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ABSTRACT. We develop a bubble tree construction and prove compactness results for
W22 branched conformal immersions of closed Riemann surfaces, with varying confor-
mal structures whose limit may degenerate, in R" with uniformly bounded areas and
Willmore energies. The compactness property is applied to construct Willmore type
surfaces in compact Riemannian manifolds. This includes (a) existence of a Willmore
2-sphere in S with at least 2 nonremovable singular points (b) existence of minimizers
of the Willmore functional with prescribed area in a compact manifold N provided (i)
the area is small when genus is 0 and (ii) the area is close to that of the area minimizing
surface of Schoen-Yau and Sacks-Uhlenbeck in the homotopy class of an incompressible
map from a surface of positive genus to N and 7o(N) is trivial (c) existence of smooth
minimizers of the Willmore functional if a Douglas type condition is satisfied.

1. INTRODUCTION

Let ¥ be a smooth Riemann surface and f : ¥ — R"™ be a smooth immersion. The
Willmore functional of f is defined by

W)= [ 1Py

where Hy = Ay, f denotes the mean curvature vector of f, and A, is the Laplace operator
in the induced metric gy and dyuy the induced area element on .

For a sequence of immersions f; of a compact surface ¥ in a bounded set of R™ with
uniformly bounded areas p(f;) and Willmore functionals W (fy), a subsequence of the
image varifolds converges, as Radon measures, to a two dimensional integral varifold, by
Allard’s integral compactness theorem. The second fundamental forms Ay, are uniformly
bounded in the L?norm as

/E Ay [Pdpy, = AW (fy) — dnx(S)

from the Gauss equation and the Gauss-Bonnet formula. In general ||fg|lw22 are not
uniformly bounded: we can find diffeomorphisms ¢, from ¥ to ¥ such that f, = f o ¢
diverge in C°, while a uniform bound on || fx|ly22 would imply sequential convergence in
CY (in fact C*,0 < o < 1) norm by the Rellich-Kondrachov embedding theorem.

A recent advance in understanding the limit process is given in [12], where each fj is a
conformal immersion from a Riemann surface (3, hy) into R™ and hy, is the smooth metric
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of constant curvature:

hi, has Gauss curvature £ 1, or (3, hy) = C/{1,a + bi} with

—%<a§%, b>0,a%>+b*>>1 and a > 0 whenever a® + b = 1.

There are two reasons to use conformal immersions. One is that the conformal diffeo-
morphism group of (X, hg) is rather small comparing with the group of diffeomorphisms.
Secondly, if we set g;, = €*"#g.y. in an isothermal coordinate system, then we can esti-
mate |Jug||L= from the compensated compactness property of Ky, e***. Thus it is possible
to get an upper bound of || fi|lw22 via the equation Ay, fr = Hy,. When the conformal
structures determined by fr do not go to the boundary of the moduli space, convergence
of fi is treated in [12]: if the conformal classes induced by f; converge in the moduli
space, then there exist Mobius transformations oy, such that o, o fi converge locally in
weak W?? sense on ¥ minus finitely many concentration points. The weak limit f; is a
W22 branched conformal immersion.

The W?2? conformal immersions and W2 branched conformal immersions are as fol-
lows:

Definition 1. Let (3, h) be a connected Riemann surface. A map f € W*2(X, h, R") is
called a conformal immersion of (X, h), if

df @ df = e*h with |Jul|p=(s) < 4o0.

(1.1)

We denote the set of all such immersions by W22 (33, h,R™). It can be shown that for

conf
f e Wfo’if(Z,h,R”) the corresponding u is continuous. When f € W2*(%, h, R") with
df @ df = e**h and u € L2,(3), we say f € Wi’iﬁloe(Z, h,R™).

Obviously, when ¥ is compact, WCQOTQL f(Z, h,R™) depends only on the conformal class of
(32, h), not the choice of h.

Definition 2. We say f is a W22 branched conformal immersion of (3, h) with possible
branch points x4, ..., Tm, if f € W22 (E\{x1,...,xm}, h,R") and

conf,loc

/ (1+ |As]P)dpy < +o0.
S\{z1,.-sxm}

The set of W22 branched conformal immersions of (3, hy) is denoted by VVb2 2(%, h, R,
For compact ¥, I/Vb2 ’62(2, h,R™) depends only on the conformal class of (X, h), not the

choice of h. When ¥ is compact, we say f € /VIV/M(Z,R”), if there is a smooth metric h
satisfying (1.1) on X, such that f € WZ’CQ(Z, h,R™). In other words,

W25, R") = W2 (S, h,RY).
h

The first part of the paper is a study of a sequence of W22 branched conformal im-
mersions and the main goal is to establish compactness in Hausdorff distance for such
immersions with uniformly bounded areas and Willmore functionals (cf. Theorem 1).

Our compactness result holds not only when h;, converges smoothly in the moduli space
My, but also when the conformal classes ¢ of hj; converge to a degenerated one in the
boundary of M,. Bubbles develop near points where the Willmore energy concentrates,
and if ¢ goes to a point in the boundary ﬂg\/\/lg additional complication arises as the
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topology of the limit may be different from that of ¥ and stratified surfaces are used
as possible limits. The main idea to deal with degenerating conformal structures in the
limit process is as follows. First, we compose f; with diffeomorphisms from an exhausting
sequence of domains Vj, of the regular part of the limiting (possibly degenerate) surface
Yo of (X, hi) to a sequence of domains in 3. Then we study convergence of f; (composed
with the diffeomorphisms) and construct bubble trees at the energy concentration points
and collars, and investigate behavior between bubbles. In particular, we will prove that
there is no loss of measure in the limit and there are no necks between the bubbles. Then
the limit fo of f; is a union of conformal maps from some components %}, ... ,ﬁ of
Yo (we delete those components whose images are points) and finitely many 2-spheres

Si,..., S, into R™. “no neck” means that we can glue ¥j’s and S;’s to form a stratified
surface Y, (see definition below), and fy is a continuous map from ¥, into R™. Then
we will apply a result of Hélein [8] and a removable singularity theorem in [12] to show
that for a sequence of branched conformal immersions with uniformly bounded measures
and Willmore functionals, the limit we get in section 2 is in fact a branched conformal
immersion of a stratified surface.

We point out that the “no loss of measure” and ‘no neck” phenomenon are proved
whenever the following two equations hold:

1
(1.2) —~Af = §|ka|2Hk, with sup/ IV fel2(1 + |Hi|?) < o0,
k

(1.3) fow frow = fry - fry and fro - foy =0, (weakly conformal)

where A,V are the operators in h; and x,y are the isothermal coordinates on (X, hy).
Note that (1.2) is defined even at non-immersed points of a branched conformal immer-
sion, so it can be applied to study branched immersions. In section 2, we study the
blow-up behavior of a sequence of maps which satisfy (1.2) and (1.3).

Equation (1.2) looks similar to the equation of harmonic maps

—Au = A(u)(du, du).

In fact, the arguments in section 2 are originated from the “energy identity” and “no
neck” arguments of harmonic maps [4, 24, 26] (also see [1, 10, 20, 16]). When conformal
structures go to the boundary of M,, non-trivial necks exist for harmonic map ([1, 24,
32]); in our case, however, there is no non-trivial neck due to conformality although (1.2)
is much weaker than the harmonic map equation.

Definition 3. Let (X,d) be a connected compact metric space. We call ¥ a stratified
surface with singular set P if P C X is a finite set such that
(1) (X\P,d) is a smooth Riemann surface without boundary (possibly disconnected)
and d is a smooth metric h = d|5\ p, and

m(p)
(2) For each p € P, there is ¢ such that Bs(p) N P = {p} and Bs(p)\{p} = U &,
i=1

where 1 < m(p) < +00, and each §; is topologically a disk with its center deleted.
Moreover, on each €2;, h can be extended to be a smooth metric on the disk.
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In [1], the genus of ¥ is defined by
2=x(%)+ 2 (m(p) = 1)

peEP

9(2) = 5

When ¢(¥) = 0, ¥ is called a stratified sphere. A stratified surface with singular set
P = () is a smooth Riemann surface.

S0 O

FIGURE 1. Stratified torus

For a stratified surface ¥ with singular set P, we can write X\ P = |, " where X'’s
are the disjoint connected components of ¥, and each ¥ is a punctured Riemann surface
when there are more than one components. The topological closure of X! is denoted
by X;, so as a point-set ¥ = [ J, ;. By (2) in Definition 3, each component 3* can be
extended to a closed Riemann surface ¥ by adding finitely many points. To illustrate the
difference of these notations, take, for example, the stratified torus on the left in Figure
1: P contains two points, X! is the “torus” with two points deleted and 3?2 is a 2-sphere
with one point removed, ¥; is the “torus” and ¥, is the 2-sphere, while X1 is a Riemann
sphere (adding 3 points at the punctures) and 32 is also a Riemann sphere (adding 1
point at the puncture).

When ¥ is a stratified surface we define f € W22 (S,R") if f is a W?? non-trivial

branched conformal immersion on each Xt.

We now state the main result in the first part of the paper:

Theorem 1. Suppose that { fi} is a sequence of W2 branched conformal immersions of
closed Riemann surfaces (3, hy) in R™ and hy, satisfies (1.1). If fr(X)NBg, # 0 for some
fized Ry and

sup {ulfr) +W(fr)} < +oo

then either {fr} converges to a point, or there is a stratified surface Yo with g(Xs) <
g(2), amap fo € Wif(ZOO,R”), such that a subsequence of { fr(X)} converges to fo(Xe0)
in Hausdorff distance with

wlfo) = tim p(fx) and W(fo) < lim W(fy).

For any n € C3°(R™), we have

im [ n(fi)dpy, = / n(fo)diis,-

k—4o00 »

Yoo

Moreover, if y1, ..., Ym € fu(X) for all k, then y1, ..., Ym € fo(Xs0)-

In fact, we will prove that f, converges to fy in the sense of bubble tree: for each k,
we can find a domain U, of ¥ and a domain V}, of ¥, such that
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1) Vi C Vigr, and P = £\, Vi is a finite set which contains all singular points
of ¥. Moreover, 3., \V; is a union of topological disks with finitely many small disks
removed, and H{ (X, \Vi) — 0, where H] is the Hausdorff measure:

HL(S) = inf {Z diam(€) : S € | JQ, diam(Q) < 1} :
i=1 =1

2) Y\ Uy is a smooth surface with boundary, possibly disconnected, Hj (fx(X\Ux)) — 0.
Moreover, fi(3\Uy) converges to P in Hausdorff distance.

3) There is a sequence of diffeomorphisms ¢y, : Vi, — Uy, such that for any Q CC X\ P,
fx o ¢ converges in W2(Q, R™) weakly.

In Theorem 1, the singular points of ¥, arise in three ways: (a) the limit point to
which a sequence of closed geodesics that are not null-homotopic in f(X) pinches, (b) a
bubble point of fi, so belonging to a 2-sphere (the bubble), (¢) a point where both (a)
and (b) happen.

