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Abstract

The dynamic stability of a soft ferromagnetic rectangular and simply supported plate immersed in an applied transverse magnetic field,

as well as subjected to an in-plane periodic compression is presented in this paper. The fundamental equations involving magnetoelastic

interaction and magnetic damping effect for the ferromagnetic plate are developed. In the theoretical model, the expression of induced

magnetic force is based on a generalized magnetoelastic variational model, and the magnetic damping is due to the Lorentz body force

arising from eddy current in the ferromagnetic material. By means of a linearized magnetoelastic theory and perturbation technique, the

motion equation of the ferromagnetic plate is reduced to a damped Mathieu’s equation and solved. The dynamic stability of the

magnetoelastic system without in-plane compression is theoretically analyzed first, to show that there exist two stable states: magnetic

damped stable oscillation, and over-damped asymptotically stable motion before static divergence instability of the ferromagnetic plate

occurs. The dynamic instability and stability regions for the parametric excitation of the ferromagnetic plate due to the harmonically

excited in-plane compression are obtained next. The effects of magnetic damping and excitation frequency of the in-plane periodic

compression on the stability regions are discussed in detail.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In modern electromagnetic equipments, such as magne-
tically levitated vehicles, electromagnetic energy-storage
devices, fusion reactors and magnetic propulsion devices,
etc, ferromagnetic structures like beams, plates and shells
are widely used. Different from conventional structures
experienced to mechanical loadings, the electromagnetic
structures immersed in strong magnetic fields usually are
subjected to mighty magnetic force arising from the mutual
influence between the applied magnetic field and the
magnetization of ferromagnetic materials. The strong
magnetic force leads to deformation of ferromagnetic
structures even to losing stability [1].

The analyses for behaving magnetoelastic interaction of
ferromagnetic structures can be traced to the 1960s [2,3].
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Moon and Pao [4] were the first to conduct experiment of
magnetoelastic buckling of a thin ferromagnetic plate in a
uniform transverse magnetic field. The observations
showed that the ferromagnetic plate might lose its stability
when the magnetic-field intensity reaches a critical value.
A theoretical model called the magnetic body couple model
was proposed by them to predict the experimental
phenomena of magnetoelastic buckling. In subsequent
investigation, Moon and Pao [5] studied a ferromagnetic
beam-plate vibrating in a transverse magnetic field and
obtained that the natural frequency of the plate decreases
with an increasing magnetic-field intensity and finally tends
to zero as the magnetic field attains a critical value, which
causes the same plate to buckle. However, since there is
sometimes a big discrepancy between the theoretical
predictions and the experimental data for the critical
magnetic fields, many investigators, Wallerstein and Peach
[6], Miya et al. [7,8], Peach et al. [9], etc., devoted their
attentions to finding an explanation for this reason. Based
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Fig. 1. The sketch of rectangular ferromagnetic plate.
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on a generalized magnetoelastic variational principle, Zhou
et al. [10,11] proposed a new theoretical model for
magnetoelastic buckling and bending of ferromagnetic
plates in a transverse and/or oblique magnetic field. They
showed that the predictions from their model were much
more close to the experimental data for ferromagnetic
plates buckling in a transverse field [12], and at the same
time the model can theoretically simulated and explained
the experiment result of natural frequency increasing with
magnetic-field intensity for a cantilever beam-plate being
in-plane magnetic field [11]. Recently, the authors [13] have
expanded the generalized magnetoelastic variational prin-
ciple to the magneto-thermo-elasticity of soft ferromag-
netic bodies in applied magnetic and thermal fields.

Nevertheless, the analyses by Moon and Pao [4,5] and
the other investigators always neglected the eddy current
retaining but only the coupling between magnetization and
deformation of the ferromagnetic structures. In some
ferromagnetic structures, for example, the first walls and
blankets of fusion power reactors, there commonly coexist
magnetization and eddy currents, as well as the electro-
magnetic structures subjected to mechanical loadings, such
problems of the electro–magneto–elastic interaction should
be paid more attention both in research and in engineering
design of electromagnetic equipments. Adopting the
magnetic couple model by Moon and Pao [4,5] for
expression of the magnetic force, Lu et al. [14] studied a
magnetoelastic buckled beam subjected to an external axial
periodic force in a periodic transversal magnetic field with
the effect of induced currents. Zheng and Liu [15]
numerically simulated the dynamic behaviors of a ferro-
magnetic conducting beam in uniform transversal magnetic
fields with the magnetoelastic variational model proposed
by Zhou and Zheng [10]. As for the conducting strips and
plates, Lee [16,17] studied their dynamic stability taking
into account magnetic damping effect of eddy currents in
the structures, and obtained an explicit expression for the
destabilizing effect as well as the effect of relative magnetic
permeability on instability.

