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A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural net-
work (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme.
With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be
approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits
system dynamics and separately models system nonlinearities. This model corresponds well with the
object system and is easy to build. The GBNNM is embedded online as a normal model reference to
obtain the quantitative residual between the object system output and the GBNNM output. This resid-
ual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further
estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs
(IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then,
the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system
(SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and sev-
eral partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness
of the FP estimation and its superiority.

Keywords: Model identification and fault estimation; nonlinear dynamic systems; gray-box neural-
network model; extended state observer; reaction wheel.

1. Introduction

Improving the security and reliability of man-made
dynamic systems has become more and more critical
over the past two decades. The requirements for such
systems are now extending beyond the safety-critical

systems of nuclear reactors, engines, high-rise build-
ings, chemical plants and aircrafts to new systems,
such as autonomous vehicles1–6 and the human body
system.7,8 For all these systems, fault diagnosis
(FD) is an essential reliability approach that can
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help avoid system shutdown, breakdown and even
catastrophes involving human fatalities and mate-
rial damage. Over the past three decades, many
approaches to FD have been proposed, including
a model-based approach,9 a computing-intelligence-
based approach10,11 and a hybrid approach.12

Neural networks (NN)-based FD method is a
representative of the computing-intelligence-based
approach. Compared with the model-based FD
method, NN-based FD does not require detailed
information of the object system, such as structure
and parameters. Not only an effective optimization
method,13–22 the NN is also an ideal mathemati-
cal tool for FD applications owing to its univer-
sal nonlinear function approximation property and
its ability to learn and reproduce system behavior
from quantitative system datasets (i.e. historical sys-
tem input–output data).23,24 Accordingly, NN has
been extensively applied to FD, which include the
NN-based pattern recognition approach,25 NN-based
residual generation decision-making scheme,26 and
NN-based multiple-model residual generation and
classification.27 The last two approaches, which use
residuals for FD, dominate the field implementation.
The residual is derived from a NN-based identifica-
tion model, and is then used to detect fault or even to
estimate fault if accurate sufficiently. The more accu-
rate the identification model is, the higher quality of
the residual is; therefore, NN-based identification is
fundamental for NN-based FD.

The NN is an ideal tool of model identifica-
tion (MI) for nonlinear systems. Numerous stud-
ies have been conducted on the FD for nonlinear
dynamic systems using NN-based MI. However, only
few studies have utilized the identified NN model
to accomplish fault estimation (FE). Three cate-
gories of NN-based nonlinear dynamic system iden-
tification schemes have been developed. The first
category is called static NN such as multi-layer per-
ception (MLP) NN.28 The second category is called
dynamic NN because these NNs have integrators or
delay components in their structure.29–40 Generally,
a single dynamic NN is used to model the object sys-
tem; thereafter, it is trained offline. The third cate-
gory is online NN observers. Kim41 studied on an
NN observer using dynamic recurrent NNs, which
can only estimate the system states. Talebi42 pre-
sented a hybrid intelligent fault detection and iso-
lation scheme for a general nonlinear system using

an NN-based observer. However, these works have
not addressed the estimation of fault severity. In
Refs. 43 and 44, a hybrid FD approach was pre-
sented to estimate the fault parameter (FP) vector
and fault severities, using a bank of parameterized
fault models and a corresponding bank of adaptive
neural parameter estimators. However, priori knowl-
edge of faults and system nonlinearity is required to
predefine the parameterized fault models. In addi-
tion, online generalization is an inherent problem for
the neural parameter estimators.

Model accuracy is one of the most crucial factors
for MI, particularly for model-based FD. If a residual
is sufficiently accurate to differ the fault severities,
this FD scheme is aptly called FE — a challenging
problem encountered in the FD research field.

To identify a nonlinear dynamic system is to
approximate nonlinearity and dynamics simultane-
ously. The nonlinearity reflects the static behavior,
whereas the dynamics reflects the dynamic behav-
ior. For simple object systems, white-box modeling,
such as a model observer, is typically used to perform
FD, because the structure and physical principles
are normally known. However, most practical sys-
tems are actually complicated, with unknown or par-
tially unknown structures and physical principles. In
this case, white-box modeling is not applicable. Com-
pared with white-box modeling, black-box modeling
methods, such as the NN-based identification and
Wiener–Hammerstein models,45,46 do not require the
knowledge of structure and physical principles. How-
ever, it is difficult to train models with desired
accuracy for nonlinear dynamic systems. Currently,
the training of NN is based on samples, and sam-
ples are individual behaviors. The static behav-
iors are included in the samples, so NN can learn
from the training. However, the system dynamics,
the relationship between individual samples, are not
included. Consequently, the system dynamics can-
not be trained. This is why the dynamic structure is
predefined in dynamical NN rather than trained. In
some cases, the knowledge of the system dynamics
is known, which can be utilized naturally to improve
model accuracy so as to implement FE.

With this motivation, a novel gray-box neural
network model (GBNNM) method, which mixes both
white-box and black-box approaches, is proposed.
Because the GBNNM can produce high-quality resid-
ual, it is suitable to estimate the fault severity. To
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estimate the partial loss of effect (LOE) FPs, an
improved extended state observer (ESO) using the
same NNs from the GBNNM is developed, which
does not require the knowledge of observer nonlin-
earity and provides a more visual FE result.

