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a b s t r a c t

In this paper, a newmethod for solving nonlinear equations f (x) = 0 is presented. Analysis
of the convergence shows that the asymptotic convergence order of this method is 1+

√
3.

Some numerical results are given to demonstrate its efficiency.
Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Numerical methods for solving nonlinear equations are a popular and important research topic in numerical analysis. In
this paper, we consider iterative methods to find a simple root of a nonlinear equation f (x) = 0, where f : D ⊂ R → R, for
an open interval D, is a scalar function.

We all know that Newton’s method is an important and basic approach for solving nonlinear equations [1–5], and its
formulation is given by

xn+1 = xn −
f (xn)
f ′(xn)

. (1)

This method is a quadratic method.
To improve the local order of convergence, a number of modified methods have been studied and reported in the

literature [6–14]. By employing a secondderivative evaluationwe can obtain somewell-known third-ordermethods, such as
Chebyshev’s method, Halley’s method [6] and the super-Halley method [8]. However, in many other cases, it is expensive to
compute the derivative, and the above methods are still restricted in practical applications. The well known secant method
is given by

xn+1 = xn −
xn − xn−1

f (xn) − f (xn−1)
f (xn). (2)

The method does not require any derivative, but its order is only 1.618. To improve this method, many modified methods
called the secant-like method have been proposed in [9,15,16].
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Recently, Zhang et al. [15] and Wang et al. [16] have proposed a new two-step secant-like method and a new three-
step secant-like method respectively, and the convergence order of these methods are improved. Zhang’s method proposed
in [15] is very similar to the well-known King–Werner method with order 2.414 [17], which has the form [18,19]:

xn+1 = xn − f ′


xn + yn

2

−1

f (xn),

yn+1 = xn+1 − f ′


xn + yn

2

−1

f (xn+1).

(3)

Here, we attempt to improve the order of the classical method defined by (1), and (2) by using previous information,
and then we present a new iterative method for solving nonlinear equations. Analysis of the convergence shows that the
asymptotic convergence order of this method is 1 +

√
3 which is equal to the method defined by Wang et al. proposed

in [16]. Per iteration, the methods require two evaluations of the function and one of its first derivative and therefore the
efficiency, in term of function evaluations, of the new methods is equal to 3√1.618 ≈ 1.17398, which is better than the
method proposed in [16]. Finally, some numerical examples are also given.

2. Notation and basic results

Let f (x) be a real function with a simple root x∗ and let {xn}∞n=0 be a sequence of real numbers that converges to x∗. We
say that the order of convergence is q if there exists a q ∈ R+ such that

lim
n→+∞

|xn+1 − x∗
|

|xn − x∗|q
= C ≠ 0, ∞.

Let en = xn − x∗ be the n-th iterate error. We call

en+1 = Ceqn + · · · , (4)

the error equation. If we can obtain the error equation for the method, then the value of q is its order of convergence.

3. The newmethod

Here, in order to construct our method, we use the following second-order polynomial function proposed in [16]:

P(x) = f (xn) + v−1
n (x − xn)

+
(v−1

n−1 − v−1
n )(x − xn)(x − yn)

α1xn−1 + α2yn−1 + (2 − α1 − α2)zn−1 − β1xn − β2yn − (2 − β1 − β2)zn
(5)

where α1, α2, β1, β2 ∈ R, and yn = xn − vn−1f (xn), vn = f ′
 xn+yn

2

−1 and zn = xn − vnf (xn), respectively.
It is easy to obtain that

(v−1
n−1 − v−1

n )(yn − xn)(zn − yn) = v−1
n (yn − zn)2.

In order to eliminate the nonlinearity, we replace xn+1 in the terms (xn+1 − xn) and (xn+1 − yn) of P(xn+1) with yn and zn,
respectively. By solving the function (5), we can obtain a new method

yn = xn − vn−1f (xn),

vn = f ′


xn + yn

2

−1

zn = xn − vnf (xn),

xn+1 = zn −
(yn − zn)2

α1xn−1 + α2yn−1 + (2 − α1 − α2)zn−1 − β1xn − β2yn − (2 − β1 − β2)zn

(6)

where α1, α2, β1, β2 ∈ R.
The method defined by (6) can be viewed as an iterative method with three substeps. The first two substeps are the

well-known King–Werner method [18,19]. The third substep is an acceleration by using the values computed previously.
At the beginning of the process, the values of x0, y0 and v−1 need to be given by some approaches. The choice of v−1

cannot affect the asymptotic convergence order of the method defined by (6) while v−1 ≠ 0. Since the first iteration cannot
carry out the third substep, and hence we let x1 = z0.

Theorem 1. Assume that the function f : D ⊂ R → R for an open interval D has a simple root x∗
∈ D. Let f (x) have first,

second and third derivatives in the interval D, then the asymptotic convergence of the method defined by (6) is 1 +
√
3 when

α1 = α2 = 1.