In the second part of the paper, we apply Theorem 1 to obtain several existence results
of Willmore surfaces in compact Riemannian manifolds. Here we note that Theorem 1 is
applicable for surfaces immersed in a compact Riemannian manifold N. To see this, for
>) immersed in N which is isometrically embedded in R", direct calculation shows that
the Willmore functional of ¥ in R” is dominated by its Willmore functional in N together
with the area p(X), see Lemma 4.1.

We first consider 2-spheres immersed in the round unit sphere S”,n > 3. Fix at least
two distinct points y1,...,Ym, m > 2 on S". Define

Be(r, -y ym) = inf {W,(f) : f € Wia (S*S™), 01, ym € F(S?)}

where W,,(f) = [ (1 + L|H;[?) dpuy and H is the mean curvature vector of f(S?) in S”.
We show

Theorem 2. If 87 (y1,. .., Ym) < 87, then there is a W2 conformal immersion of S* in
S™ without self-intersections realizing Bf(yi, ..., Ym). For any € > 0, there exists a Will-
more sphere in S™ with W,,(f) < 47 + €, which has at least 2 nonremovable singularities.

By results in [15], [27], a singular point of a Willmore surface with density 62 < 2
in R™ can be removed if its residue is 0. Kuwert and Schatzle also point out that the
removability can not be true generally, for example, 0 is the true singular point of an
inverted half catenoid ([15], P. 337). The second statement in Theorem 2 provides exam-
ples of embedded Willmore surface which has a nonremovable singular point with density
62 = 1, and it is an application of the first statement with five points prescribed in S*. In
fact, by a very recent result of T. Lamm and H. T. Nguyen [18], the Willmore spheres in
Theorem 2 have at least 4 nonremovable singular points. A Gap Lemma in [14] asserts
existence of a constant €y(n), such that any closed smooth Willmore surfaces immersed
in R™ with W (f) < 47 + ¢y must be round spheres. However, in light of Theorem 2, such
a gap result is no longer true if we allow the surfaces have singular points.

We then consider minimizers of the Willmore functional subject to area constraint. A
fundamental existence result for incompressible minimal surfaces due to Schoen-Yau [30]
and Sacks-Uhlenbeck [29] asserts: If ¢ : ¥ — N induces an injection from the fundamental
group of ¥ to that of N, then there is a branched minimal immersion f : ¥ — N so that
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f induces the same action on the fundamental groups as ¢ and f has least area among
all such maps. We denote the area of the minimizer by a,.

Theorem 3. Let N be a compact Riemannian manifold and let 3 be a closed surface of
genus g. Then

(1) For By(N,a) = inf{W(f) : u(f) =a >0, f € Wi’if(SQ,N)}, lim, o Bo(N, a) = 4,
and there is an embedding realizing Bo(N,a) for all sufficiently small a.

(2) Suppose ¢ : X — N induces an injection @y : m(X) — 7 (N) and ma(N) = 0. Let
By(N,a, ) =inf{W(f): f e W?2(X,N),u(f) = a, f is homotopic to ¢}. Then there is
d > 0, such that for any a € [ay,a, + 9) there is a branched conformal immersion f of
(X, h) attaining By(N, a, ). Moreover, when dim N = 3, f is an immersion for small ¢.

For By(N,a), Lamm and Metzger showed in [17] that if it is attained by a surface with
positive mean curvature in the sufficiently small geodesic ball around a point p, then the
scalar curvature of N must have a critical point at p.

When N has negative sectional curvature, the area of an immersed surface is dominated
by the Willmore functional. We now describe a sufficient condition of Douglas type
for existence. Let S(g) be the set of connected stratified Riemann surfaces ¥ = (J, ¥;
satisfying (a) genus of ¥; < g if ¢ > 0 and (b) ¢ > 1 if ¢ = 0. Note that a surface in S(g)
has genus at most g and smooth surfaces of genus ¢ are not in S(g). Isometrically embed
N into R"™. Define

a*(g) = inf{W(f): f € W2(S,R"), S € S(g)}

alg) =inf{W(f): fe W;’E(Z,R”), Y is a smooth surface of genus g}.
Similarly, for 0 < a < oo, define
v(g,a) = Wf{W(f,S,R"): f € W2A(E,R"), f(Z) C N, S € S(g), u(f(T)) < a}
(g.a) = E{W(£,5,R"): f € WA(S,RY), f(5) C N,T € My, u(f(¥)) < a}.

Theorem 4. Let N be a compact Riemannian manifold. If 0 < a(g) < o*(g) and N has
negative sectional curvature, then there is a W22 branched conformal immersion f from
a closed Riemann surface of genus g with W(f) = a(g). If 0 < v(g,a) < v*(g,a) then
there is a W>?2 branched conformal immersion f from a closed Riemann surface of genus

g with W(f) = ~(g,a).

We should mention that, the Willmore type functionals of immersed 2-spheres in Rie-
mannian manifolds are also studied by Kuwert, Mondino and Schygulla recently [13].
They proved that for a 3-dimensional compact Riemannian manifold M, (i) if the sec-
tional curvature K > 0, then there exists a smooth minimizer for £ = % [, |A]%; (ii)
if the sectional curvature K™ < 2 and the scalar curvature RM(7) > 6 for some T € M,
then there exists a smooth minimizer for Wy = [, (1 + |H|*)du. For higher codimen-
sion, Mondino and Riviere have obtained, among other results, existence of a branched
conformal immersion of S? minimizing F among weak branched immersions of S? with
finite total curvature [21]. For a closed surface 3 in R? whose traceless part of the second
fundamental form is small in L?, De Lellis and Miiller have shown, by estimating the
conformal metric, that ¥ is W22-close to S? and the induced metric is C%-close to the
standard metric of S?, [2, 22].
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2. BLOW-UP ANALYSIS - ENERGY IDENTITY AND ABSENCE OF NECK

Let (3, h) be a Riemann surface which may not be compact, where h is a smooth metric
compatible with the complex structure of ¥. For given p > 1 and R > 0, let FP(X, h, R)
be the set of mappings f : ¥ — R™ which satisfy

(1) f € Wl(S, h);
(2) f(X) is contained in the closed ball centered at the origin with radius R in R";
(3) Anf = F(f) with |F(f)| < 8|Vif|* a.e. on ¥, where 3 is a nonnegative measur-

able function on X with
[ 19 < 4.
x

We note that (2) is needed only for the compactness arguments.
When f € FP(X, h, R), we introduce a notation by

H(f) = { 282Ls, i [Vaf] # 0

0, if Vi f| = 0.
By (3), |Anf| < BIVf|?, almost everywhere on {z : V,,f = 0}.
We define W (f) to be

1
W(f) =< [ [H(OHPIVifPdun.
() =5 [PV P
Then W(f) < oo for f € FP(X, h, R) follows from (3) as

Anf = F(f) = SH()IVa S

(3, h, R) the set of f € FP(X,h, R) and f is weakly conformal a.e.,

ie. 0f @ f = 0 almost everywhere on 3, where 0f = %dz in a local complex coordinate
system on ..

Note that when f is a smooth conformal immersion H(f), 3|V f[*dps, W(f) are the
mean curvature vector, the area element and locally the Willmore functional of f(3),
respectively.

By the Kondrachov embedding theorem, functions in F?(X, h, R) are also locally in
W12, The right hand side of the equation A f = F(f) is not necessarily in L? under the
assumption (3).

We point out that H(f), F?, F~

O

We denote by FP

conf

. are conformally invariant, in the sense that if &' =
e?“h for some smooth function u on X, we always have

Hy,(f) = Hw(f), FP(E,h,R) = FP(3,h\ R), F

conf

(X,h,R) = F"

conf

(3,4, R).

Thus we may select preferred metrics h, e.g. the ones with constant curvature.
In this section, we will study regularity, compactness and the blow-up behavior of a
sequence {fi} C FP.
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2.1. e-regularity, removable singularity and weak limit. In this subsection, we will
show that some well-known results for harmonic maps still hold for mappings in FP.

Let D be the unit 2-disk centered at 0. For simplicity, write F?(D,dx? + dy?, R) as
FP(D, R).

Proposition 2.1. (e-reqularity) There is an ¢g = eo(p) > 0 such that for any f €
FP(D,R), 1 <p<2, if W(f) < e, then

HVfHWLP(D%) < CVfllze o

Proof. By working with a smaller disk, without loss of generality, we may assume that

feLYD). Set
= 1

and let n be a cut-off function which is 1 in Dy, 0 in D\D3/4 and 0 < n < 1. Then for
the equation

A(f=1) == DAn+2VnV [+ %nH(f)|Vf|2 =

we have
. 1
ol < Ci(If = fI+ IV f1) + 5 HDIV

< O (If = FI+IVED) + Co [ HONV LV (n(f = D) [+ 1f = f1)

IN

WHOIIV? = W|HPIV( - VS
= LHAOIV ((f = H) V= LHHI(f = VY
< CoHNOIVAUY (n(f = D) I+ 1F = fI) -

By the LP estimates for elliptic equations,

1905 = Dllwoy < Cs (I = Flluvioy + 19 ooy

[ HDINAY (0 = IV 1 = I o) -
For 1 < p < 2, the Holder inequality and the Sobolev inequality imply
1INV (o = ID+ 1 = FD ooy

< 1H S (19 0 = DD, g, 41 = Tl s ) )
< e Cy ||77(f - f)||w2m(D) + 6 Cs ||f - f“leP(D)

since W (f) < e9. Applying the Poincaré inequality and noting 1 < p < 2, we get

1f = Flley + IV fllzey + €0 Cs ILf = fllwrey < ColIV fllz2(py-
Choose € so that C5Cy ey < 1/2, then we get

In(f = Pllw2ew) < C7 IV Fll2(0)
which completes the proof. O
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Proposition 2.2. (Gap constant) Let 3 be a closed Riemann surface. There is a constant
€1 = €1(X,p) > 0, such that for any f € FP(S,h, R) where 1 <p <2, if W(f) < €, then
f s constant.

Proof. Let f = % J5, f- Tt follows from the equation

A(f = ) = SHUIV I

[w=pp < 5 1= Ao

1 2p—2 2-p

2 2 — _2p 2p 2p \ 2P

(/ aepwse) ([ f|2p—2) ([ros=)
b
=< (Y £l12 IV, 2 o
where we used the Sobolev inequality, the Poincaré inequality and 1 < p < 2. Then,
1
IVfllzzm) < CIW(f)2 HVfHLQ%(E)

Using the Poincaré inequality and 1 < p < 2 again, we have

1f = fllrm) < CallV 2y < C1Cs W(f)%HVfHL;fp(E)

IA

Since

;

—p

— </EiH<f>2‘Vf'2>;(/|Vf|“)= WOV, 2

it follows from the LP estimates for elliptic equations that
17 = Fllwesisy < Cs (DI gy + 15 = Flloisy)
< G+ CCW NIV o,
W2 = Pl

where the Sobolev inequality was used in the last step. By choosing ¢; < 1/Cy we imme-
diately have f = f. a

SHNIVEP?