In this paper, the dynamic stability of a soft ferromag-
netic, rectangular, simply supported thin plate under a
uniform transverse magnetic field and an in-plane periodic
compression is carried out with the magnetic damping
effect. The analysis of dynamic magnetoelasticity of the
ferromagnetic plate is restricted within low frequencies and
the assumption of quasi-static magnetic fields is adopted.
The theoretical model proposed by Zhou and Zheng [10] is
employed to express the equivalent magnetic force of
magnetoelastic interaction for the ferromagnetic plate. The
magnetic damping is described by the Lorentz body force
arising from eddy current induced in the ferromagnetic
plate. Based on a linearized magnetoelastic theory and
perturbation method, the governing equation of the
magnetoelastic system is reduced to a damped Mathieu’s
equation. The dynamic stability for free vibration of the
ferromagnetic plate in absence of in-plane compression is
analyzed first. The expression for instability as a result of
magnetization and magnetic damping of the ferromagnetic
plate is explicitly obtained. A parametric excitation of the
system with the harmonically excited in-plane compression
is considered next, and the corresponding stability regions
are simulated in detail.
2. Fundamental governing equation

Consider an isotropic, homogeneous, soft ferromagnetic
rectangular thin plate with the length a, width b, and
thickness h in an applied transverse uniform magnetic field
B0 (as shown Fig. 1). The plate is simply supported on four
sides, an in-plane periodic compression PðtÞ ¼ P0 cos o0t

acts along one pair of opposite sides of the plate in the x-
direction.
2.1. Equations of magnetic fields

Here, we restrict our attention to the quasi-static
magnetic field. The electric field, charge distribution and
conduction current in the ferromagnetic medium, as well as
the electric field induced by eddy current, are neglected on
account of the low vibration frequency of the magnetoe-
lastic system [1]. As a consequence, the magnetic fields both
inside and outside regions of the ferromagnetic plate are
governed by Maxwell’s equations as follows:

r � Bþ ¼ 0; r �Hþ ¼ 0 in OþðuÞ, (1)

r � B� ¼ 0; r �H� ¼ 0 in O�ðuÞ (2)
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and the corresponding connecting and boundary condi-
tions for magnetic fields are

n � ðBþ � B�Þ ¼ 0;

n� ðHþ �H�Þ ¼ 0 on S ¼ Oþ \ O�ðuÞ, ð3Þ

B� ¼ B0 ¼ B0k on S0 or at 1; (4)

where O+(u) and O�(u), respectively, represent inside and
outside regions of the deformed ferromagnetic plate with
displacement vector denoted by u; n is a unit vector
outward normal to the surface S of the ferromagnetic plate;
S0 denotes a closed surface which surrounds and is far
away from the ferromagnetic medium; r ¼ q/qxi+q/qyj+
q/qzk is the gradient operator in the space, where the
Cartesian coordinate system xyz is chosen, without loss of
generality, and i, j and k are the unit vectors along the
x-, y- and z-axis, respectively.