The contributions of this paper are to present
a sufficiently accurate NN model and a novel
ESO to fulfill FE. Unlike many previous NN-based
identification methods,29–34,37,38,42,47 this method
does not adopt a single NN to model an object
system in a black-box manner. Instead, it uses
multiple static NNs to approximate corresponding
nonlinearities separately, to decrease the complex-
ity of identification. Compared with other multi-
model FD approaches,27,48 redundant fault models
are not required to generate multiple residuals for
fault severity estimation. Compared with the FE
approach,43,44 the GBNNM can be trained offline,
and thus, it can avoid the problems with online gen-
eralization. In contrast to our previous studies in
computing-intelligence-based FD,49,50 the GBNNM
is used not only to detect faults but also to estimate
fault severity and even FPs. In addition, in contrast
to our previous studies on model observers,51 the
GBNNM is used as a normal model reference instead
of an analytical model, and an improved ESO derived
from the GBNNM is proposed.

The remainder of this paper is organized as fol-
lows. The problem and some concepts are first intro-
duced in Sec. 2. In Sec. 3, MI using the proposed
GBNNM is presented, and its approximate abil-
ity is analyzed theoretically. In Sec. 4, FE based
on a GBNNM model estimator and improved ESO
with NN is presented. In Sec. 5, an example of an
MIFE and the corresponding experiments result are
presented using a high-resolution single-input-single-
output (SISO) reaction wheel (RW) model. The con-
clusions and highlights are provided in Sec. 6.

2. Problem Formulation and Concept

2.1. FE problem

To implement condition-based maintenance, such
as fault accommodation, requires an accurate FD:
that is, to compare the system with another normal
system under identical operational conditions. This
comparison is called the peer-to-peer concept in the
FD field. For example, the fault can be detected, and
the offset value between the fault mode and normal

mode can reflect the severity of the fault (also called
FE) based on the desired residual at the bottom left
of Fig. 1. However, constructing the reference system
for FE is not cost effective. An alternative solution
is to use simulation model. However, the residual in
the lower right of Fig. 1 illustrates that it is easy to
detect faults but not to estimate them because the
residual is not sufficiently accurate for FE. There-
fore, the key is to precisely identify or construct a
simulation model.

2.2. Identification problem of the
nonlinear dynamic system

An example of nonlinear dynamic system is shown
in Fig. 2. It includes both nonlinearities and dynam-
ics. The nonlinearities are the functions in Fig. 2,
i.e. f1 · · · f4, whereas the dynamics are the integra-
tors and its connection to the nonlinear functions.
The nonlinearities and dynamics are coupled in the
model structure. In general, there are two identifi-
cation approaches, namely the white-box and black-
box approach.

On one hand, the white-box approach is used
when full knowledge of both the nonlinearity and
dynamics of the system are available. The identifica-
tion process involves obtaining the unknown param-
eters or variables in the white-box model. However,
its drawback is the requirement of full priori knowl-
edge of the object system, making it unsuitable for
complicated real system.

On the other hand, the black-box approach is
generally used when no knowledge of the object sys-
tem is available. The black-box approach defines a
general and known model structure with parame-
ters for identification. The advantage of the black-
box approach is no requirement of full knowledge.
However, when applied in identification of nonlinear
dynamic systems, obtaining a model with sufficient
accuracy to approximate nonlinearity and dynamics
simultaneously is difficult.

At present, there are the four types of NN
that can be applied to FD. These NNs include
Series-Parallel NARX NN (SPNN), Parallel NARX
NN (PNN), Recurrent NN (RNN) and Static MLP
NN (SNN), all of which are embedded to imple-
ment residual-based FD. A representative example
of offline identification by an SPNN is provided in
Fig. 3 to illustrate the identification principle and
drawbacks of these NNs.
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Fig. 1. FD based on comparing with peer to peer.
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Fig. 2. An example of nonlinear dynamic system.
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Network

TDL
TDL

Predefined 
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Fig. 3. NN offline identification by an SPNN.

As shown in Fig. 3, the objective of the NN
training algorithm is to minimize the error between
the sample output y′ and the corresponding NN
model output ŷ estimation. The training algorithm
adopts some parameter-searching strategy, such as
the Levenberg–Marquardt (LM) back-propagation
training function and the gradient descent (GD)
with momentum weight/bias learning function,52 to
adjust the parameters of all neurons in the static
NN of Fig. 3. These parameters include two classes,
namely, weight and bias. The dynamic elements in
the tapped delay line (TDL) cannot be changed dur-
ing the training process, as TDLs are fixed for a
specified NN. The fixed structure can help avoid
the requirement for knowledge about the object sys-
tem. However, a fixed structure is not sufficiently
flexible to match the dynamics of the object sys-
tem, even if it matches the nonlinearity of the object
system well. In some cases, the fixed structure has
a negative effect on matching the nonlinearity of
the object system. In fact, the training process
aims to learn the static behavior from the train-
ing sample rather than to learn both the static and
dynamic behavior. The unmatched dynamics would
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decrease the performance of estimating nonlinear-
ity when applying online, because the nonlinear-
ity and dynamics are coupled in nonlinear dynamic
systems.