IA

We now derive a key estimate for later applications. For f : S! x [—t,t] — R", define

E(f.Q(t) = /Q VAT, where Q(0) = 5" x [4,1)

and denote FP(Q(t),dt* + db?, R) by FP(Q(t), R). We will prove the following energy
decay estimate:

Proposition 2.3. (Decay estimate) Let f € F., (Q(T), R) with T > Ty, 1 < p < 2.

Then there is a constant €5 < €y, where €y is the constant in Proposition 2.1, such that if

sup W(f,S' x[t,t+1])<e <e
te[-T,T—1]
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then
/‘IVﬂ2<CH%fQ<)) (-CIT yr T,
Q)

The constants Ty, €3, C depend only on p.

Proof. Define
1 2
= — t,0)do
o= L

2 /t/ (27r /02ﬂ8—fd9) dodt
of 2cl9/7rcl9’> dt
0

ot

We have
af*

/Q(t) ot
t 2w

2.1 <

2.) < o (A

27
/_ | / A " a0
2
— / 011" 4tap.
Qw | Ot
Then
of of*
V(f— [V = /‘IVfF— o
/Q(t) Q) Q) Ot Ot
2 % |2
> / VAR - 1(/ N )
2 v

LwWN /

3l

= 5/ VP
2 Jaw
where in the last step we used the fact that |f;
the other hand,

(2.3)

ot

’2 = |f(9\2 a.e. as f is conformal a.e. On

V(f - SIS = —/ (-rar— [ gy
Q(t) QQ(t)

NI T) / / |
Awffuﬂjr+éwnﬁﬁf> L“H&Uf>

Let m € [t,t + 1) be an integer. Then for each i = —m,—m +1,...,m — 1, by (2.1)
and the hypothesis in the proposition

1

s o[ (P <@ <d
te[-7,7-1] 4 J$1x[t141]

Q)

IN

it follows from Proposition 2.1 that

(2.4) 1f = fllcoesrxjiivt)) < CNV Flle2estxfim1,i42))-
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In fact, to see (2.4), denote the average of f over S x [i — 1,7+ 2] by f and observe that
from Proposition 2.1

IV(f = Dllwiosixpicg = IV Iwesixpicg < ClIV s <i-1i2)
and from the Poincaré inequality

1f = Fllzzsixpiarny < IF = Fllzzsixi-rirey < CINVFllzasxpiovita)
hence _
||f - f||W27P(Sl><[i,i+1]) < CHVfHLQ(Slx[iA,iH])-

The Sobolev embedding theorem then implies

1f = Flleosixiivy < CIf = Fllwzasixpicg < CIV Il z2stxi-1i+2))-
Therefore for any t € [i,i + 1]

1 2 _
%/ (f(t,0)— f)do| < C|IV fllrz(stxfi-1,i+2)-
0

It follows from the triangle inequality and the above:

1f = lleo xpiivy < I = Flleoixpiry + 1= Flleosixpiicg) < CHV Fllnzestxi-1,i42)-

Then
H
[ -
Sx[i,i+1]
1
2
< ||f—f*||Lw(Slx[i,i+m><(W(f,sw[ml]) [ )
% Stx[i,i+1]
< Ce ( / vir | |Vf|2>
S1x[i—1,i+2] S1x[i,i+1]
e / VI
S1x[i—1,i+2]
Then

— [HIIVIPH(f) < Vf*H
[ e < Z/[ 7= IV FPH)

S / VA
o ) Sxli-1,i42)
(2.5) S 306/ |Vf‘2
Q)
ree( [ wrpe [ e
Stx[—m—1,—m] S1x[m,m+1]
<

306/ \Zi
Q(t+2)
From (2.2), (2.3), (2.5), we have

1 1
(26) 1 / Vi< Leve / VP4
2 Jow 2

Q(t+2)

af

or
/SIX{T}(f M+

/ CETat
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for some constant C’. Moreover,

/ of
Stx{t} ot

(2.7)

here we used the Poincaré inequality on S* and the fact that |

= (= 1)

af

26.)

de)

= |8 |2 a.e. Let

< ( / T i0.1) - f*(t>)2d9)% ( / K
([t =) (3

a6 ot
1
= 5/ v
2) sixqny

g

IA

=g (0:1) = (6,1)

| 2 __

1
oy=5 | 9T

By (2.6) and (2.7), we have

where ¢ = C’e. Then

p(t) < ¢'(t) + €p(t+2),

—(e7p(t) < ot +2)e™,

and integrating the inequality from ¢ to T"— 2 leads to

e~'ol(t)

(2.8)

<

<

T2
e TH2p(T — 2) + e’/ (s +2)e %ds
¢
T
e TH2p(T — 2) + e'/ o(s)e*12ds
t+2

T2 T
e T2p(T — 2) + 6'62/ o(s)e *ds + 6/62/ o(s)e *ds

t+2 T-2

T2
e TH2p(T) + 6’62/ p(s)e  ds + ee’p(T) (e —e )
¢

as ¢(t) is increasing in t. Let

and e; = €'e* < 1. Now (2.8) leads to

equivalently,

—F'(t) <2¢(T)e T2 + &, F (1),

(et F(t)) + 2p(T)e T2t > 0.

Integrating over [t,T — 2] and noting F/(T' — 2) = 0, we have

(2.9)

Substitute (2.9) in
(1)

IA A O

20(T
F(t) < o( )eQ—T (QEQ(T—z) . 6621:) o€t
€2
to (2.8):
62—T+tS0(T) 4 2¢(T>652(T—t—2)62—T+t +€2(’0(T)et—T+2
Cgp(T)e(HQ)(T*t)

N
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_ C«('O(T)G(I—CE)(T—t)

for some positive constant C' independent of T" and f. |

Proposition 2.4. (Removability of point singularity) Let f € F;, (D\{0}, R), where
L<p<2 If [,IVf]* < +oo, then f € C(mf(D,R) for any p’ € (1, 3) (1,p].

Proof. We may assume that W (f) < € < €3, otherwise, we can replace f with f(\z) for
some A < 1. Let ¢ : R! x ST — R? be the conformal mapping given by r = ™%, 0 = 0.
Then f’ = f(¢) is a map from [0, +00) x ST into R™. By translating S* x [t — 1,¢+ 1] C
St x [0,2t] to ST x [—1,1] € S x [—t,t], from Proposition 2.3 we conclude

/ IVF|? < Cie™®, where 6 =1— Ce.
Sx[t—1,t+1]

k

Then for any r, = e™", we have t, = k and

(2.10) / IVf|? < Cyrf.
D

Tk—1 \DTIC+1

Set fr(x) = f(rgz). Applying Proposition 2.1 and (2.10), we get

s
IV fellwrenn, ) < ColIV fell2pan, ) < Carg.
By the Sobolev inequality, we have

a 5 %
/ |ka|q < Cy ||ka||W1,P(D1\D671) < (5 7"]3, where ¢ < ——.
Di\D__; 2—-p
Then
[ valrscent
Di\D__,
Since
ol A (N 10
Di\D 1 Dy \Dry gy
we have

/ [VF|7 < Co etk — (g hl-2ra01=5),
Dy \Dry,
When g < 4, we can choose € suitably such that ¢(1 — g) < 2, which yields

/ V1< Cs ZQiququ)k < C7 < 00.
D

For any p’ € (1, ) set ¢ = ,, so q € (2,4). We have

/

/H Vv < (/H er|2)?2/ ([1vsr)" <ca

Therefore, F(f) € ) (D) with p’ > 1 and then there exists v which solves the equation
—Av=F(f), v|ap =0,

Qs
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and v € W2 (D). Obviously, f — v is a harmonic function on D\{0} with
IV(f = 0)ll2o) + I = vlle2(p) < +o00.
Then f — v is smooth on D. Now f € ff;nf(D, R) is evident for p’ <pand 1 < p' < %. a

We now consider weak compactness of a sequence { fy} C FP(D, R) with W (fx) < A.
The blow-up set of {fx} is defined to be

CH{fe}) = {z € D:lim lim W(f, D.(2)) > eg} .
=0k 400

We can always find a subsequence of {fi}, whose blow-up set is a finite set. To see this,

we let z; € C({fx}). Choose a subsequence {fl} of {fi}, and a sequence r;, — 0 such

that
2

Wk Dy(=) > 2.

If C{ft}) # {z1}, then we can find z; # z; and a subsequence {f?} of {fl} and a
sequence 13 — 0, such that

2
€
W(fl?? Drﬁ(ZQ)) > 52
Obviously, we have

lim W(fka) > lim W(flgvDrl'(Zl)) + lim W(fI§7Dr2<22)) > Egv
k—-+o0 k— 00 k k—+o0 k

where {r}'} is the corresponding subsequence of {r;}. Similarly, we can find {f}, ---,
{f"}. However, we must have m < 2A/e?, for

2
A> Tm W(fi.D) > m2.

k—+o0

Without loss of generality, we always assume that C({fx}) is a finite set. Then for any
z € D\C({fx}), we can find r and a subsequence of {f;} which is still denoted by { fi}
for simplicity, such that

lim W(f, D,(2)) < €.

k—4o0
Then from Proposition 2.1
[ fellw2o(p, 520) < Cr, DIV fill 2o, 2))-
Thus we may assume fj, converges weakly in I/Vlif(D\C({ fi}))-

Corollary 2.5. Let {fy} C F., (D, R) with
sup{E(fx, D) + W(fr, D)} < A < 0
k

and let fo be the weak limit of fi in W2P(D\C({f:})). Ifp € (1, 3), then fo € Frons
and

(2.11) W(fy, D) < lim W(f, D).

k—4o00

(D, R)
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Proof. Set Fi, = Afy, k € N. For any Q@ CC D\C(fx), we have || f||w2r) < C(2). Then
by the Holder inequality and the Sobolev inequality

1
IFillre < |5H(I

IVAill 2o < CAZ|V fillwing < C'(QA).
L2(9) P ()

We may assume, by selecting subsequences if necessary, that
F, — Fy locally in LP(Q2) and |H(f)||Vfi| = a locally in L*(Q).
Since we may also assume V f, — V fo in L*(Q) because fr, — fo in W2P(Q), we have
[H(fo)llV fil® = |V fol

in the sense of measures in ). Define

50:{ ﬁ when |V fo| # 0

0 otherwise.
Clearly, 50|V fo|> = |V fo|. Let F;" = max{F},0} and F, = —min{F},0} > 0. Then
F.=F' — F, and |F},| = F;f + F,. We may assume that
Ff = Fy and F, — F7 in LP(Q).
Obviously Fy = Fy — FZ. Then for any nonnegative function ¢ € C§°(),

. . 1 1
/ olFy| < / S(F+F2) = lim / S|F < Tim / Lo H DIV P = / L BV fol?.
Q Q k——+oco Q k—-+oco 92 92

Hence we conclude
|Fo| < %50\Vf0\2, a.e.z € D.
Then, we have
[ < [ar< i [ (mEDPVAE
Q Q k—+o0 JQ

Moreover, since f; converges in L*(Q), it follows from Ofy ® df; = 0 a.e. in D that
Ofo ® 0fy = 0 ae. in D as Q is arbitrary. Since sup,{E(fx) + W(fx)} < oo, there
are at most finitely many points in C({fx}). Then we conclude that f; € f;ponf(D, R)

if p € (1,3) by removing the point singularity across C(f;) ensured by Proposition 2.4.
Furthermore, we have H(fy) < fy whenever |V fo| # 0, hence we get (2.11). O

2.2. A criterion for absence of bubbles along cylinders. Let f, € 7 (Q(T%), R),
with
sip{E(fk) +W(fe)} <A< oc.
Given a sequence ty € (=T}, T}) with
(212) Ty —ty — +o0 and t — (—Tk) — +00,

we say the limit fy of a subsequence of fy(0,t + t;), as in Corollary 2.5, is nontrivial if
E(fo) > 0. When fy is nontrivial, it is a bubble of { fi}.
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Proposition 2.6. Let f. € Fl, (S' x (=T, Ty), R) with
s%p{E(fk) +W(fi)} =A< .