For linear ferromagnetic medium, the magnetic consti-
tutive relationships, between magnetic field vector H and
magnetic induction B, can be written by

Bþ ¼ m0mrH
þ in OþðuÞ, (5)

B� ¼ m0H
� in O�ðuÞ, (6)

in which mr and m0 are the relative magnetic permeability of
the ferromagnetic plate and the permeability of a vacuum,
respectively; w is the susceptibility of material of the plate,
given by w ¼ mr�1.
2.2. Motion equations of ferromagnetic plate

On the basis of the small bending theory and Kirchhoff’s
assumptions of thin plate, the deformation of a plate is
expressed as

u ¼ �
qwðx; y; tÞ

qx
zi�

qwðx; y; tÞ

qy
zjþ wðx; y; tÞk, (7)

where w(x, y, t) is the transverse displacement or deflection
at mid-plane of the ferromagnetic plate. Omitting in-plane
inertia terms, the motion equations of the rectangular
simply supported plate and the boundary conditions are
given by

qNx

qx
þ

qNxy

qy
þ

Z h=2

�h=2
f x dz ¼ 0;

qNy

qy
þ

qNxy

qx
þ

Z h=2

�h=2
f y dz ¼ 0; ð8Þ

D
q4w

qx4
þ 2

q4w
qx2qy2

þ
q4w
qy4

� �

� Nx

q2w

qx2
þ 2Nxy

q2w

qx@y
þNy

q2w
qy2

� �
þ rh

q2w
qt2
¼ qzðx; y; tÞ þ

Z h=2

�h=2
f z dzþ

q
qx

Z h=2

�h=2
f xz dz

þ
q
qy

Z h=2

�h=2
f yz dz, ð9Þ

wðx; y; tÞ ¼ 0;
q2wðx; y; tÞ

qx2
¼ 0 at x ¼ 0; a; (10a)

wðx; y; tÞ ¼ 0;
q2wðx; y; tÞ

qy2
¼ 0 at y ¼ 0; b, (10b)

where D ¼ Eh3=12ð1� n2Þ is the flexural rigidity of the
ferromagnetic plate; E and v are the Young’s modulus and
Poisson’s ratio, respectively; qz(x, y, t) is the equivalent
magnetic force acted on the ferromagnetic thin plate, which
is expressed by the generalized magnetoelastic variational
model for a soft ferromagnetic plate in complex magnetic
fields in following form [10]:

qzðx; y; tÞ ¼
m0mrw
2

Hþn ðx; y; h=2; tÞ
� �2n

� Hþn ðx; y;�h=2; tÞ
� �2o
�

m0w
2

Hþt ðx; y; h=2; tÞ
� �2n

� Hþt ðx; y;�h=2; tÞ
� �2o

. ð11Þ

The magnetic force in above form is adopted owing to its
advantage to the magnetoelastic interaction from the
magnetization and deformation of the ferromagnetic plate.
The variational magnetoelastic model proposed in Ref. [10]
is, so far, the only model which successfully predicts the
distinct two kinds of experimental phenomena of magne-
toelastic interaction for soft ferromagnetic plates in
magnetic fields (see Refs. [4,11]). In Eq. (11), the subscripts
‘‘n’’ and ‘‘t’’ are used to identify the normal and tangential
components of the magnetic field H+ on surface of the
ferromagnetic plate. f(x, y, z,t) ¼ fxi+fyj+fzk is the Lor-
entz body force in the ferromagnetic plate calculated by the
motion and magnetic induction vectors of the ferromag-
netic plate [1], which gives as

fðx; y; z; tÞ ¼ s
qu
qt
� Bþ

� �
� Bþ, (12)

where s denotes the electric conductivity of the ferromag-
netic material. The integration terms in Eqs. (8) and (9) are
the in-plane and transverse equivalent magnetic forces in
the mid-plane of the ferromagnetic plate contributed by the
Lorentz body force. In addition, the distributions of
magnetic fields (solutions of Eqs. (1)–(6)) are dependent
upon the deformed ferromagnetic plate. The transforma-
tion between the coordinates of a point x0 in the region
O+(u) and on the surface S of the deformed plate and the
coordinates of a point x for the undeformed plate can be
taken as

x0 ¼ xþ u. (13)
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From the above equation, the magnetic force and Lorentz
force of Eqs. (11) and (12), one can find that the governing
equations for magnetic fields (Eqs. (1)–(6)) and those for
motion of the ferromagnetic plate (Eqs. (8)–(10)) are
nonlinearly coupled.