Moreover, for an industrial system, some infor-
mation is generally known a priori. This information
might be the probability density function, general
statistics of the process data, impulse response or
attractor geometry or the underlying physics.52,53

Because black-box modeling requires no knowledge
of the object system, a priori information is not used
and thereby wasted. With this information used in
the context of gray-box modeling, it is expected to
be able to approximate nonlinearity and dynamics
simultaneously so that the model has sufficient accu-
racy for FE.

3. Gray-Box NN Identification of a
Nonlinear Dynamic System

3.1. System description and the
identified model structure

Owing to the popularity of first-order systems, the
identification of nonlinear dynamic systems is con-
sidered with the following general form:{

ẋ = F (x, u)

y = h(ẋ, x),
(1)

where x ∈ �n is the state vector, u ∈ �m is the
system input and y ∈ �p is the output vector of
the system. F (x, u) and h(ẋ, x) represent unknown
constitutive nonlinearities. The coupling relationship
and dynamics are easy to obtain for a nonlinear sys-
tem in the form of (1) because only one integrator is
included in the dynamics.

The gray-box approach presented would preserve
the model structure inherent in (1) without requir-
ing a priori representations of the nonlinearities
F (x, u) and h(ẋ, x). Instead, these terms would be
represented by a separate MLP feed-forward NN
g1(x̂, u, w1) and g2(x̂, ˙̂x, w2):

˙̂x = g1(x̂, u, w1),

ŷ = g2(x̂, ˙̂x, w2).
(2)

By modeling the nonlinearities F (x, u) and
h(ẋ, x), the model structure of (2) is preserved. The
MLP feed-forward NN is utilized to approximate

nonlinearity, so g1(x, u, w1) and g2(x, ẋ, w2) can be
denoted as

g1(x, u, w1) = W11σ(θ1 + W12p1)

g2(x, ẋ, w2) = W21σ(θ2 + W22p2),
(3)

where σ(·) is the activation function of the hidden-
layer neurons that is typically set to be a sigmoid
function.




σ(θ1 + W12p1) =
2

1 + e−2(θ1+W12p1)
− 1

σ(θ2 + W22p2) =
2

1 + e−2(θ2+W22p2)
− 1,

(4)

where p1 = [x, u]T and p2 = [x, ẋ]T are the inputs of
two NNs. The weight parameters w1 = [W11 W12 θ1]
and w2 = [W21 W22 θ2] are the parameters of the
two NNs.

This gray-box approach preserves the direct
associations between the NN’s architecture and its
weights to the underlying systems’ dynamics. For a
general nonlinear dynamic system in the form of (1),
MLP feed-forward NN g1(x, u, w1) and g2(x, ẋ, w2)
are just used to approximate the nonlinearities
F (x, u) and h(ẋ, x). The relationship between x(t)
and x̂(t), which is the solutions of (1) and (2),
is uncertain. Furthermore, the relationship between
y(t) and ŷ(t), which are outputs of (1) and (2),
respectively, is uncertain. To analyze the relationship
between (1) and (2), some preliminaries and proofs
will be provided in Sec. 3.2.

3.2. Analyses of approximation ability

Lemma 1. Let S ⊂ �n and U ⊂ �m be open sets,
X ⊂ S and DU ⊂ U be compact sets, and mapping
F : S × U → Rn be a C1-class function. If a contin-
uous nonlinear system is in the form

{
ẋ(t) = F (x(t), u(t))

y(t) = h(ẋ(t), x(t))
x ∈ S, u ∈ U, t ∈ [0, T ],

(0 < T < ∞)

(5)

with an initial state x(0) ∈ X, then for an arbitrary
ε > 0, there exists an integer N and a GBNNM
of form (6) with an approximate initial condition
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x(t0) = x̂(t0) ∈ S.


˙̂x(t) = g1(x̂(t), u(t))

= A1σ(B11x + B12u + θ1)

ŷ(t) = g2( ˙̂x(t), x̂(t))

= A2σ(B21x + B22u + θ2)

(6)

such that for any bounded input u(t) ∈ DU , t ∈ [0, T ].

max
t∈[0,T ]

‖y − ŷ‖ < ε. (7)

According to Lemma 2 in 49, there exists an
integer N2 and an MLP NN of formula (3) with
an N2-dimensional threshold θ2 and matrices A2 ∈
�n×N2 , B21 ∈ �N2×n and B22 ∈ �N2×m. For an arbi-
trary ε2 > 0:

‖h(x̂, x̂) − A2σ(B21x̂ + B22u + θ2)‖ ≤ ε2 =
ε

2
. (8)

According to Corollary 1 in 49, there exists an inte-
ger N1 and an MLP NN of formula (3) with an
N1-dimensional threshold θ1 and matrices A1 ∈
�n×N1 , B11 ∈ �N1×n and B12 ∈ �N1×m. x(t) and
x̂(t) are the solutions of the differential equations in
(5) and (6), respectively, with the initial condition
x(t0) = x̂(t0) ∈ S.