Let €5 be the constant in Proposition 2.5. If

lim lm  swp W(fi S x [Le+1]) <&
T—=+00 ks 400 te[- T+ T, T —T)

then we have the following

(1) {fx} has no bubble;
(2) there is no loss of the Dirichlet energy, i.e.

(2.13) lim  lim IV£l? =0,
T=+00 k=+00 Jo1 o [Ty 417,13, —T]
(3) there is no neck, i.e.

(214) tlgi-noo kEToo fk(e, _Tk + t) - tlgl—noo kEIJPoo fk(e’ Tk - t)
Proof. First note that (1) follows from (2).

We may assume that fi(0, =Ty + t) and fi(6, T}, — t) converge to fy (6,t) and f; (0,t)
weakly in W2P(S* x [0, 400)), respectively. Then f;" o ¢, fy o ¢ € FP(D\{0}, R) with

E(fy od) +W(fg o¢) <A
where ¢ is the conformal diffeomorphism between D\{0} and S' x (0, +00). By remov-
ability of point singularities asserted in Proposition 2.4, they are in fp/(D, R) for some
p' > 1. It then follows from the compact embedding W?2# c L?:
lim (VS P+ V£ 12) = 0.

T—00 Jo1 (1,741
Define f;(t) = &= DQF fr(0,t)d0. 1t is easy to check that

Afx

Ofr

-+ [ fi— 1)

/Slx{Tk—t}< k= i) ot Slx{—Tk+t}( k=) ot

In fact, this can be seen as follows:

sup Je = fil < osc  fx
SUx{+(Tp—T)} | 3 SU{+(Tp—T)}

lim lim

+
t—+00 k—+400

)-o

which will converge to oscgi, g1y f& as k — oco. By removability of singularity,
li ;= 0.
Jim oscgixqrifo =0

By the Sobolev trace embedding,
[ VS U felwsssin s ro,
SIX{Tk—T}

By e-regularity,
“ka”WLP(SlX[Tk—T—l,Tk—T—H]) < Cvak||L2(51X[kaTf2,kaT+2]) <C.
Then (2.13) follows from (2.6).
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Let my, be the integer in [T, — T, T}, — T +1). For 0 < i < my, — 2, applying Proposition
2.3 on St x [i —my, my] (by shifting the center circle to S' x {i}, and the same below),
we have

/ IV fil* < CE(fu, QT3 — T))e°™= 5 =1 — Ce,.
S1x[i—2,i+2]

Then from (2.4)

0sC }fk < C\/E(fr, Q(Ty — T))e_%(m’“_i).

SUx[i—1,i+1
When —my, + 2 < i < 0, applying Proposition 2.3 on St x [—my, my, + 1], we get
/ ‘ka|2 < CE(fr, Q(T) — T))e—g(mk—lﬂ)7
S1x[i—2,i+2]

then we obtain

0sC }fk < C\E(fr, Q(Ty — T))e_g(m’“_”').

SUx[i—1,i+1
Hence,
my,
o fi < 2C\/E(fr. QI — 1)) Y_ e 200 < O'\/E(fy, Q(Ti — T)).
M i=1
Then (2.14) can be deduced from (2.13). O

2.3. Bubble trees for a sequence of maps from the disk D. Let f; € 7}, (D, R)
with
sgp {E(fe, D)+ W (fx,D)} = A < 0.

We assume 0 is the only blow-up point of {f;}, i.e. the only point such that
lim lim W(fi, Dy (0) > &

=0kt oo

We assume that f;, converges to fo, weakly in W;2"(D\{0}). The construction of the
bubble tree at 0 will be divided into the following steps:

Step 1. Construct the first level of the bubble tree.

There exists a sequence of points z; € D and a sequence of radii r, — 0 such that

(2.15) W (fis Dy (21)) = =

and W (fy, D.(2)) < €3/2 for any 7 < 1 and D,(z) C D. It is easy to check that z, — 0
as 0 is the only blow-up point of {fi}.

We set fi(2) = ful(zr +r2). Since C({fi}) = 0, fi(2) converges weakly in W27(C).
Denote the limit by f¥, which may be a trivial mapping.

Let (r,0) be the polar coordinates centered at zp, and set T, = —Inr,. Let ¢y :
St x [0, T;] — R? be the conformal mapping given by ¢x(6,t) = 2z, + (e~*,0). Then

1
op(de' ® dz' + da* @ da®) = r—2(dt2 + do?).

Thus fi o g1 € Fp,, (S x [0,T3], R). We will also denote fi, o ¢y by fi. for simplicity of
notations.
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Lemma 2.7. There exists a subsequence of {fr} and 0 = d) < d} < --- < d., = Ty, with
[ < AJé2 +1, such that

(2.16) Jim d, —dj ! = oo,

(2.17) W(fi, S x [dh,di + 1) > &5, 5 #0,1

and

2.18 lim lim sup W(fe, St x[t,t+1]) <€, j=1,..,1L
2

T=+00 k00 sl 1 +T,d] T
Proof. Suppose
(m —1)e2 < W(fi,S* x [0,T}]) < e2m,
where m is a positive integer. We prove the lemma by induction on m.

When m = 1, the lemma is obvious by taking dY = 0,d}, = Ty and (2.17) is vacuous.
Assuming the lemma is true for m — 1, we will prove it also true for m. First of all, if

(2.19) lim lim  sup W (fy,S' x [t,t +1]) < €3,
T—=+400 kst oo te[T, Ty —T)

then the lemma follows since [d), ' +T,d}, — T] C [T, Ty — T]. If (2.19) does not hold, we
can find t; such that

tp — 400, T, —t, — +00,
and

W (fi, S* X [tr, tx +1]) > 5.
Then

W (fr, St x [0,ts]) < €5 (m—1) and W(fy,S* x [ty +1,T1]) < &5 (m —1).
Using the induction hypothesis on [0, tx] and [t + 1, T;], we can find
O=d<d < <d =ty and r+1l=d <d. <. <d. =T,
such that o L
di —di ' — 400, di, —d ' — 400,
W(fe, 8" % [dd, +1]) > &, W(fi, S x [d], d}, +1]) > &,

and
lim  lim sup  W(fi, 5" x [t,t+1]) < €3,
T=400 kst el +1,d] T
lim lim sup W(fy, St x [t,t+1]) < e
T—+400 5100 te[&z_l-i-T,dz—T]
Put _ _
d; <l
do=1 S 0
d, " i>1
The induction is complete. |

We now start to construct the bubble tree at the first level. In Lemma 2.7, if [ = 1,
in view of Proposition 2.6, we do not do anything as there is no bubble developing in
St x [0, Ty] when k — oco. If I > 1, we set fi(0,t) = fr(6,di +t). We may assume {fi}
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converges weakly in W2? to a bubble f in any compact set outside the blow-up points
of {f;}. By Proposition 2.6, there are no other bubbles of f; between fI and f'I! and
fioU firlis connected.

Clearly, {f¢} and {f}} have no blow-up points. Moreover [ is fo © Po|six[0+00) and
fL is f5 0 dolgix(—oo0), Where ¢ : ST x R — C is given by (,t) — (e~*,0). Removing the
point singularity by Proposition 2.4, f1 ... fi=land f¥ can be considered as conformal
mappings from S? into R™.

FIGURE 2. Bubble tree: First level (dots denote concentration points)

For a stratified sphere, we can define a dual graph as following: 1) Associate one vertex
for each component of the stratified sphere; 2) Vertices are connected by edges if the
corresponding components meet at a point.

Let S; be the stratified sphere with [ components whose dual graph is an open path
(i.e. a tree such that each vertex has at most 2 edges attached). We define F! to the
continuous map from S; into R™, such that F'! is fi on the i-th component when i < [
and f on the I-th component. We call F'* the first level of bubble tree of { fi}.

We define E(F*') and W (F*') by

1 -1
— 7|2 F 1\ i F
_;/SIXRIVJQ +/S2|Vf l, W(F)—;W(foo)—‘rW(f ).

Then
lim lim IV fl2 = )+> . > lim lim IVFi?
5 By (p)

6—0 k—+o00 D r—0 k—4o00
( pGC {fk})

and
lim lim W(f, Ds) > W (F") —1—2 Z lim lim W(f;, B.(p)).

6—0 k—+o0 r—0 k—+oco
i pec({fk

To show convergence of |V fx|* in the sense of distributions, we take a test function

n € C(R™). We have

/ WSV = / n(FOIV Al + / n(FOIV il
Ds(zk) Ds(zx)\D,, (Zk) DT, (Zk)

I-1
_ S
(/51 —1n4,T] Z —T.,di +T)]

DY )v(fwm
i—1 Stx[di+T,d; " =T

1=0
T /D I

et rE
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_ 2
= /SIX[_IH&T] (FOIV +Z/ n(fOlV fil

-1

3 n(fk>\ka|2+/ DIV IR
. SUx[di+T,dit' —T) D, r

=0
Since |n(fx)| is bounded, and
lim lim IV £i]? =0,
T—~400 k—+o00 Slx[d}c—i-T,dZ“—T]
we have

lim lim n(fu) IV fi]* = 0.

T— k— i i+1
o0 k=400 J g1y [di 4-T,di ! —T]

Recalling that f; and f; converge weakly in WP on any compact sets which contain no
concentration points, we get

-1 . .
it [ (VAR = 5 / n(FOIV L+ / n(f7)| £
—0k—+o0 | po i=1J S1xR C
+>2 > lim lim n( IV fil?.
i pec({fin "0k ) B

Step 2. We consider convergence of {f;} near its blow-up points.