3. Perturbation technique for magnetic fields and forces

Usually, it is difficult to achieve the solution of the
coupled magnetoelastic equations (1)–(10) for magnetic
fields and deformation field of the ferromagnetic plate.
Here we will restrict ourselves to the magnetoelastic
infinitesimal deformation. Based on the linearized theory
of magnetoelasticity proposed by Pao and Yeh [18] and the
perturbation technique, the distributions inside and outside
magnetic fields of the deformable ferromagnetic plate are
given as

Bþ ¼ Bþ0 þ bþðx; y; z; tÞ;

Hþ ¼ Hþ0 þ hþðx; y; z; tÞ in OþðuÞ, ð14Þ

B� ¼ B�0 þ b�ðx; y; z; tÞ;

H� ¼ H�0 þ h�ðx; y; z; tÞ in OþðuÞ, ð15Þ

where the base magnetic fields Bþ0 (or Hþ0 ) and B�0 (or H�0 )
for a rigid body state are constant in space and time, and
the disturbed fields b+(x, y, z, t) (or h+(x, y, z, t)) and
b�(x, y, z, t) (or h�(x, y, z, t)) are small. We further intro-
duce the magnetic scalar potentials F+, F� and f+, f�, so
the magnetic fields and magnetic inductions can be re-
expressed as

Hþ0 ¼ �rF
þ; Bþ0 ¼ �m0mrrF

þ in Oþðu ¼ 0Þ, (16a)

hþ ¼ �rfþ; bþ ¼ �m0mrrf
þ in OþðuÞ, (16b)

H�0 ¼ �rF
�; B�0 ¼ �m0rF

� in O�ðu ¼ 0Þ, (17a)

h� ¼ �rf�; b� ¼ �m0rf
� in O�ðuÞ. (17b)

After taking into account the influence of deformation of
the ferromagnetic plate on the magnetic field boundary
conditions, the normal vector of the deformed ferromag-
netic plate becomes

n ¼ n0 þ n̂, (18)

where n0 and n̂ are the normal vectors of the undeformed
plate and the perturbation term by the deformed plate on
the surface S, respectively. They are expressed as

n0 ¼ �k; n̂ ¼ � �
qw

qx
i�

qw

qy
j

� �
(19)

in which the signs ‘‘7‘‘correspond to the upper (+) and
lower (�) surfaces of the plate, respectively.

Then, we can rewrite the governing equations (1) and (2)
and the boundary conditions (3) and (4) with taking into
account Eqs. (18) and (19), together with constitutive
relationships (5) and (6) for magnetic fields by the magnetic
scalar potentials as follows:

r2Fþ ¼ 0 in Oþðu ¼ 0Þ, (20a)

r2F� ¼ 0 in O�ðu ¼ 0Þ (20b)

Fþ ¼ F�; mr

qFþ

qz
¼

qF�

qz
on z ¼ �h=2; (20c)

�rF� ¼
B0

m0
on S0 or at z!1, (20d)

and

r2fþ ¼ 0 in OþðuÞ, (21a)

r2f� ¼ 0 in O�ðuÞ, (21b)

mr

qfþ

qz
¼

qf�

qz
on z ¼ �h=2, (21c)

qfþ

qx
�Hþ0z

qw

qx
¼

qf�

qx
�H�0z

qw

qx
;
qfþ

qy
�Hþ0z

qw

qy

¼
qf�

qy
�H�0z

qw

qy
on z ¼ �h=2, ð21dÞ

f� ! 0 on S0 or at z!1. (21e)

Solving Eqs. (20a)–(20d), the distributions of the base
magnetic fields are easily obtained by

Hþ0 ¼ �rF
þ ¼

B0

m0mr

k in Oþðu ¼ 0Þ, (22a)

H�0 ¼ �rF
� ¼

B0

m0
k in O�ðu ¼ 0Þ. (22b)

