions. (A)

WTS hard segmentation. (B–D) Membership functions of WM, GM and

CSF in WTS. (E) MCWT hard segmentation. (F–H) Membership functions

of WM, GM and CSF in MCWT.
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the rectangular window. For each context, WTS algorithm is

done independently. After processing all contexts, the

accumulated membership values at each pixel in the

accumulated membership maps are divided by the context
number of the corresponding pixels to obtain the weighted

averaging membership values.

Finally, the maximum principle is used here to obtain the

thresholds for hard segmentation.
4. Results

MCWT was implemented in a C environment on a PC

(Intel Pentium IV, 3.0 GHz CPU, and 512 M RAM). It has

been tested on real MR images.

Fig. 3 shows the hard segmentation results of WTS and

MCWT on real MR images. Obviously, the membership

function of WM at the putamen area calculated by WTS

misclassified most parts into WM. On the other hand,

MCWT was able to obtain a good result, which is much

more compatible with human visual perception.

Also, by comparing MCWT and MGWT results (both

have the same size of contexts: 64�64), it can be seen that

MCWT has gained spatial continuity segmentation, as

shown in Fig. 2. All the above improvements indicate that

MCWT is much better than the other two segmentations in

classifying WM, GM and CSF of the brain image.
5. Discussion and conclusion

We have developed a fully automatic algorithm to

separate GM and WM from high-resolution T1-weighted

MR images of human brains. It appears valid and reliable

and can be used to segment large data sets. Our method fills

the need to analyze MR image data sets with thin slices and

with more than 150 slices for each brain.

Noise and random errors were eliminated when aniso-

tropic filtering was used, which improved noise and contrast

without mixing edges or structural details.

The studies confirmed greater accuracy with the use of

MCWT, which is based on a local model, than with the

global method and the nonoverlapping MGWT. MCWT

could classify brain tissues fast and validly. In addition, the

little CSF left after preprocessing can also be classified from

the images.

Our technique of segmentation based on wavelet

transform could be useful in measuring brain tissues and

in finding a correlation of such measurements to behavioral

and physiological parameters for clinical populations. The

application of brain MR images for the development of the

brain of patients with infantile autism is our objective.

This algorithm has been added to the brain imaging

toolkit that we developed and will be applied to a number

of brain scans; also, one can even work with this algorithm

via the Internet.
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