For each p € C({fi}), we find a small r such that B,(p) C S* x R contains only one
blow-up point. Then for each p, using the arguments in Step 1, we have the first level of
bubble tree of {f;}, which is a map F, from a stratified sphere S, into R". Each S, is
attached to S; at p. Taking union over p € C({f}}) gives us a continuous map F? from
Sy, which is a union of stratified spheres, into R". We call F? the second level of the

bubble tree of { fi}.
S
l

)

V

{

FIGURE 3. Bubble tree: Second level
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Step 3. In the same way, we can build the third and higher levels of the bubble tree.
Since each step will take away at least €2 from the Willmore functional, the construction
will stop after finite many steps. In the end we get a stratified surface S which is the
union of all levels and a mapping F' from S into R™. We collapse the components of S on
which F' maps into points, i.e. deleting the ghost bubbles, then we get a new stratified
surface S" and a continuous map F’ from S’ into R™, such that F” is nontrivial on each
component of S”. We call F" is the bubble tree of {fr} at 0. Moreover, we have
it [ w(GIVAE = [ )P
0—0 k—}+00 D5 S/
and
/ < . . )
WY < il W D)
2.4. Bubble trees for a sequence of maps from cylinders Q(7}) with T — +oc.
In this subsection, we develop the analysis needed in subsection 2.5 when we deal with
degeneration of conformal structures.
Let f; € }'fonf(Q(Tk),R) with Ty — +oo. We assume fi(6,t + T}) and fp(0,t — T})
weakly converge in W2P(S* x (—o0,0]) and W2P(S* x [0, +00)), respectively. In light of
Proposition 2.6, we only need to consider the case that the following happens:

(2.20) lim lim sup W(fy, St x [t,t+1]) > €3
T=400 gt 00 te[~ T +T,T3,~T]

since otherwise there will be no bubbles, no necks and no energy loss. When (2.20) holds,
there exist ¢ € (=T, Ty) such that Ty — tp — 400, T}, + tx — +00 as k — oo and

W(fk, Sl X [tk,tk + 1]) Z 6%.
By Lemma 2.7, we can find (by translations)
T =dy <dy <---<d, =Ty

which satisfy (2.16), (2.17) and (2.18). Recall that [ is independent of k. We may assume
fi(t,0) = fr(di +t,0) converges weakly to f’ in WP outside the blow-up points C({f}.})
of {f;}. Let XL be the stratified surface with [ — 1 components whose dual graph is an
open path. Then we get a continuous map F'' from 3! into R”, and F' is f’ on the i-th

component for ¢ =1,2,--- ;[ — 1. Moreover, we have
lim_lim WRIVRE = [ aEIVE
Tortook=+00 Joly [T, 47,1} T s

+> D lim dim [ n(f)IVA

i=1 peC({f{}) Br(e)

and
-1

. . 1 . . 7
Jim i W (fi, Q(Ty = T)) > W(F') + Z Z lim lim W(f}, B.(p)).

i=1 pec({fi})

The first level of the bubble tree of {fi} is F'! in this case. Then we use the arguments in

section 2.3 to construct the second level of the bubble tree at | Ji_; C({fi}), and similarly
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the third level and so on. The construction stops in finitely many steps. In the end, we
get a stratified sphere S”, and a map F” from S” to N, such that

lim lim IV ful? = / n(F")|VE"?
T=to0 k=00 [ty -1+ 1,13, ~T) S

and
lim  lim W(f,Q(Tp —T)) > W(F").

T5F 00 k—+00
2.5. Convergence in Hausdorff distance. In this subsection we prove:
Theorem 2.8. Assume that {(X, hg)} is a sequence of closed Riemann surfaces of genus
g, where hy, satisfies (1.1). Suppose that fi, € ffmf(z, hi, R) with p € (1, %) and
(2.21) Sl;p{E<fk) +W(/fk)} <A <oo

Then either { fr.} converges to a point, or there is a stratified surface Yo with g(3) < g,
an fo € Fb (3o, R), such that a subsequence of fi,(3x) converges to fo(Xsc) in Hausdorff

on f
distance with

E(fy) = Jim_B(fi) and W(jo) < lim W(f).
For any n € C*(R™), we have

i [ p(f)IV fiPdun, = / n(Fo)| folPdps..

Remark. Here fy € 7/, (Yo, R) means that f, € C%(X4,R™), and for any component

¥, of Yoo, fo is nontrivial on ¥% and fols:i € fp(%, hi, R).

')

Proof of Theorem 2.8: The proof will consist of three cases according to the genus of 3.

Spherical case. When X is a sphere, as there is only one conformal structure on a
2-sphere, we may let hy, = h. Let C({fx}) = {p1,-..,Pm}. We can choose 0, such that
Bs(pi;)N Bs(pj) = 0. Using isothermal coordinates, each Bs(p;) with metric h is conformal
to a Euclidean disk, the results can be deduced from subsection 2.3 directly.

Toric case. Suppose that (3, k) is induced by lattice {1,a+bi} in C, where —3 < a < 1,
b>0,a?+b*>>1, and a > 0 whenever a® + b?> = 1. Then the conformal map f from
(33, h) into R™ can be composed with the projection C — ¥ to yield a conformal map f

from C into R™ which satisfies

f(z+ X)) = f(z), forall A€ Z® Z(a+ bi).

Let IT: C — S' xR defined by z+vyi — (27z, 27y) be the conformal covering map, where
27z and 27(z + m) are the same point in S! for m € Z. Then (X, h) is conformal to
(S'xR)/G, where G = Z is the transformation group of S x R generated by the mapping
(0,t) — (6 + 2ma, t 4 2rb). Then f descents to a conformal map f' : S* x R — R”, which
satisfies f' oIl = f.
Now we assume (3, hy) = S x R/Gy, where G}, is generated by
T

(0,t) = (0 + Ok, t +by), where b, > /72— 07, and 0 € [—5, 5]

In the moduli space M of genus 1 surfaces, (X, hy) diverges if and only if by, — +oc.
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For f. € F7,,. (%, hi, R) with (2.21), we lift each fi to a mapping f;, : S' x R — R"
which satisfies

11.(0,t) = fi(0 + Op,t + ).
After translations, we may assume that f(6,¢ + %) and f(0,¢ — %) have no blow-up
points as k — oo. Then f; satisfies the conditions in subsection 2.4 for T}, = by /2. Since
F(0, =Ty +1t) = f1.(0+ 0y, T +1), the weak limit of f(0, =Ty +t) in W2P(S' x [0, +-00))

and the wealk limit of (0, Ty + t) in W2P(S' x (—o0,0]) yield a conformal map from

S x R into R™. So the Hausdorff limit of f;(X) is the image of a continuous map F from
a stratified surface S of genus 1 into R™ with

/U(F)|VF|2dMS = lim n(f)lV felPdpn,, W(F) < lim W(fy).

s k—+o00 N k—+4o0

Hyperbolic case. For the hyperbolic case, we first briefly review the compactness of
moduli space.

Let Xy be a stable surface in ﬂg with nodal points N' = {ay, ..., a,}. Geometrically,
Yo is obtained by pinching m’ non null homotopy curves in a surface with genus g > 1 to
points ai, ..., Gy, thus Lo\ can be divided to finite components 3}, ..., 3. For each
3, we can extend X to a smooth closed Riemann surface 2} by adding a point at each
puncture. Moreover, the complex structure of i can be extended smoothly to a complex
structure of .

We say hg determines a hyperbolic structure on ¥ if hgy is a smooth complete metric
on Xo\N with finite volume and Gauss curvature —1. We define

o(ho, 6) = {p € So\N : injradf®, \(p) < 5} UN.

Around each nodal point a; in X, let Xo(a;, ho,d) be the component of ¥(hg,d) which
contains a;. Let h) be the metric on 3¢ which has Gauss curvature £1 or curvature 0,
and is conformal to hg on 3.

Now, we let {¥;} be a sequence of closed Riemann surfaces of fixed genus g with
hyperbolic structures hj, such that > — 3y in the moduli space Wg. By Proposition
5.1 in [9], there exists a maximal collection I'y, = {¥},..., 9"} of pairwise disjoint, simple
closed geodesics in Y with E{; = L(yi) — 0, such that after passing to a subsequence the
following holds:

(1) There are maps ¢ € C°(Xg, o), such that ¢y : S \I'x — So\N is diffeomorphic
and @(v]) = a; for j=1,... m'.

(2) For the inverse diffecomorphisms 1y : ¥o\N — X;\I'x, we have 9} (hy) — ho in
Cr2(Xo\N), where hy determine a hyperbolic structure on o\ N.

(3) Let ¢ be the complex structure over Y, and ¢y be the complex structure on
EO\N . Then

Pileg) = o in Cp2(Z\WN).

2

0,1) — (9,15_”_.),
l]
k

we have the cylindrical version of the Collar Lemma (cf (4.3) and (4.5) in [32]):

For the transformation
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Lemma 2.9. For each 7 as above, there is a collar U} containing ;,, which is isometric

to the cylinder QL = Q(Tlr]2 T) with metric

2
, j
(2.22) hl = l—’“l (dt* + d6?),
2 cos(5-1)

where T, = ?” arctan(smh(%)). Moreover, for any (0,t) € S x (—7;72 + Tk, 7;72 — k), we
k k

k
have

J J
(2.23) sinh(injrady, (0,1)) Cos(g“—;) = sinh lg
Let ¢l be the isometry between QJ, and U.. Then @, 0 ¢ (0, L +t)Upro @l (8, —7;7-2 +
k: k
e + 1) converges in C2 (S x (—00,0) US! x (0,00)) to an isometry from S* x (—o0,0)U
St x (0,+00) to 3o(aj, ho, 1)\{a;}.

We need the following local existence and compactness of conformal diffeomorphisms.

Theorem 2.10. [3] Let hy, ho be smooth Riemannian metrics on a surface M, such that
hy — ho in C5*(M), where s € N, o € (0,1). Then for each point z € M there exist
netghborhoods Uy, Uy of z and smooth conformal diffeomorphisms 9y : D — Uy, Vg : D —
U, such that ¥}, — Yg in C+t4(D, M).

Proof of Theorem 2.8 (continued): For a sequence of fy € F. (%, hi, R) satisfying the
energy bound (2.21), let

fr = frotn
which is a mapping from 3\ to R™. It is easy to check that f;, € Fros (Eo\N, 5 (he), R).