Since the disturbed magnetic fields are coupled with the
deformation of the ferromagnetic plate, it is generally not
easy to solve the disturbed fields independently. Here, we
take the deflection solution of the rectangular simply
supported plate in the series expression form

wðx; y; tÞ ¼
X

m

X
n

Amn sin
mpx

a
sin

npy

b
f ðtÞ, (23)

where m and n denote positive integers, Amn are the plate
deflection amplitude coefficients. It is obvious that Eq. (23)
satisfies the boundary conditions of the simply supported
plate. Substitution of Eqs. (22) and (23) into the boundary
conditions of Eq. (21d) of magnetic fields, the distributions
of the disturbed fields can be solved from Eqs. (21a)–(21e)
to obtain in following forms:

hþ ¼ � rfþ

¼
B0w
m0mr

X
m

X
n

Amn

Dmn

�
mp
a

cos
mpx

a
sin

npy

b
coshðkmnzÞ

h i
i

n
þ

np
b
sin

mpx

a
cos

npy

b
coshðkmnzÞ

h i
j

þ kmn sin
mpx

a
sin

npy

b
sinhðkmnzÞ

h i
k
o

f ðtÞ, ð24aÞ
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h� ¼ � rf�

¼ �
B0w
m0

X
m

X
n

Amn

Dmn

sinh
kmnh

2

�
mp
a

cos
mpx

a
sin

npy

b

h i
i

n
�

np
b
sin

mpx

a
cos

npy

b

h i
j

� sgnðzÞkmn sin
mpx

a
sin

npy

b

h i
k
o

� ekmnðh=2�jzjÞf ðtÞ, ð24bÞ

here sgn(z) is the signum function, and

kmn ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

a

� 	2
þ

n

b

� 	2r
; Dmn ¼ mr sinh

kmnh

2
þ cosh

kmnh

2
.

(25)

Taking the foregoing distributions of magnetic fields into
the equivalent magnetic force of Eq. (11), we have

qzðx; y; tÞ ¼
2B2

0w
2

m0mr

X
m

X
n

Amnkmn

Dmn

sinh
kmnh

2

� sin
mpx

a
sin

npy

b
f ðtÞ ð26Þ

and the Lorentz body force of Eq. (12), with ignoring the
infinitesimal terms of high order, becomes

fðx; y; z; tÞ ¼ sB2
0

df ðtÞ

dt

X
m

X
n

Amn

mp
a

cos
mpx

a
sin

mpy

b
z i

 

þ
X

m

X
n

Amn

np
b
sin

mpx

a
cos

mpy

b
z j

!
. ð27Þ

Furthermore, the other magnetic forces are expressed as

Z h=2

�h=2
f x dz ¼

Z h=2

�h=2
f y dz ¼ 0, (28)

Z h=2

�h=2
f z dzþ

q
qx

Z h=2

�h=2
f xz dzþ

q
qy

Z h=2

�h=2
f yz dz

¼ �
sB2

0h3

12

X
m

X
n

Amnk2
mn sin

mpx

a
sin

npy

b

df ðtÞ

dt
. ð29Þ

Substituting Eq. (28) into the equilibrium equations
of membrane resultants of Eq. (8) and taking into account
the in-plane excitation compression along x-direction, one
can get the membrane resultants of the thin plate as
follows:

Nx ¼ �P0 coso0t; Ny ¼ 0; Nxy ¼ 0. (30)

Thus, with substitution of the force exerted on the
ferromagnetic plate including the equivalent transverse
magnetic force, Lorentz force and the above membrane
resultants as well as the serial expansion of the deflection of
Eq. (23) into Eq. (9), the governing equation for flexural
motion of the ferromagnetic plate is reduced into the form

rh
d2f ðtÞ

dt2
þ

sB2
0h

3

12
k2

mn

df ðtÞ

dt

þ Dk4
mn �

2B2
0w

2

m0mr

kmn

Dmn

sinh
kmnh

2
� P0

mp
a

� 	2
coso0t

� �
f ðtÞ ¼ 0.

ð31Þ

Before the following study, some nondimensional variables
are introduced here

t̄ ¼
t

2a2=h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3rð1�n2Þ

E

q ,

B2 ¼
B2
0

m0E
� 104; Z ¼

a

b
; g ¼

a

h
;

k̄mn ¼ kmna ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2Z2

p
. ð32Þ

It should be noted that the nondimensional variable B2 is
gained from B2

0=m0E multiplied by number 104 so that the
value is not too small due to the Young’s modulus about
the magnitude of 1011 for most ferromagnetic materials.
This treatment will not distort the solution of the problem.
Furthermore, Eq. (31) in the nondimensional form is
rewritten as

d2f

dt̄2
þ B2Gk̄

2

mn

df

dt̄
þ k̄

4

mn � B2Hmnk̄mn

"

�P0Km cos
2a2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rð1� n2Þ

E

r
o0t̄

 !#
f ¼ 0 ð33Þ

in which

G ¼
m0s

2� 104

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2
ð1� n2Þ
3r

s
; Km ¼

12ð1� n2ÞðmpÞ2g2

Eh
;

Hmn ¼
24ð1� n2Þw2g3

mr � 104
sinhðk̄mn=2gÞ

mr sinhðk̄mn=2gÞ þ coshðk̄mn=2gÞ
.