Comment : The above lemma reflects a construc-
tive way to create a GBNNM that has uni-
versal approximation capability for a nonlinear
dynamic system. From the theoretical analysis of the
GBNNM, we can see that different nonlinearities in
the system can be separately approximated by MLP
NNs. Importantly, the complexity of identification is
decomposed, so the GBNNM can be constructed in
steps.

3.3. Training algorithm with a
self-defined exciting strategy

To train a NN model with better generality perfor-
mance, a self-defined exciting strategy is introduced
to obtain sample data for training.50 Based on using
band-pass Gaussian white noise as the exciting input
and the corresponding system output, a NN model
can be obtained for approximation. Therefore, the
offline identification can be divided into two steps,
as described in Fig. 4.

Comment : To improve the data condition for bet-
ter approximation and training, a re-sampling for

NN1
Training algorithm 

1

S
( , )F x u

( )x t
( , )h x x

( )x t

Output

Data holding&sampling

Self-defined 
exciting input

NN1
1 1( , , )g x u w

NN2

2 2( , , )g x x w

NN2
Training algorithm 

Plant

Fig. 4. Offline identification scheme with a self-defined
exciting strategy.

dataset {ut, x, ẋ, yt} is adopted to ensure that the
computing time for training is not very long. Accord-
ing to our experience, a final dataset with 1000–
10,000 points is suitable for NN training. With the
network structures of NN1 and NN2 defined, the LM
back-propagation training function and GD with a
momentum weight/bias learning function, which are
detailed in the Matlab NN Toolbox, are employed to
obtain the desired convergence performance.54

4. FE Based on the GBNNM
and IESONN

After all of the NN models have been trained offline,
a complex structure of FE, including a GBNNM
model estimator and an improved ESO based on
NNs from the GBNNM, is proposed, as illustrated
in Fig. 5. The FE scheme has two outputs, includ-
ing the GBNNM residual and FP estimation. The
GBNNM residual can be used for fault detection or
even fault severity identification (called a rough FE),
and the improved ESO based on NN (IESONN) esti-
mates FP for further diagnosis (called an accurate
FE). The two NNs in the improved ESO utilize the
two sub-NNs of the GBNNM to allow the improved
ESO to estimate the FP without requiring the knowl-
edge of the nonlinearity in the object system.

4.1. Fault severity identification based
on the GBNNM model residual

To formulate the fault severity identification result,
a residual is defined as:

r(t) = y(t) − ŷ(t). (9)
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1
S

( , )F x u
( )x t

( , )h x x
( )x t

( )fy t

( , h
x

NN1

1 1( , , )g x u w
NN2

2 2( , , )g x x w

actuators

1
S

ˆ( )x t
ˆ( )x t

GBNNM

∑

+

-
ˆ( )y t

( )r t

( )u t

Improved ESO based on Neural Network

NN1

1 1( , , )g x u w

NN2

2 2( , , )g x x w
1
S

∑ ∑

-

2
2

ˆ ( , , )f g eβ κ δ= −

+

+
-

1β

+

Estimation of 
Fault parameter

GBNNM
Residual 

Fig. 5. FE based on GBNNM and IESONN.

We can denote FE (only fault severity identification)
based on the GBNNM as:

r =




yn(u) − ŷ(u) = 0 (no fault)

yfo(u) − ŷ(u) = m1(d1) (output fault)

yfo(u) = yn(u) + d1

yfi(u) − ŷ(u) = m2(d2) (input fault)

yfo(u) = yn(u + d2),

where yn(u) denotes the input–output function of
the object system in normal mode. ŷ(u) denotes the
input–output function of the GBNNM model, yfo(u)
denotes the input–output function of the object sys-
tem in fault mode with an output offset value d1,
and yfo(u) denotes the input–output function of the
object system in fault mode with an input offset
value d2.

The residual r equals to zero when no fault
occurs. When a fault occurs, all system faults can be
classified into two types of equivalent faults, a fault
with an output offset or a fault with an input offset,
because once a fault exists, it will certainly affect the
output or input of a system.

For both fault modes with an output offset and
fault modes with an input offset, the residual r is the
function of fault value d, which is denoted as m1(d)
or m2(d). If the fault value d changes, the residual r

will change. For a fault mode with an output offset,
r = m1(d1) = d1. Therefore, we can use this princi-
ple to differentiate fault severity. The FE effects will

be demonstrated with simulations, as presented in
Sec. 5.

Discussion: The residual is the basis of FD. If
the distinction between the occurrences of single-
and multiple-component failures is required, some
preconditions should be satisfied, the effects on the
system output in normal mode, single-component
failure mode and multiple-component failure mode
must be different. Thus, the symptom must be differ-
ent in different modes. Once the precondition above
is satisfied, the GBNNM residual can take on dif-
ferent values in the time domain. Therefore, it is
possible to distinguish between the occurrences of
single- and multiple-component failures. Whether
these types of failure can be distinguished clearly
depends on the ability to identify the difference in the
failure symptom. If this difference is not obvious in
the time domain, a time-frequency signal-processing
tool, such as wavelet analysis, is often used to post-
process the GBNNM residual to make this difference
sufficiently discernible.