First, we show f;, converges in W22(3o\(N U C({fx}))). Given a point 2 € Lo\(W U
C({fe})), we choose Uy, U, 9,9 as in Theorem 2.10 and Uy, U C So\(N UC{fi})). Let

ﬁc = ﬁc o vy
and note that fk € cOnf(D R). We can assume that fk converges to foo in VVl "(Ds4)
with 8foo ® 8foo = 0. Let V = 9¥(Dy2). Since ¥ _converges to U, ¥, YV) c D5,y for

sufﬁmently large k, fk fk( 1) converges to foo foo( 1) weakly in W2p(V hg). Then

foo € ]:fonf(V ho, R). For any nonnegative continuous function ¢ supported in V, by
Fatou’s lemma, we have
(2.24)

Jim / PH(FPIVA = lim / o) HF VL2 > /D WO H IV R

We may thus assume fj, converges weakly to foo in W2P(Z\(NV U C({f }))_) Then
Foo n € WzP(S8, hi). So for p € (1,3), oo 5 extends to a map in F, (3, by, R).
Further,

i [ (Vi = [ n(F) 9 P,

k——+o0 pof Yo
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+Y lim lim NIV fuldpn, + ) lim lim N(Fi) IV Fil2dpgs i)

—~ §—0 k—+o00 -1 ) r—0 k—+o00
; er ' (So(a;.,8) e By (z:ho)

and from (2.24)

i W) 2 WA+ 57t W B o))+ 3 il W (R )

2€C({fx})

Next, we construct a bubble tree at a point z € C({fx})\N. We have a bubble tree F

of fk at z. We define it to be a bubble tree of fk at z. By the arguments in subsection
2.3, we have

o o . ,
lim lim - ()l fel iy gy = limy lim Tn(fk)lvfﬂ = /S (E)VET,
and

lim lim W (fe, B(2, ho)) = lim lim W(fk, ») > W(F).

r—0 k—+o00 r—0 k—+o00
Lastly, we consider convergence of f; on the collars. Set

fl=frodl and T,g—;rj -T
k

We may choose T' to be sufficiently large such that the two sequences f,g (T, ,g —t,0) and
fL(=T7 +1t,6) have no blow-up points in [0, 7] and [~T, 0] respectively. Then f] satisfies
the conditions in subsection 2.4. We get a bubble tree FV. So the convergence of fg is
clear. Since

fl=frodh=fuotro(prodl) = filorodl),

we have

f[i(T]g_t,e) = f}(gpkqu;g(TIg_t’e))a
flg(t_TIz"g) = fk(@koqbi(t_Tlgvg))'

By the convergence statement in the Collar Lemma, @y o ¢(t + T — 72/, 6) and ¢y, o
¢L(m? )1, — T — t,6) converge in C22((—00,0) x S* U (0,00) x S*) to an isometry from
(—00,0) x S*U(0,4+00) x St to Zg(a;, 1)\ {a;}. We conclude that the image of the limit
of fI(T] —t,0) and that of fJ(—T] +t,6) are both contained in the image of f,. As in
subsection 2.4,

lim lim n(f)lV fel*dpup, = lim  lim n(f)|Vf|2=/ n(F)|VFIP?,
—0 k—>+00 ZO(ajyfs) 4>+OO k—}—‘rOO Q(Tk—T) 17
and

lim lim W(fk,Zo(aJ,é)): lim lim W(f,Q(T, —T)) > W(F).

6—0 k—+oco T—+00 k—+o0

Thus, we complete the proof. O
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Remark 2.11. When £y € M, i.e. N =0, ¢y is a sequence of smooth diffeomorphisms
from ¥ to 3. In this case, (X)) = g(X), and

Yoo =X USTUSy - US,,

where X! is a smooth Riemann surface of genus p, and each S; is a sphere.

some components . . bubbl tree from
of 3 do not . concentration

: appear in Xeoo

FIGURE 4. ¥, (limit of (3, ht)) and X,

bubbl tree
from collar

We now generalize Theorem 2.8 to surfaces with marked points. Let us briefly review
the compactification of the moduli space of surfaces with marked points. Let ﬂgm be
the moduli space of compact Riemann surfaces of genus g with m marked points. Let
(S0, Zo1s- - Tom) € OM,,, with nodal points N' = {ay,...,a,}. Geometrically, Xy is
obtained by pinching some homotopically nontrivial closed curves which do not pass any
of zg1,...,Tom into the points in A, and X\ N can be divided to connected components
35, -+, 25, For each XY, we can extend Xj to a smooth closed Riemann surface %} by
adding a point at each puncture. Moreover, the complex structure of 3} can be extended
smoothly to a complex structure of 3¢.

We say h is a hyperbolic structure on (X, z1, ..., xy) € My, if b is a smooth complete
metric on ¥\{z1, ..., z,,} with curvature —1 and finite volume. We say hy is a hyperbolic
structure on (X0, Zo1,- .-, Zom) € Mg,m\j\/lg,m if hg is a smooth complete metric on

2\{&1, e ,a,m/,{lﬁ'(),l, '--7$0,m}

with curvature —1 and finite volume.

For a surface ¥ with hyperbolic structure h and with marked points zq,...,z,,, we
define ¥* = X\{z1,...,z,}, and h* to be the hyperbolic structure on (X, zq,...,z,,)
which is conformal to h on »*.

Let {(Xk, Tk 1,---,%Tkm} be a sequence of marked surfaces in M, ,, with hyperbolic
structures h; and

(Ek, Ty - 7$k,m) — (Eo, Zo,1s - - - ,LL'Q,m) in ﬂg7m.

By Proposition 5.1 in [9] again, there exists a maximal collection T'y = {vi,...,7"} of
pairwise disjoint, simple closed geodesics in ¥y with ¢ = L(%z) — 0 as kK — oo, such
that, after passing to a subsequence if necessary, the following holds:

(1) There are maps ¢ € C°(X, Xo), such that ¢ : L\ — Xo\N is diffeomorphic

and pr(75) = a; for i =1,...,m', and px(xy;) =20, for j=1,...,m.
(2) For the inverse diffeomorphisms ¢y, : Xg\N — 3X;\I'x, we have ¢} (hy) — h in
oe(Z5\N).

(3) Let ¢ be the complex structure on 3, and ¢y be the complex structure on Yo\N.
Then . (cr) — ¢ in C22(Xo\N).
Moreover, the Collar Lemma also holds for the moduli space with marked points.



BUBBLE TREE, BRANCHED CONFORMAL MAPPING, WILLMORE FUNCTIONAL 27

Theorem 2.12. In addition to the assumptions in Theorem 2.8, we assume yi, ..., Ym €
fr(X) for m > 2. Then there is a stratified surface Lo with g(X) < g, and an fo €
Fr (Lo, R) with Y1, ..., ym € fo(Xs), such that a subsequence of {fr(Xx)} converges

conf

to fo(Xoo) in Hausdorff distance with
E(fo) = lim E(fx) and W(fo) < lim W(fy).
k——+o0 k——+o0

For any n € C§°(R™), we have

i [ 9 b, = [ a9 s,
Proof. Let ﬁ = fr o Y. In view of Theorem 2.8, we only need to consider convergence
of {ﬁ;} near Zo;,j =1,...,m.

Choose a complex coordinate {U, (x,y)} on ¥y compatible with ¢y, with z; = (0,0).
Let ¢}, = ¥} (ck). We set
0
o’
and hj, to be the metric on U defined by

hi(e1,e1) = hy(ez,e2) =1, Iy(er, e2) = 0.

e = ey = ¢ (e1),

Then hj, is compatible with ¢}, and converges smoothly to a metric which is compatible
with ¢y in U. Then we consider the weak convergence of {f,} in U\C({fx}), using the
arguments in subsection 2.3.

It remains to check that each marked point y; is on the image of f, or one of the
bubbles. If zg; is not a blow up point of {f;}, it is obvious that y; € f(U). Now
assume o ; is the only blow-up point in D. We take Uy, Uy, Uy, Vo, ﬁ;, V' as in the proof
of Theorem 2.8 for z = x ;. We will prove it by induction on the number of the levels of
the bubble tree. We take zj, ri, ¢ and dj, as in subsection 2.3 for fk If |z|/rr < L for
some fixed L, then we may assume —z /7, — 2z, by selecting a subsequence if necessary.
Recalling that ﬁ(O) = y;, we get y; = fF(zoo). Let (r,6) be the polar coordinates
centered at zy, T, = —Inr, and ¢ : [0,Tx] x S* — R? be the conformal mapping
given by ¢4 (t,0) = (e7*,0). We set ¢;.'(0) = (t4,0)). Then |z|/r), — 400 means that
ty € [0,T%] and T}, — t, — +o00. Thus we may assume t;, € [di,d;""] for some i, where
d:. are defined in Lemma 2.7. Then, if ¢, — di — 400 and di"' — ¢, — +oo, we have
y; = fi(+00) = fiFl(—o0). If at least one of ¢, — di and d"" — #; is bounded above for
all large k, then we repeat the above argument at the second level of the bubble tree, and
proceed in this way for the finitely many levels of the bubble tree if necessary, and we
conclude that 7 is on one of the bubbles of {fi} or {f{™}.

Finally, as m > 2 and all y; € fo(X), fr cannot converge to a single point. O

3. BRANCHED CONFORMAL IMMERSIONS AND PROOF OF THEOREM 1

For a branched conformal immersion, we have the following result:
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Theorem 3.1. [12] Suppose that f € W22, (D\{0},R") satisfies

conf,loc

[ 1Ay <00 and (D) < s,
D

where g;; = €*“0;; is the induced metric. Then f € W*2(D,R") and we have
u(z) = Moglz| +w(z) where A>0, AE€Z, weC’"NW (D),
—Au = —2)\7750+ng2“ m D.

The density of f(D,) as varifolds at f(0) is given by A+ 1 for any small o > 0.

The classical Gauss-Bonnet formula is generalized in [5] to smooth branched immersions
and in [12] to W*? conformal immersions. Following arguments in [5] and [12], we provide
a Gauss-Bonnet formula for W%? branched conformal immersions.

Lemma 3.2. Let (X, g) be a closed Riemann surface. Then for any f € W;f(Z,g,R”),
there holds
(31) / de/if = 271')((2) + 27Tb,

by
where b is the number of branch points counted with multiplicities and at each branch
point p the branching order is A = 6*(p) — 1.

Proof. Without loss of generality, we assume f has only one branch point p. Let g; = e*g
be the metric induced by f and K be its Gauss curvature. It is shown in [12] that

—Aju= K™ - K,
holds weakly on ¥\ {p}: for any smooth ¢ with support in 3\{p}, it holds

/Vguvggodug:/goKfe2“dug—/g0Kgdug.
) ) )

Take a complex coordinate chart {U; 2z} around p = 0. For any small € > 0, we choose
a function () = pe(|z]) between 0 and 1 with |¢.| < C/e and equals 1 outside D, and
0 in D./. Then we have

/ %gpédmz/QOEKfezud,ug—/gongdug.
D b b

By Theorem 3.1, u = Alog |z| + w,

Ou / Ow ! . ow ’
/De E%dm = /De Ecpedx + 27 (pe(€) — ¢c(0)) = /DE E%dw —+ 27\
Since

o\ 1/2 . 1/2
/ <C / / — < C||Vw|r2p) =0, as € —=0,
D. DD, /5 DADej» "

the classical Gauss-Bonnet theorem on (X, g) implies

: : , ou ,
/E Kydpy = lim /E pelydpy = lim /E pelgdpg +lim /E 3y Pedig = 2mx(Z) + 2Xm

and complete the proof. O

Oow

ow ow
or Pe

ar
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Remark 3.3. Since [, Kyduy < W(f), it follows from Lemma 3.2

b< LW(f) — x(%).