ð34Þ

4. Dynamic stability analysis

4.1. Magnetoelastic stability without compression

We firstly perform free vibration of the ferromagnetic
plate under an applied transverse magnetic field without in-
plane compression, i.e., P0 ¼ 0. Eq. (33) is re-expressed as
the simple one

d2f

dt̄2
þ l0

df

dt̄
þ a0f ¼ 0, (35)

where

l0 ¼ B2Gk̄
2

mn; a0 ¼ k̄
4

mn � B2Hmnk̄mn. (36)

Here, we investigate it in a manner of a normal mode
and take

f ¼ Aeōt̄. (37)
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Substitution of Eq. (37) into Eq. (35) gives

ō2 þ l0ōþ a0 ¼ 0 (38)

From the equation above, one can easily get the complex
frequencies as

ōmn ¼
�l0 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a0 � l20

q
2

¼ �
B2Gk̄

2

mn

2
� i

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk̄

4

mn � B2Hmnk̄mnÞ � ðB
2Gk̄

2

mnÞ
2

q
.

ð39Þ

It shows that the ferromagnetic plate oscillates with the
characteristic damping ratio of �l0/2 which is proportional
to the square of magnetic field intensity B2, as well

vibrating with the frequency of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a0 � l20

q
=2. From the

imaginary parts of ōmn, i.e. ImðōmnÞ, the frequencies of the
ferromagnetic plate decrease with an increasing of mag-
netic field B2. The contributions for the frequency
decreasing are from two ways. The first one, related to
the first term with minus sign in Eq. (39), is due to
magnetization of the ferromagnetic material and the
coupling between magnetic force (or field) and deformation
of ferromagnetic structure, which is so-called negative
magnetic stiffness effect. The other, related to the second
term with minus sign in Eq. (39), is from the damping,
which is so-called magnetic damping effect. When the
frequencies (i.e. ImðōmnÞ) approach to zero, the oscillation
B2
c ¼

k̄
3

11

H11
¼

ðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
Þ
3

24ð1� n2Þw2g3ð Þ= mr � 104

 �

sinhðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
=2gÞ

� 	
= mr sinhðp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
=2gÞ þ coshðp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
=2gÞ

� 	

�
p3ð1þ Z2Þ3=2

24� 10�4ð1� n2Þ
g�3. ð43Þ
ceases and the plate is critically damped. The critical values
are given by

B2
mn


 �
c
¼

2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

mn þ G2k̄
6

mn

q
�Hmn�

G2k̄
3

mn

. (40)

The critical magnetic fields, (Bmn)c, as the functions of the
relative magnetic permeability mr, magnetic damping para-
meter G, geometrical ratio parameters g and Z for the few
lower modes of the ferromagnetic plate are plotted in Figs.
2a–d. For the demonstration in these figures, some material
and geometrical parameters of the ferromagnetic plate are
chosen as listed in Table 1. We can find that, from Fig. 2, the
critical value will be the smallest one when m ¼ n ¼ 1, that is

B2
c ¼

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

11 þ G2k̄
6

11

q
�H11

� �
G2k̄

3

11

. (41)