4.2. FP estimation for partial
LOE fault

In the case that the object system is a type of
actuator and the fault is a type of partial LOE
fault, the FP estimation is generally essential for
ensuring the reliability and integrity of the control
system. If the object system is a type of actuator
but the fault is a type of full LOE fault, the FE
is not needed, and a redundant system is generally
employed. Therefore, FP estimation for partial LOE
faults was studied in our research.

Without loss of generality, we consider a type of
partial LOE fault for nonlinear dynamic system (1)
in the form {

ẋ = F1(x, uin) + f2

uout = h1(ẋ, x)
, (10)

where f2 is the fault value, x is the state of the sys-
tem, uin is the system input, and uout is the system
output.

To estimate the fault value f2, an improved ESO
based on NN is proposed in the following format:


e = NN 1( ˙̂x, x̂) − uout

˙̂x = NN 2(x̂, uin) + f̂2 − β1e

˙̂
f2 = −β2g(e, κ, δ),

(11)
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where β1 > 0, β2 > 0 and 0 < κ < 1. g(e, κ, δ) is a
nonlinear continuous function in the form of (12):

g(e, κ, δ) =

{|e|κsgn(e), |e| > δ

e/δ1−κ, |e| < δ
. (12)

To analyze the convergence of an improved ESO
based on NN, Lemma 2 and Corollary 2 on the con-
vergence of an ESO are presented.

Lemma 2. Supposing ḟ2 is bounded, if β1, β2, κ

and δ are set and satisfy55

β2
1 > 4β2δ

κ−1, (13)

then the observer (14) can estimate the states x and
the fault variable f2 asymptotically.


e = h1( ˙̂x, x̂) − uout

˙̂x = F1(x̂, uin) + f̂2 − β1e

˙̂
f2 = −β2g(e, κ, δ)

, (14)

where β1 > 0, β2 > 0 and 0 < κ < 1. g(e, κ, δ) is a
nonlinear continuous function in the form of (12).

As seen from (14), the unimproved ESO is a
model-based estimator method. Its model structure
and parameters are given by the nonlinear functions
F1(x, uin) and h1(ẋ, x). Therefore, the availability of
the ESO (14) must be based on the availability of the
nonlinear function F1(x, uin) and h1(ẋ, x). As is dis-
cussed in Sec. 2, generally, nonlinear relationships are
not available for industrial applications. Therefore,
the gray-box identification is introduced to obtain
an approximation of nonlinear functions.

To estimate the process FP-partial LOE fault
value f2, the NNs in the GBNNM can be used again
in the improved ESO to approximate the nonlinear
functions F1(x, uin) and h1(ẋ, x). Therefore, Corol-
lary 2 is given to analyze the convergence of the
improved observer of (11).

Disturbance

Controller
Reaction 

Wheel
Attitude 

Dynamics Model

Attitude 
Determine 

Model

Attitude 
Sensors 
Model

Attitude Motion 
Model

- +Refer 
Attitude

Fault

inu outu

Fig. 6. Block diagram of SACS.

Corollary 2. Supposing ḟ2 is bounded, if NN 1 and
NN 2 are the nonlinear approximations of F1(x, uin)
and h1(ẋ, x), β1, β2, κ and δ are set and satisfy (13),
then the observer (11) can also estimate the states x

and the fault variable f2 asymptotically.

Proof. According to Lemma 2, the following
approximate equations can be obtained:{

F1(x, y) ≈ NN 1(x, y)

h1(ẋ, x) ≈ NN 2(ẋ, x).
(15)

Therefore, the improved ESO based on NN of (11)
has the same convergence as the ESO of (14) with the
same error dynamic adjustment. The approximation
error is strictly restrained by the high-gain parameter
convergence conditions of (13).

5. Case Study: Application to the RW
in SACS

Improvements in the accuracy and reliability of the
RW in SACS directly contribute to mission success
and performance.47 Inherent dynamic nonlinearities,
however, make the requirement for an accurate and
efficient MIFE for the RW of SACS a challenging and
nontrivial problem. In this section, an example of a
high-fidelity RW in SACS using the proposed MIFE
method is presented.

5.1. High-fidelity RW in SACS

A type of complete SACS model is considered.56,57

The structure of the model (see Fig. 6) is composed
of a controller, actuator (i.e. RW), satellite attitude
dynamics, satellite attitude kinematics, attitude sen-
sors and attitude determination module. The atti-
tude sensor module is composed of a rate-integrating
gyro, infrared earth sensors and sun sensors. Related
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studies on modeling and the real-time simulation
effect of SACS are detailed in Ref. 49.

The selection of RWs for attitude control is
justified due to their popularity in satellite attitude
control. SACS can be considered a MIMO control
system whereas the single-axis RW is a SISO sys-
tem. A high-fidelity nonlinear model of the RW was
obtained from Ref. 49 and was integrated into the
SACS.