— 27

Moreover,
[ 1asPdny = aw(n) =2 [ K < 4w () - 2mx(S).
Then sup, W (fi,) < +oo implies that sup, by, < 400 and supy, [s. | Ay, |*dpy, < +o0.
To study convergence of conformal immersions, we recall an important result of Hélein.

Theorem 3.4. [8] Let fi € W22 (D,R") be a sequence of conformal immersions with

conf
induced metrics (gi)i; = €***0;;, and assume

8t forn =3
A P dp, <v<yn = ’
/;l fk| Mg =7 <7 {471’ forn > 4.

Assume also that pg, (D) < C and f(0) = 0. Then fi is bounded in W,2>(D,R™), and

there is a subsequence such that one of the following two alternatives holds:
(a) uy, is bounded in L;2(D) and f. converges weakly in W22(D,R™) to a conformal
immersion f € Wféif,zoc<Dan)'

(b) ux — —o0 and fr, — 0 locally uniformly on D.

The above result is proved for ,, = 87/3 in [8, Theorem 5.1.1]. In [12] ~,, in Theorem
3.4 is shown to be optimal.

Before proving Theorem 1, we recall a monotonicity formula for proper W22 conformal
immersions f : (3, h) — R" (for more details, see [15, 31]). Since f is locally Lipschitz, the
measure i = f(uy,) is an integral varifold with multiplicity function 6%(u,z) = #f{x}
and approximate tangent space T,y = df,T,% a.e. for x = f(p). The immersion f satisfies

/ div, X du, = — / (X,H)du, for any X € W' (3, R").
by b
For the varifold g this implies the first variation formula

/divuqb dp = — /<¢, H,))du for ¢ € CHR", R"),
where the weak mean curvature is given by

1 . 9
H,(z) = {HQ(M,:B) D per-1ay Hp) it 0%(p, ) >0,

a 0 else.

Observing that H,(z) is ¢ a.e. perpendicular to T, the monotonicity formula in [31] is
valid for integral varifolds [15]: that for B,(zo) C B,(zo) one has

1 (r — 20)t
gz<g>—gx<o—>:—/ & go)
’ ’ 167 /B, (20)\Bo (z0)

|z — 20]?
B, (x 1 1
MBLD o W (s Bua) + 5z [ o= a0, )
277'7" Br(lo)

2
dp,

H,+4

where

Gao (1) = 2 At
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When ¥ is compact and connected, if we let ¢ — +o00, and o — 0, then we get the
Li-Yau inequality [19]

1

(32) P, 10) < W)
T

If we only let ¢ — 0, then we get

#(Bo (o))

To?

#(Bo (o))

(3.3)  0%(p, ) < + CW(f, B,(x9)) + C ( U )2 Wi/, Bg(a:o))%.

Another useful consequence (cf. [31], [15]) is: for a compact surface X, it holds

(u(f@))
W(f)

Proof of Theorem 1. Consider a branched conformal immersion f; € sz f(Z,h,g,R"),
where hy, satisfies (1.1). The following equation clearly holds on ¥ away from the finitely
many branch points; the singularities at the branch points can be removed by using
Theorem 3.1 in the isothermal coordinates, thus it holds on entire >::

1
2

(3.4 )* < diam £(9) < O () W)

1
Ay fro = §ka|vhkfk\2-

By Remark 3.3, the number of branch points and || Ay, || ;2 are both bounded from above.

By (3.4), diamfi(¥) < R for some R > 0. Then f, € F (5, i, R+ Ry). By
Theorems 2.8 and 2.12, f; converges in the bubble tree sense to a mapping fy which is
a point or a conformal mapping from a stratified surface into R”. When f; is a constant
map, we need to do nothing. Thus, we may assume fy is a conformal mapping from a
stratified surface ¥, into R”. On each component X! of ¥, fo is not a point and can
be extended to a conformal mapping from ¥, which is a smooth Riemann surface, into
R™.

To finish the proof, we only need to prove that f; is also a branched W?? conformal
immersion of ¥¢_ in R™. Recalling that locally f; is the weakly W2 limit of a sequence in
]:fonf(D, R+ Ry) for some p € (1, %), we only need to prove the following: For branched
conformal immersions f; from D into R™ with uniform upper bounds on the number of
branch points and p(fi) + [[Af [|2(p), if the weak limit of f{ in W2P(D\ C({fi})) is not
a point, then f} is a branched conformal immersion, and f;, converges weakly in W22 on
D minus a finite set.

Let P be the limit set of the branch points of f;, and let

SUAD ={zeDlim im [ (42> &),
r—0 k=00 J D,.(2)
where 0 < ¢ < min{\/47,4¢}. Using the arguments we get C({fx}) is a finite set , we can
prove that, after passing to a subsequence, S({f;}) is also a finite set. By Theorem 3.4,
after passing a subsequence, fi, will converge weakly in W2?(D\(S U P)) to a conformal
immersion of D \ (SU P) in R". By Theorem 3.1, the limit can be extended across the
finite set S U P to a branched conformal immersion of D in R". O
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4. WILLMORE FUNCTIONAL FOR SURFACES IN COMPACT MANIFOLDS

Let N be a compact Riemannian manifold without boundary. We embed N into R"
isometrically so that any immersion of ¥ in N can be regarded as an immersion in R".
Let As, v, Asrn and Ay gn be the second fundamental forms of ¥ in N, in R" and N in
R” respectively. The L? integrals of these quantities can be related as in the following
simple lemma, whose proof can be deduced from the compactness of N and Remark 3.3.

Lemma 4.1. For any [ € W;f(E, h,N), and i : % — R™, which is isometric embedding,
we have

(4.1) [ Vg Py < Cn(h)+ [ 1Hysads
>
and
(42) [ AipszoPduy <€ [ @+ HpsnPdus + €
> >

where C' only depends on N and C" only depends on the Euler characteristic of ¥.
4.1. Willmore sphere passing through fixed points. In this subsection, we let

W)= [ (14 518 do

where f is a W?? conformal immersion of S? in the round unit sphere S™ for some
n > 2. It is known that W, (f) corresponds to the Willmore functional in R™ under the
stereographic projection.

We consider the existence of minimizers of

By - ym) = E{W, () + f € W22(S%S™), y1v-- . ym € F(S)}

where i, ...,y are fixed distinct points in S*. When m > 2, 5 (v1, . .., Ym) is positive
by the conformality of the functions f.

Proposition 4.2. Let m > 2. If By (y1,- .., Ym) is less than 8x, then Sy (y1, ..., Ym) IS
attained by a W22-conformally embedded S?* in S™.

Proof. Let {fx} be a minimizing sequence of 5 (yi,...,yn). We can consider fi as
conformal map from S? into R™™!. By Theorem 1, f; (pass to a subsequence if necessary)
will converge to a mapping fo which is a W?? branched conformal immersion from a
stratified sphere ¥, into S™ with

i, Ym € Jo(Xoo)s Walfo) < By, - - - ym) < 8.

Composing with a stereographic projection IT from S™ minus a point not on fy(3,) into
R, we see W, (fo) = W(Ilo fo) and 67, = 0f, ;. )- Now, by (3.2) we have

1
9?0(])) < EWn(fO)

By Theorem 3.1
1
Ap) +1=05,4) < - Walfo) <2

thus A(p) = 0 which means f has no branched points. Moreover, that the area density of
Yo 18 one everywhere implies that ¥, has only 1 component and f; has no intersection
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points. Thus ¥, = S?, and f, is an (Lipschitz) embedding. O

Corollary 4.3. For any ¢ > 0, there is a Willmore sphere f : S* — S™ with W,,(f) <
41 + €, which has at least 2 nonremovable singular points.

Proof. Take five distinct points yq,...,y; € S™, such that there is no round 2-sphere
passing through all of them. Recall the Willmore functional W), of a round 2-sphere is
47. We can choose the five points to be very closed to a round 2-sphere, such that there
is a 2-sphere X which is not round and contains y1, ..., ys; with

W,(¥Y) < 47 +e.

Then we can find a W22 conformal embedding f : S? — S", such that f(S?) passes
through v, ..., ys, and attains 8§ (yi,...,ys), by Proposition 4.2.
Choose a point P € S"\X as the north pole. Let II be the stereographic projection

from S"™\{P} to R", and denote §; = II(y;) and f = II(f). By the conformal invariance
of the Willmore functional, we have

1
Wo(f) =~ [ |H#*dux
n(f) 4/S2| f| d:“f
Then fvattains

inf {i /52 |H<p|2dl~bso tp e Wi’%(S{R"), Yy -, Ys € 80(52)} ‘
Then by results in [27], £(52) is smooth on f(S2)\{71,...,7s}. However, the Gap Lemma
in [14, Theorem 2.7] tells us that there is an € > 0, such that any closed smooth Willmore
sphere with Willmore functional < 47 + € is a round sphere. Therefore, at least one of
Y1, - -, Ys is a nonremovable singular point. However, a Willmore sphere cannot have only
one singular point, by Lemma 4.2 in [15] (which is true in R™), therefore f has at least 2
singular points. O

4.2. Minimizing Willmore functional subject to area constraint. In this sub-
section, N stands for a compact submanifold of R” with induced metric. We say f €
W2 (S,h,N)if f € W22 .(2,h,R") and f(X) C N. For f € W22 (2, h,N), we define

conf conf conf

WP =WEN) =1 [ sl
First, we consider the case of genus zero. Set
Bo(N,a) = inf{W (f): u(f) = a, fe€ Wi (S N)},
Proposition 4.4. We have
lim 5y(N, a) = 4.

a—0

Moreover, when a is sufficiently small, there is an embedding f € Wf(;if(SQ, N), such that
u(f) =a, and W(f)=po(N,a).
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Proof. First, we show that
(4.3) lim sup By(N, a) < 4.

a—0

Take a point p € N and a normal coordinate neighborhood U around p. Let
S, ={(z',2%,2°,0,...,0) € T,N : (z")* + (z*)* + (z*)* = r*}.
It is easy to check that
lim W (exp,(S,), N) = 4.
r—0

For any a which is sufficiently small, we can find = r(a) such that p(exp,(S,)) = a and
r— 0 as a— 0. Then (4.3) follows from By(N,a) < W (exp,(S,)).

Next, we prove that Sy(N,a) can be attained by an embedded 2-sphere. Let f; €
W22 (5% N) be a minimizing sequence of fy(N,a). By Lemma 4.1 and (4.3), when a is

conf
sufficiently small and k is sufficiently large

W (fu, S%,R™) < W(fp, S% N) + Cu(fi) < 47 + e(a, k) + Ca

where €(a,k) — 0 as a — 0 and k — oco. By Theorem 1, {fx} has a limit fy, which is a
branched conformal immersion from a stratified sphere S into N with

w(fo) =a and W(fy) < Bo(N,a).
Then by (3.2), for any p € S it holds

0*(fo(p)) < 2.