Furthermore, we take a view of two special cases: (a) when
the magnetization effect of the ferromagnetic plate is tiny
even to be neglectable, i.e. the susceptibility approaching to
zero (w-0 or nonferrous conducts mr-1) or Hmn being
zeros, the magnetic field for stability of the ferromagnetic
plate will reach the critical value only caused by the magnetic

damping, and from Eq. (39) the critical field becomes B2
c ¼

2=G which is independent of normal modes; (b) when the
magnetic damping effect is small even tends to zero, i.e. G-0
(non-conducting ferromagnetic medium s-0, or extremely
thin plate), the magnetic field for stability of the plate will
reach the critical value only due to the magnetization or
negative magnetic stiffness, and from Eq. (39) the smallest

critical value gives B2
c ¼ k̄

3

11=H11 which is independent of the

damping factor G (e.g., Go0.1). These characteristic features
can also be clearly observed from Fig. 3. Fig. 3 also shows
that the critical values for different relative magnetic
permeabilities of the ferromagnetic plate approach to same
value especially for the larger permeability. Actually, for the
case of high permeability (e.g. mrb1 for iron, nickel, and
cobalt, etc.) of the very thin soft ferromagnetic plate (i.e.,
1=g ¼ h=a51), there are following approximations:

mr � wb1; sinh
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
2g

�
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
2g

;

cosh
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
2g

� 1; mr

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
2g

b1. ð42Þ

Thus, the critical value of magnetic field in this case is
reduced to the form
It shows that the critical field Bc decreases with �3/2 power
linearly depending on the geometrical parameter g (the
ratio of width to thickness of the plate) for a fixed Z. The
results are similar to the theoretical predictions and
experimental data obtained for a cantilevered ferromag-
netic beam-plate in transverse fields [4,5]. The curves of
critical magnetic fields versus the geometrical parameters of
the ferromagnetic thin plate with different magnetic
damping factors are plotted in Fig. 4. From Fig. 4, we
can find that the critical value decreases with increasing
geometrical parameter, g, the ratio of width to thickness of
the plate. For a small g, the magnetic damping obviously
affects the critical field, as the higher is the magnetic
damping, the lower is the critical value. This feature is
attenuated for a large g.
As the magnetic field increases beyond the critical field

Bc, the real part of o will increase from a negative value
(damping effect) to zero or even become positive. When
the real part of o is positive (i.e., Re(o )40), the
divergence instability occurs, and the critical divergence
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Fig. 2. The critical field as function of material and geometric parameters of ferromagnetic plate for few lower modes.

Table 1

Material and geometrical parameters of ferromagnetic plate

Parameter Value

Density, r (kg/m3) 3.0� 103

Young’s modulus, E (Mpa) 1.2� 105

Poisson’s ratio, n 0.3

Conductivity, s (mho/m) 1.0� 107

Width, b (m) 8.3� 10�1

Thickness, h (m) 1.0� 10�2
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condition gives

B2
d ¼

k̄
3

11

H11
, (44)

which is independent of the magnetic damping factor G,
and same as the damping critical value when G ¼ 0, that is
B2
d ¼ B2

c . The critical divergence field B2
d is commonly

higher than the critical damping field B2
c because the effect

of magnetic damping can decrease B2
c , specially for small
geometrical parameters g (as shown in Fig. 4). Therefore,
for the ferromagnetic damping system, with an increase of
the magnetic field, the ferromagnetic thin plate shows
different magneto-mechanics behavior orderly by magnetic
damped stable oscillation, over-damped asymptotically
stable motion and static divergence instability. Corre-
spondingly, if the magnetic damping effect is not taken into
account, the ferromagnetic plate will lose stability directly
from the magnetoelastic oscillation when the magnetic field
reaches the critical value of B2

c .

4.2. Magnetoelastic stability with compression

The magnetoelastic parametric excitation with the time-
dependent compressive force P(t) for the ferromagnetic
thin plate is considered in this part. By introducing another
nondimensional time (different from t̄) for the convenience
of the following analysis as

t ¼
a2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r 1� n2ð Þ

E

r
o0t̄ (45)
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one can easily recast Eq. (33) into the well-known damped
Mathieu’s equation [19]

d2f

dt2
þ l

df

dt
þ a� b cos 2tð Þf ¼ 0, (46)

where the new nondimensional parameters are defined as
follows:

l ¼
B2Gk̄

2

11

O
; a ¼

k̄
4

11 � B2H11k̄11

O2
;

b ¼
F

O2
; F ¼ P0K1; O ¼

a2o0

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rð1� n2Þ

E

r
ð47Þ

and m ¼ n ¼ 1 is taken due to the critical value occurring.
Here, the spectral collocation method is employed (see