To simulate the object system, two types of dis-
turbances are considered: disturbances outside the
RW (see Fig. 6) and disturbances of the friction
inside the RW. Both real-time simulations in fault-
free and fault modes are performed on the fault diag-
nosis and tolerant control platform (FDTCP), which
is shown in Figs. 7 and 8. The platform was devel-
oped by the Space Intelligent Control State Key Lab

Fig. 7. Real-time simulation environment based on
FDTCP for attitude and orbit control (AOC).

Fig. 8. Interface matrix device for fault simulation and
injection.

of China. This platform has been introduced and
described in Ref. 58.

5.2. Faults of the RW

Without loss of generality, two common RW fault
modes are considered. The two fault modes are the
augmentation of friction torque and the continuously
decreasing angular velocity of the RW. The former
is a type of partial LOE Fault, whereas the latter is
a type of full LOE fault.

(a) Fault mode 1
The augmentation of friction torque is derived from
the disturbance coupling function. Accordingly, the
RW output formulation is rewritten as

y =

[
Tc

h

]
= f1(uin + d1)

=


 uin + f − ξ(h)∫

(uin + f − ξ(h))dt


. (16)

Changing the value of d1 depends on the nature of
the fault. If the value of d1 changes into another con-
stant value and stays, it is a sustained fault. If the
value of d1 changes several times and returns to zero,
it is an intermittent fault. Without loss of general-
ity, the following intermittent time-varying fault in
the disturbance coupling function is injected into the
RW on the Pitch axis as a variation.

d1 =




0 0 ≤ t < 500

0.1 500 ≤ t < 600

0.15 600 ≤ t < 700

0.2 700 ≤ t < 800

0 800 ≤ t < 1000

. (17)

(b) Fault mode 2
The continuous decrease of the angular velocity is
derived from the speed limiter function. Accordingly,
the RW formulation is rewritten as



uout =

{
h(Tc, h); 0 ≤ t < Td2

d2; Td2 ≤ t < 1000

h(Tc, h) =

{−Tc, J |Ω| < hmax

0, J |Ω| ≥ hmax

. (18)

Similar to fault mode 1, the following intermittent
time-varying fault in the speed limiter function is
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injected into the RW on the Pitch axis as a variation.

d2 =




0 0 ≤ t < Td2

0.05 Td2 ≤ t < 550

0.08 550 ≤ t < 600

0.1 600 ≤ t < 650

0 650 ≤ t < 1000

. (19)

5.3. Experimental results

To verify the performance of our proposed MIFE
scheme, three sets of MIFE simulations are
conducted on the FDTCP, and the results are
presented in this section. The first set of simula-
tions involves model validation, in which the sys-
tem state between the object system and GBNNM
is compared. The second set of simulations injects
specialized faults and verifies the FE performance in
different fault modes. The third set of simulations is
conducted to compare the performance of our pro-
posed MIFE scheme with other FD methods based
on NN identification.

(a) MI Effect Comparison
To quantifiably compare the approximate and
generalization ability of the GBNNM with other
identification model approaches, two important sta-
tistical indexes, R2 (coefficient of determination)
and the root mean square error (RMSE) from the
sequence, y and ŷ, denoted as (20) and (21), are
selected. The two indexes for the SNN, RNN, PNN,
SPNN and Wiener–Hammerstein models are also
computed for comparison.

RMSE =

√
(y − ŷ)T · (y − ŷ)

length(y − ŷ)
, (20)

R2 = 1 − RMSE2

VAR(y)
, (21)

where length(y − ŷ) is the length of sequence y − ŷ

and VAR(y) is the variance of sequence y.

Table 1. Statistical index for generalization ability.

INDEX SNN RNN PNN SPNN GBNNM Wiener–Hammerstein Desired

R2 98.84% −21.25 46.98% 97.46% 99.99% 70.41% 100%
RMSE 3.95e-2 1.73 2.692e-1 5.85e-2 2.7e-3 1.99e-1 0

From the R2 and RSME of the GBNNM in
Table 1, we can see that the GBNNM estimate has
good generalizability because the R2 and RMSE
values mostly approximate the desired case and out-
perform the classical Wiener–Hammerstein nonlin-
ear dynamic model. This result indicates that the
GBNNM accurately estimates unknown operating
domains even if it is trained to work with limited
and known operating points from the sample set.

(b) FE subject to different types of faults
To verify the performance of FE, different fault
modes are considered for the second set of simula-
tions. These fault modes include sustained and inter-
mittent faults subject to both LOE faults and partial
LOE faults. FE subject to three types of faults is per-
formed in this section.

FE for an LOE sustained fault
The FE results subject to an LOE sustained fault
(fault mode 2) with a value of d2 = 0.1 N ·m
are shown in Fig. 9. Figures 9(a)–9(c) present the
responses of the system output, GBNNM model out-
put and residual, respectively. As shown in Fig. 9(a),
the jump in the system output response at 500 s
demonstrates the effects of fault mode 2. As the
action of the closed-loop control law breaks, the
response curve tends to be unsteady after 500 s; in
other words, the value of the RW output is a nonzero
constant, indicating that the system is unstable. Nev-
ertheless, this information alone cannot determine
whether a fault has occurred, including its degree
of severity. In Fig. 9(b), under the same input and
fault effect, the response of the GBNNM model out-
put also jumps at a relative slower speed at 500 s,
and the GBNNM model output remains close to the
desired model in normal mode. As shown in Fig. 9(c),
the response of the output residual approaches zero
in the time interval t ∈ [ 0 500 ]. When the fault
occurs at 500 s, the value of the residual jumps to a
value of 0.1 and then tends to be divergent under the
action of system dynamics. Based on a theoretical
analysis of the fault nature, the effect of an LOE fault
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Fig. 9. FE result subjected to fault mode 2. (a) Sys-
tem output, (b) model output comparison between the
desired model and GBNNM, and (c) residual compari-
son between the desired model and GBNNM.