Thus S is a 2-sphere and fy has no branch points and no self-intersection points. Hence
fo is an embedding. Therefore f; is a minimizer for 5y(N, a):

W(fo) = Bo(N,a).
Finally, we prove
li_m/B()(Na CL) Z 4.

a—0
By Lemma 4.1,
W(fo, S%,R") < W(fo,S* N) + Ca.
It is well-known that W (fy, S, R") > 4, which completes the proof. O

We now consider the case of genus larger than 0. Recall a result of Schoen-Yau [30]
and Sacks-Uhlenbeck [29]: If ¢ : 3 — N induces an injection from the fundamental group
of ¥ to that of N, then there is a branched minimal immersion f : ¥ — N so that f
induces the same action on the fundamental groups as ¢ and f has least area among all
such maps. If m5(/N) = 0 then f is minimizing in its homotopy class. We denote the area
of the branched minimal immersion f, by a,.

Let g > 0 be the genus of a compact Riemann surface > and let ¢ : ¥ — N be a
continuous map. Define

By(N,a,0) = inf {W(f) : f € WS, N), u(f) =a, [~ 6},

where f ~ ¢ means that f is homotopic to ¢.
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Proposition 4.5. Let X be a closed Riemann surface with genus g > 0 and let N be
a compact Riemannian manifold with mo(N) = 0. Let ¢ : ¥ — N be a map which
induces an injective @y : m(X) — m(N). Then we can find an § > 0, such that for
any a € [ay, a, + 6), there is a branched conformal immersion fo of a smooth Riemann
surface (X, h) of genus g in R™, such that p(fo) = a and W(fo) = By(N,a,¢) and fy is
homotopic to . Moreover, when dim N = 3, we can choose § to be small such that fy is
an 1mmersion.

Proof. The proof will be divided into several steps.
Step 1. We prove that lim, 4, 5,(N, a,¢) = 0.
Let F € C*°(X x [0,1],R™), such that F(-,t) is an immersion for each ¢ and

F(70) = f(,m :U“(F(a 1)) > Q.-
As F(-,t) ~ ¢ and f, is a minimal surface,
lim 5,(N,a,p) < lim W(F(, 1)) = W(f,) =0.
a—ay t—0

Step 2. Smooth convergence of conformal structures.

We take a minimizing sequence {fi.} of B,(N,a, f). Recall that f; are W*? branched
conformal immersions from (X, hy) into R", where hy are the smooth metrics with cur-
vature 0 or —1. Because my(/N) = 0 and f;, ~ ¢ for each k, fi induces the same injective
action on the fundamental groups as ¢ does; hence the conformal structures of hj stay
in a compact set of the moduli space for both the cases ¢ > 1 and g = 1, therefore,
after passing to a subsequence if necessary, 3 = (X, hy) converges to a Riemann surface
(X, ho) in M, (cf. [30]). The results in [30] applies as fi belong to W* N C°.

Step 3. We prove that {f} has no bubbles, i.e. the limit f; is a map defined on .

By Remark 2.11, fj is defined on ¥ = 3oUS1USy - --U.S,,, where S; are all 2-spheres
and Yy is a smooth surface of genus g. We prove m = 0. Assume m > 1. By Theorem
1, u(fo) = a and W(fy) < B,(N,a, ). Further, f,(X) converges to fy(X) in Hausdorff
distance and fo|s, is homotopic to a constant map for each j = 1,...,m as m(N) = 0.
We conclude that fy|s, is homotopic to . Consequently, pu(fo(X0)) > a,. Then we get

1(fo, Si) < p(E) — u(Eo) < a—ayp and W(fo, Si, N) < f4(N, a,¢).
By Lemma 4.1 and Step 1,
W(fo, 5, R") < Cla—ay,)+ By(N,a,¢) =0 as a — a.

This, however, contradicts Proposition 2.2 when the Willmore functional of S; goes below
the gap constant.

Step 4. We consider the case of dim N = 3.

We will use the result that there are no branch points for minimal surfaces [6, 23] to
prove that fy has no branch points when ¢ is sufficiently small.

If the claimed result is not true, then there is a sequence of numbers a; > a, with
ar — a, and a sequence of W22 branched conformal immersions for of (£, hy) in N with
w(for) = ag, W(for, 2, N) = By(N,ax, p) by the first part of the proposition, and each
for has at least a branch point py. By Step 1, W(fox, 2, N) — 0.

As in Step 2, (X, hy) converges to a smooth surface (3, hg) in M,. For simplicity,
we will still denote foy o ¢y (see Remark 2.11) by fo, which is a branched conformal
immersion from (3, ¥ (hg)) into R™. By Theorem 2.8, we may set foo to be the limit of
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for with p(foo) = a and W(foo) = 0. Arguing as in Step 3, {fox} has no bubbles, and
foo € ng ’02(2, ho,R™) for some smooth hy. Moreover, fyo is a minimal surface in N. By
the results of Gulliver and Osserman, fj is a smooth immersion of ¥ in V.

Since p;. is a branch point, by Theorem 3.1, the area density

‘9J2c0,k(pk) <f07k(U)) > 2,

where U is a neighborhood of p;, — p in ¥ for sufficiently large k. As fyo is immersive,
we can take U small so that fy is an embedding on U and pu(foo(U)) < €. Further, by

the monotonicity formula for minimal surfaces, for small r and geodesic balls BY ( fo.0(p))
in N, it holds
1 foo(U) N B (foo(p))) < (1 +€)mr.

From the expansion of metric in normal coordinates, for small » and the Euclidean ball
B, (foo(p)) in R™ we have

pu(foo(U) N Br(foo(p))) < u(foo(U) N B o (foo(p) < (1+ €)mr? + O(r)

where ¢ depends on N.
In light of Lemma 4.1, W ( fox, U, R") < €2 if we choose € to be very small and k large
enough. Then {fyx} has no blow-up points in U by the e-regularity. Then we have

1(fore(U) N B, (for(pr))) = 1(fooU) N Br(foo(p))) ask — oo.

By Lemma 4.1,
W(f(),k, U, Rn) S CGI + W(f(),k, U, N)
Then by (3.3),

02 o (forlU)) <

Hence,

p(fo.r(U) N By (for(pr)))

2

+ W (for, URY) + CW (for, U, R")2.

1(fox(U) N B (for(pr)))

2

2 < lim lim( +W(fo,k,U,R")+CW(fo,k,U,R”)5)

U—p k—o0 mr
< 1+¢€.
This is impossible for ¢ small. |

4.3. Minimizing Willmore functional of surfaces with a Douglas type condition.
In this subsection, we consider a sufficient condition of Douglas type as in the minimal
surface theory for existence of minimizers of the Willmore functional.

First, we assume N to be a compact Riemannian manifold with negative sectional
curvatures. In negatively curved N, surface area is bounded by the Willmore functional
and the genus of the surface.

Lemma 4.6. Let N be a compact Riemannian manifold with K < —c < 0. Then for any
feW22(x, N),

p(f) < cHW(f, B, N) = 21x(2)) -
Especially, when g(3) =0 or 1,

u(f) < W(E DN,
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Proof. From the Gauss equation:
R*(X,Y,X,Y)=RN(X,Y, X,Y) + (A(X, X), A(Y,Y)) — (A(X,Y), A(X,Y)).
we have .
Ky < Ky, (rs) + Z|Hf,E,N’2-
Then from the generalized Gauss-Bonnet formula - Lemma 3.2, we have
2mx(2) 4+ 27b < —cpp(X) + W(f, 2, N)
where b is the number of branch points, in turn
up(S) < W, 5, N) = 27x(S).
When ¢(¥) < 1 the Euler number x(X) is nonnegative, in this case
(%) < W(J, 5, N).
Dividing by c yields the desired area bounds. O

Recall that any connected stratified surface ¥ can be written as union of finitely many
connected 2-dimensional components: ¥ = (J, ;. Denote the genus of ¥ and ¥; by g(X)
and ¢(%;), accordingly. We introduce a subset S(g) of all stratified surfaces as follows.

(1) If g>0,8(9) ={X: 2=, % with g(3;) < g for all i} .

(2) Ifg=0,50)={2:X=,%; with ¢(¥X) =0 and ¢ > 2}.
Note that any ¥ € S(g) with g(X) = ¢ must be singular, in the sense that it has more
than one components. Especially, S(g) N M, = (). However, when g > 1, S(g) contains

smooth surfaces of genus < g — 1.
Define

a*(g) = inf{W(f,5,R"): f € W2A(S,R"), f(¥) C N, % € S(g)}
alg) = Wf{W(f,5,R"): f € W 2(S,R"), f(E) C N, S € M}

We now state a sufficient condition, similar to the Douglas condition for minimal sur-
faces, for existence of minimizers for the Willmore functional.

Proposition 4.7. Let N be a compact Riemannian manifold with negative sectional cur-
vatures. If 0 < a(g) < a*(g), then there is a W22 branched conformal immersion f from
a smooth surface of genus g into N which minimizes the Willmore functional among all
such maps.

Proof. Let fr : (X,hr) - N — R™ be a minimizing sequence of a(g). By Lemma 4.6,
the areas u(fx(X)) are uniformly bounded. Since S? € S(g) for any g > 0, a*(g) < 47
by Proposition 4.4, hence by assumption a(g) < a*(g) < 47. The sequence { fz} cannot
converge to a point since otherwise the images fi(2) would lie in a coordinate chart of
the point in NV and then for any € > 0, W(fx) > 47 — ¢ for large k, in turn a(g) > 47 as
{fx} is a minimizing sequence of a(g). Then from Theorem 1, there exists a subsequence
of {fx}, still denoted by {fx}, a limit map fy € I/Vb2 2(Lao, R™) from a stratified Riemann
surface Y, with g(3) < g into N — R"™, and

W(fo, Yoo, R") < klim W(fr, X, R") = alg).
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We write oo = Uir; 8i. If 9(X) = g, we consider two cases. Case 1: g(%;) = g for

some ¢ = 1,...,m. In this case,

W{(fols,, 1, R") < W(fo, Y, R") = a(g).

So fo(X;) is a smooth genus ¢ surface attains a(g). Case 2: g(3;) < g foralli=1,...,m.
Thus ¥, € S(g), and in turn

" (g) < W(fo, X, R") < alg) < a™(g).

This contradiction rules out Case 2. If g(X) < g then X, € S(g). Therefore

" (g) <W(fo, Y, R") < afg) < a’(g)

and this is impossible. O

Instead of the curvature assumption on N, we set, for 0 < a < oo,

v(g.a) = Wf{W(f,S,R"): f €W 2(E,R"), f(£) CN,E € S(g), u(f(2)) < a}
Y(g,a) = inf{W(f,5,R"): f e W 2(S,RY), f(S) C N,E € My, u(f(2)) < a}.

Since there is no loss of measure in the limit process, as asserted in Theorem 1, the same
proof above allows us to conclude

Proposition 4.8. Let N be a compact Riemannian manifold. If 0 < v(g,a) < v*(g,a),
then there is a W2 branched conformal immersion f from a smooth surface of genus g
into N which minimizes the Willmore functional among all such maps.
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