[20]) to solve the damped Mathieu’s equation (46), where
the unknown solution to the differential equation is
expanded as a global interpolant, for example a trigono-
metric interpolant for period problems. The classical
approach to solving the problem is to assume the Fourier
series representation as

f ðtÞ ¼
XN

k¼1

ckeikt. (48)

Inserting this series into (45) yields a recurrence relation for
the expansion coefficients ck in terms of (a, b), which are
called characteristic values. Let [A] and [B] be the N�N

Fourier second and first derivative matrixes, based on the
equidistant nodes tk ¼ 2p(k�1)/N, (k ¼ 1, 2,y,N). Let
[C] be a N�N diagonal matrix whose diagonal elements
are Ckk ¼ cos(2tk), (k ¼ 1, 2,y,N). Then the damped
Mathieu’s equation (46) is approximated by

fb½C� � ½A� � l½B�g½y� ¼ a½y�, (49)

where [y] is the vector of approximate eigenfunction values
f(tk). The eigenvalues can be found by computing
determinants, or by computing continued fractions [21].
For the non-damping magnetoelastic system of the

ferromagnetic plate (i.e. l ¼ 0 or G ¼ 0), Fig. 5 shows
the stability and instability regions dependent upon the
characteristic values (a, b). Let us take a close view on how
the properties of the parametric oscillations change with
the excitation frequency O. Since the ratio of the parameter
b to a remains constant for different O, the sequence of
states for the magnetoelastic system is determined by the
representative points on the dotted line b ¼ ka passing
through the origin of the coordinates. The slope of the line
is give by the ratio

k ¼
b
a
¼

F

k̄
4

11 � B2H11k̄11

¼
F

H11k̄11 B2
d � B2


 � (50)
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in which B2
d is the critical divergence magnetic field for the

ferromagnetic plate (see Eq. (44)). With an increment of the
frequency O, from Fig. 5, the parameters a and b decrease
proportionately, concomitantly the stable and unstable
regions alternate. When the applied magnetic field B2

approaches the critical value B2
d, that is k-N, the line

coincides with the ordinate. In this case, the magnetoela-
stic system of the ferromagnetic plate may remain stable
in some regions as shown in Fig. 6(a) of the plot of
the frequency O depending on the compression F. As the
applied magnetic field B2 is beyond the critical field B2

d,
the line b ¼ ka lies in the second quadrant. It is noted that
the magnetoelastic system may remain stable in some
patches. Fig. 6(b) shows the stability regains near the origin
by O–F diagram.

The magnetic damping can also influence the stability
regions of the ferromagnetic plate. Figs. 7a and b plot the
stability regions of the plate with the diagram of the
applied magnetic field as function of the compressive force
amplitude for different excitation frequencies. We can see
that the stable regions are broadened a bit by the magnetic
damping effect of the ferromagnetic plate. This tendency is
more obvious for the larger applied magnetic-field inten-
sity. In the special case of F ¼ 0, namely no in-plane
compression acted on the ferromagnetic plate, the plate can
keep its stability until the applied field reaches the
divergence critical value B2

d.

5. Conclusions

The dynamic stability of a soft ferromagnetic thin plate
in a transverse magnetic field and an in-plane periodic
compression is investigated. The fundamental equations
for the ferromagnetic plate are developed including the
effect of magnetoelastic interaction and magnetic damping.
For the free vibration in absence of excitation compression,
the expression for dynamic stability as a result of
magnetization and magnetic damping of ferromagnetic
plate together is explicitly obtained. It shows that there
exist two stable states comprising magnetic damping stable
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oscillation, over-damping asymptotically stable motion
before the ferromagnetic plate exhibits divergence instabil-
ity. The magnetic damping obviously affects the critical
field, as the higher is the magnetic damping, the lower is the
critical value. The dynamic stability regions for the
parametric excitation of the magnetoelastic system with
harmonically excited in-plane compression are discussed as
well. The effect of magnetic damping and the frequency of
in-plane compression on the stability characteristics are
simulated numerically which shows that the magnetic
damping extends the stable regions of parametric excita-
tion to a certain extent.
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