tends to increase under the action of system dynam-
ics after the fault occurs. The residual based on the
GBNNM reflects not only the severity of the fault
at the occurrence but also the subsequent potential
effects after its occurrence.

Comment : Although the SACS is unstable and the
output of the RW is discontinuous, the input of the
RW, the output of the desired model, and the out-
put of the GBNNM model are still continuous in
the fault scenario with the action of closed-loop con-
trol. Under the fault scenario, the GBNNM should
be the same as the desired model but not the real
system. Figure 9(a) illustrates that the object sys-
tem output in fault mode 2 is discontinuous and
unstable. The unstable behavior of the system is
because the closed-loop control law is disturbed by
the fault effect. However, the discontinuous system
output does not change the continuous system input.
Under the action of the closed-loop control law, the
system input in the case of fault mode 2 remains
continuous and bounded (see Fig. 10). In Fig. 9(b),
the GBNNM model output is equivalent to the

0 200 400 600 800 1000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

t(s)

In
p

u
t

system input under a fault

when the fault occurs,the value 
changes in a continous manner

Fig. 10. Input into the RW in the case of fault mode 2.

desired model output, and both outputs are contin-
uous and bounded within the observed time period,
t ∈ [400, 700]. Thus, the conditions of Lemma 1 (i.e.
continuous and bounded) still hold.

FE for partial LOE and LOE intermittent
faults
The sustained faults of different severities are mixed
to form intermittent time-varying faults, including
partial LOE intermittent faults (fault scenario 1) and
LOE intermittent faults (fault scenario 2). In this
section, two types of fault scenarios are injected, and
simulations based on the FDTCP are used to verify
the FE performance subject to intermittent faults of
different severities.

Figure 11 illustrates the FE results subjected to
fault scenario 1: (a) the response of the system out-
put, (b) the response of the GBNNM model out-
put, and (c) the residual. As shown in Fig. 11(a),
the jumps in the system output response at 500,
600, 700 and 800 s demonstrate the effects of fault
scenario 1. Under the action of the closed-loop con-
trol law, the response curve tends to be steady after
these instants. Nevertheless, these data alone cannot
determine whether a fault has occurred or the degree
of severity of a fault that did occur. In Fig. 11(b),
under the same input and fault effect, the response
of the GBNNM model output also jumps at a rela-
tively slower speed at 500, 600, 700 and 800 s, and
the GBNNM model output is also close to the desired
model in normal mode. As shown in Fig. 11(c), the
response of the output residual approaches zero in
the time interval, t ∈ [ 0 500 ]. When a fault with
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Fig. 11. FE result subjected to fault scenario 1. (a) Sys-
tem output, (b) model output comparison between the
desired model and GBNNM, and (c) residual compari-
son between the desired model and GBNNM.

value 0.1 N ·m occurs at 500 s, the value of the resid-
ual jumps to a value of 0.1 N ·m, and then tends to be
stable under the action of system dynamics. When
a fault with a value of 0.15 N ·m occurs at 600 s, the
value of the residual increases (0.15−0.1 = 0.05) and
then tends to be stable. When a fault with a value
of 0.2 N ·m occurs at 700 s, the value of the residual
increases (0.2 − 0.15 = 0.05) and then tends to be
stable. When a fault with a value of 0.2 N ·m dis-
appears at 800 s, the value of the residual decreases
(0.2 − 0 = 0.2) and then tends to zero, indicating
that the system returns to normal. Based on a theo-
retical analysis of the nature of a partial LOE fault,
the effect of a partial LOE fault tends to decrease
under the action of system dynamics. The residual
based on the GBNNM reflects not only the severity
of the fault at each instance in which a partial LOE
fault occurs but also the subsequent potential effects
after each fault occurrence for the partial LOE inter-
mittent fault.

The FE result subject to fault scenario 2 is shown
in Fig. 12. Based on a theoretical analysis of the
nature of an LOE fault, the residual based on the
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Fig. 12. FE result subject to fault scenario 2. (a) Sys-
tem output, (b) model output comparison between the
desired model and GBNNM and (c) residual comparison
between the desired model and GBNNM.

GBNNM reflects not only the severity of the fault in
each instance that the LOE fault occurs but also the
subsequent potential effects after each fault occurs
for the LOE intermittent fault.