3702 L. Chen, Y. Ma / Computers and Mathematics with Applications 62 (2011) 3700–3705

Proof. Let dn = yn − x∗ and wn = zn − x∗. Using Taylor expansion, we get

f ′


xn + yn

2


= f ′(x∗)

[
1 + C2(en + dn) +

3
4
C3(en + dn)2 +

1
2
C4(en + dn)3 · · ·

]
(7)

where Ck =
1
k!

f (k)(x∗)

f ′(x∗)
, k = 2, 3, . . . . we have

vn = f ′


xn + yn

2

−1

=
1

f ′(x∗)

1
1 + C2(en + dn) +

3
4C3(en + dn)2 +

1
2C4(en + dn)3 + · · ·

=
1

f ′(x∗)

[
1 − C2(en + dn) −


3
4
C3 − C2

2


(en + dn)2 + · · ·

]
. (8)

Furthermore, we have

f (xn) = f ′(x∗)[en + C2e2n + C3e3n + · · ·]. (9)

Thus it follows (7), (8), (9) and yn = xn − vn−1f (xn) that

dn = xn − x∗
− vn−1f (xn)

= en −

[
1 − C2(en−1 + dn−1) −


3
4
C3 − C2

2


(en−1 + dn−1)

2
+ · · ·

]
[en + C2e2n + C3e3n + · · ·]

= C2en(en−1 + dn−1) +


3
4
C3 − C2

2


en(en−1 + dn−1)

2
− C2e2n + C2

2 e
2
n(en−1 + dn−1) + · · · (10)

and hence, we obtain

wn = xn − x∗
− vnf (xn)

= en −

[
1 − C2(en + dn) −


3
4
C3 − C2

2


(en + dn)2 + · · ·

]
[en + C2e2n + C3e3n + · · ·]

= C2endn +


3
4
C3 − C2

2


en(en + dn)2 − C2

2 e
2
n(en + dn) + · · ·

= C2endn +

[
3
4
C3en +


3
4
C3 − C2

2


dn

]
en(en + dn) + · · · . (11)

From (6), we obtain

en+1 = wn −
(dn − wn)

2

α1en−1 + α2dn−1 + (2 − α1 − α2)wn−1 − β1en − β2dn − (2 − β1 − β2)wn
. (12)

We first consider the case α1 = 0, α2 ≠ 0, and in this case we have

en+1 = C2endn −
1
α2

C2en


en−1
dn−1

+ 1


+ · · ·

1 +
2−α2
α2

wn−1
dn−1

+ · · ·
(dn − wn) + · · ·

= C2endn −
endn

α2en−2
+ · · · = −

C2e2nen−1

α2en−2
+ · · · . (13)

From (11)–(13), we can see that, from zn to xn+1, the order is not improved when α1 = 0, α2 ≠ 0. Similarly, it is obtained
that the case α1 = α2 = 0 also cannot improve the order. We now turn to consider the case α ≠ 0, and using (10)–(12), we
obtain

en+1 = C2endn −
1
α1

C2en


dn−1
en−1

+ 1


+ · · ·

1 +
α2
α1

dn−1
en−1

+ · · ·
(dn − wn) + · · ·

=


1 −

1
α1


C2endn −

1
α1


1 −

α2

α1


C2endn

dn−1

en−1
+ · · ·
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=


1 −

1
α1


C2endn −

1
α1


1 −

α2

α1


C2endnen−2 + · · ·

=


1 −

1
α1


C2endn +

[
1 −

1
α1


2 −

α2

α1

]
C3
2 e

2
nen−1en−2 + · · · . (14)

From (14), we can see that the order will be improved by taking α1 = α2 = 1. In the following, by letting α1 = α2 = 1, and
from (10)–(12), we obtain

en+1 = wn −
dn − wn

en−1 + dn−1 − β1en − β2dn − (2 − β1 − β2)wn
(dn − wn)

= C2endn − (dn − wn)
C2en(en−1 + dn−1) +

 3
4C3 − C2

2


en(en−1 + dn−1)