(c) Comparisons of GBNNM and other NNs
We now compare our GBNNM with other NNs to
demonstrate its superiority for FD. Fault mode 1
with a value of d1 = 0.1 N ·m is injected and sim-
ulated to compare several types of major NN-based
FD methods, including SNN-, RNN-, PNN- and
SPNN-based methods. The best cases of each cat-
egory are chosen for comparison. The identification
effect of these NNs is illustrated in Table 1, and
the detailed parameters of these NNs are listed in
Table 2. The choice of training data includes two
classes: self-defined white noise and normal mode.
In the self-defined white noise class, the training
data are derived from self-defined white noise excit-
ing input. In the normal mode class, the training
data are derived from measurements with a system
operating in normal mode.

The FE results based on the SNN, RNN, PNN,
SPNN, GBNNM and desired models are shown in
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Fig. 13. Residual comparison between the SNN, RNN,
PNN, SPNN, desired model and GBNNM.

Fig. 13. To improve the accuracy of the SNN, RNN,
PNN and SPNN model residuals, their tuned residu-
als (i.e. difference of the SNN residuals between the
fault mode and fault-free mode) are introduced. As
illustrated by the six types of residuals in Fig. 13, the
GBNNM residual tracks the desired residual more
closely, and does not need to be tuned, which means
that the GBNNM has the best accuracy among these
models.

Comment : From the FD result and structure of the
SNN, we can see that the static NN has no mem-
ory, so it can match only static behaviors. From
the FD result and the structure of the RNN, PNN
and SPNN, we can see that the PNN is the best
one among the three dynamic NNs because it has a
dynamic structure closest to that of the object sys-
tem and the effect of unmatched dynamics is the
smallest. In contrast, the RNN is the worst choice
because its dynamic structure is the most complex
and the most different from the object system, and
the effect of the unmatched dynamics is strongest.
However, none of the choices are sufficiently accu-
rate to fulfill FE as a single NN. Compared with the
four NNs, the GBNNM has the ability to conduct FE
because it has the best approximation ability and
generalization ability, as described in Table 1. The
results demonstrate the superiority of the GBNNM
in modeling nonlinear dynamic systems.

Compared with several major FD methods based
on NN identification, our proposed GBNNM-based
MIFE scheme has several advantages. First, system

dynamics are considered and matched sufficiently in
the GBNNM, and thus, the GBNNM is the clos-
est theoretically to the desired model. Second, the
GBNNM can be approximated based on separate
parts and is thus easy to implement. Third, the
GBNNM residual can be directly used to implement
FD, and the residual in fault-free mode is not essen-
tial for a better-tuned residual. Finally, the GBNNM
residual can quantitatively reflect both the severity
of the fault at the occurrence and the subsequent
potential effects after its occurrence.

5.4. LOE FPs estimation result

To validate the effect of FP estimation using the
GBNNM and improved ESO, two partial LOE faults
with reference to (16) and (17) are considered in the
MIFE scheme. One is the partial LOE sustained fault
(fault mode 1) with a value of d1 = 0.1 N ·m, and
the other is the partial LOE intermittent fault (fault
mode 1) in the form of (17). Figures 14 and 15 shows
the FP estimation results, including estimation of the
proposed improved ESO based on NNs (IESONN),
estimation of ESO and the real fault value.

As seen from Fig. 14, the curve of the IESONN
estimation can accurately indicate the FP value for
the partial LOE sustained fault (fault mode 1) with
a value of d1 = 0.1 N ·m. Compared with residual-
based diagnosis, the diagnosis effect is more direct
and more accurate. Although the IESONN estima-
tion has some error at the fault jumping instant, it
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Fig. 14. FP estimation result for a partial LOE sus-
tained fault (fault mode 1) with a value of d1 = 0.1 N ·m.
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Fig. 15. FP estimation result for a partial LOE sus-
tained fault (fault mode 1) in the form of (17).

will quickly converge to a stable value with the effect
of high-gain feedback in the ESO.

As seen from Fig. 15, the IESONN estima-
tion curve can accurately indicate the FP value for
the partial LOE intermittent faults (fault mode 1)
in the form of (17). A similar conclusion can be
drawn: the IESONN estimation can converge to the
corresponding stable values at each fault jumping
instants.

From the results, we conclude that our IESONN
has the same FP estimation ability as the ESO.
Because it uses two sub-NNs of the GBNNM to
replace the nonlinearity of the object system, it can
overcome the limitation of the original ESO when
nonlinearity is not available in some practical appli-
cations.

6. Conclusions

In this paper, we proposed an MIFE scheme for
a general class of nonlinear dynamic systems. In
this scheme, a novel GBNNM is constructed from
which diagnostic residuals are generated to detect
a fault and estimate its severity. Unlike many pre-
viously developed NN-based MI methods, our pro-
posed GBNNM is based on system dynamics and is
constructed systematically. Thus, it is equivalent to
the desired model and suitable for implementation.
To estimate the FP for accurate FE, an improved
ESO using NNs from the GBNNM is proposed; it
has the same estimation ability of the ESO without

requiring the knowledge of the nonlinearity of the
object system. To illustrate the performance of this
MIFE scheme, the model has been applied to the
RW of SACS. Test results have demonstrated that
this MIFE scheme is effective and optimal for the
studied class of nonlinear dynamic systems. Future
studies will need to apply the GBNNM to an object
system that is more complex and implement fault
accommodation based on FE.
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