2
+ · · ·

en−1 + dn−1 − β1en − β2dn − (2 − β1 − β2)wn
+ · · ·

= C2endn −
C2en +

 3
4C3 − C2

2


en(en−1 + dn−1) + · · ·

1 −
β1en−β2dn−(2−β1−β2)wn

en−1+dn−1

(dn − wn) + · · ·

= C2endn −

[
C2en +


3
4
C3 − C2

2


en(en−1 + dn−1) + · · ·

]
×

[
1 +

β1en − β2dn − (2 − β1 − β2)wn

en−1 + dn−1
+ · · ·

]
(dn − wn) + · · ·

= C2endn −

[
C2en +


3
4
C3 − C2

2


en(en−1 + dn−1) + · · ·

] [
1 +

β1en + · · ·

en−1 + dn−1
+ · · ·

]
(dn − wn) + · · ·

= C2endn −

[
C2en +


3
4
C3 − C2

2


en(en−1 + dn−1) + · · ·

] 1 +

β1
en

en−1

1 +
dn−1
en−1

+ · · ·

 (dn − wn) + · · ·

= C2endn −

[
C2en +


3
4
C3 − C2

2


en(en−1 + dn−1) + · · ·

] [
1 + β1

en
en−1


1 −

dn−1

en−1


+ · · ·

]
(dn − wn) + · · ·

= C2endn −

[
C2en +


3
4
C3 − C2

2


enen−1 + C2β1

e2n
en−1

+ · · ·

]
(dn − wn) + · · ·

=


C2
2 −

3
4
C3


enen−1dn − C2β1

e2n
en−1

dn + · · ·

= C2


C2
2 −

3
4
C3


e2ne

2
n−1 − C2

2β1e3n + · · ·

= C2


C2
2 −

3
4
C3


e2ne

2
n−1 + · · · . (15)

Let A = C2

C2
2 −

3
4C3


, then (15) becomes

en+1 = Ae2ne
2
n−1 + · · · . (16)

Suppose that the order of (6) is q when α1 = α2 = 1, then from (4) we have

en = Ceqn−1 + · · · (17)

and

en+1 = Ceqn + · · · = Cq+1eq
2

n−1 + · · · . (18)

Substituting (17) and (18) into (16) gives

Cq+1eq
2

n−1 = AC2e2q+2
n−1 + · · · (19)

which implies that

q2 = 2q + 2. (20)

It is obtained from (20) that the asymptotic convergence order q = 1 +
√
3. �
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Table 1
Comparison of various iterative methods for Example 1.

Secant method Newton’s method New method

x−1 = −2, x0 = −1 x0 = −1 x0 = −1
n 8 5 4
|xn − xn−1| 3.34199334872665e−012 2.22044604925031e−016 2.22044604925031e−016
|f (xn)| 3.5527136788005e−015 2.66453525910038e−015 2.66453525910038e−015

Table 2
Comparison of various iterative methods for Example 2.

Secant method Newton’s method New method

x−1 = 2, x0 = 1.5 x0 = 1.5 x0 = 1.5
n 6 4 3
|xn − xn−1| 2.44204656496549e−012 2.22044604925031e−016 2.22044604925031e−016
|f (xn)| 3.33066907387547e−016 4.44089209850063e−016 4.44089209850063e−016

Table 3
Comparison of various iterative methods for Example 3.

Secant method Newton’s method New method

x−1 = 3.05, x0 = 2.98 x0 = 2.98 x0 = 2.98
n 7 4 3
|xn − xn−1| 3.29958282918597e−013 2.22044604925031e−015 0
|f (xn)| 0 0 0

By Theorem 1, we take α1 = α2 = 1 in (6), and obtain the present method given by

yn = xn − vn−1f (xn),

vn = f ′


xn + yn

2

−1

zn = xn − vnf (xn),

xn+1 = zn −
(yn − zn)2

xn−1 + yn−1 − β1xn − β2yn − (2 − β1 − β2)zn

(21)

where β1, β2 ∈ R.
Per iteration the present methods require two evaluations of the function and one of its first derivative. We consider the

definition of efficiency index [5] as p1/ω , where p is the order of the method and ω is the number of function evaluations per
iteration required by the method. We have that the present methods have the efficiency index equal to 3√1.618 ≈ 1.17398,
which is better than the method proposed in [16] 5√1.618 ≈ 1.10102.

4. Numerical example

Now we employ the new method given by (21) with β1 = β2 = 0 and v−1 = 1 to solve some nonlinear equations
and compare themwith the secant method and Newton’s method defined by (1) proposed in [1–4]. The iterative method is
stopped when |f (x)| < 1e − 14 or |xn − xn−1| < 1e − 14. The examples are as follows.

Example 1.

f (x) = xex
2
− sin2 x + 3 cos x + 5, x∗

= −1.20764782713092.

The results of this problem are displayed in Table 1.

Example 2.

f (x) = sin2 x − x2 + 1, x∗
= 1.40449164821534.

The results of this problem are displayed in Table 2.

Example 3.

f (x) = ex
2
+7x−30

− 1, x∗
= 3.

The results of this problem are displayed in Table 3.
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From the tables, we see that the new method is efficient. It converges faster than not only the secant method but also
Newton’s method. In view of this fact, the new method can be viewed as a significant improvement compared with the
previously known methods.

5. Conclusions

We present a new iterative method for solving nonlinear equations. Theorem 1 shows that the asymptotic convergence
order of this method is 1 +

√
3. The numerical example shows that the method is efficient.
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