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Abstract. We develop a bubble tree construction and prove compactness results for
W 2,2 branched conformal immersions of closed Riemann surfaces, with varying confor-
mal structures whose limit may degenerate, in Rn with uniformly bounded areas and
Willmore energies. The compactness property is applied to construct Willmore type
surfaces in compact Riemannian manifolds. This includes (a) existence of a Willmore
2-sphere in Sn with at least 2 nonremovable singular points (b) existence of minimizers
of the Willmore functional with prescribed area in a compact manifold N provided (i)
the area is small when genus is 0 and (ii) the area is close to that of the area minimizing
surface of Schoen-Yau and Sacks-Uhlenbeck in the homotopy class of an incompressible
map from a surface of positive genus to N and π2(N) is trivial (c) existence of smooth
minimizers of the Willmore functional if a Douglas type condition is satisfied.

1. Introduction

Let Σ be a smooth Riemann surface and f : Σ → Rn be a smooth immersion. The
Willmore functional of f is defined by

W (f) =
1

4

∫
Σ

|Hf |2dµf

where Hf = ∆gff denotes the mean curvature vector of f , and ∆gf is the Laplace operator
in the induced metric gf and dµf the induced area element on Σ.

For a sequence of immersions fk of a compact surface Σ in a bounded set of Rn with
uniformly bounded areas µ(fk) and Willmore functionals W (fk), a subsequence of the
image varifolds converges, as Radon measures, to a two dimensional integral varifold, by
Allard’s integral compactness theorem. The second fundamental forms Afk are uniformly
bounded in the L2-norm as∫

Σ

|Afk |2dµfk = 4W (fk)− 4πχ(Σ)

from the Gauss equation and the Gauss-Bonnet formula. In general ‖fk‖W 2,2 are not
uniformly bounded: we can find diffeomorphisms φk from Σ to Σ such that fk = f ◦ φk
diverge in C0, while a uniform bound on ‖fk‖W 2,2 would imply sequential convergence in
C0 (in fact Cα, 0 < α < 1) norm by the Rellich-Kondrachov embedding theorem.

A recent advance in understanding the limit process is given in [12], where each fk is a
conformal immersion from a Riemann surface (Σ, hk) into Rn and hk is the smooth metric
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of constant curvature:

(1.1)
hk has Gauss curvature ± 1, or (Σ, hk) = C/{1, a+ bi} with
−1

2
< a ≤ 1

2
, b ≥ 0, a2 + b2 ≥ 1 and a ≥ 0 whenever a2 + b2 = 1.

There are two reasons to use conformal immersions. One is that the conformal diffeo-
morphism group of (Σ, hk) is rather small comparing with the group of diffeomorphisms.
Secondly, if we set gfk = e2ukgeuc in an isothermal coordinate system, then we can esti-
mate ‖uk‖L∞ from the compensated compactness property of Kfke

2uk . Thus it is possible
to get an upper bound of ‖fk‖W 2,2 via the equation ∆hkfk = Hfk . When the conformal
structures determined by fk do not go to the boundary of the moduli space, convergence
of fk is treated in [12]: if the conformal classes induced by fk converge in the moduli
space, then there exist Möbius transformations σk, such that σk ◦ fk converge locally in
weak W 2,2 sense on Σ minus finitely many concentration points. The weak limit f0 is a
W 2,2 branched conformal immersion.

The W 2,2 conformal immersions and W 2,2 branched conformal immersions are as fol-
lows:

Definition 1. Let (Σ, h) be a connected Riemann surface. A map f ∈ W 2,2(Σ, h,Rn) is
called a conformal immersion of (Σ, h), if

df ⊗ df = e2uh with ‖u‖L∞(Σ) < +∞.

We denote the set of all such immersions by W 2,2
conf (Σ, h,Rn). It can be shown that for

f ∈ W 2,2
conf (Σ, h,Rn) the corresponding u is continuous. When f ∈ W 2,2

loc (Σ, h,Rn) with

df ⊗ df = e2uh and u ∈ L∞loc(Σ), we say f ∈ W 2,2
conf,loc(Σ, h,Rn).

Obviously, when Σ is compact, W 2,2
conf (Σ, h,Rn) depends only on the conformal class of

(Σ, h), not the choice of h.

Definition 2. We say f is a W 2,2 branched conformal immersion of (Σ, h) with possible
branch points x1, . . . , xm, if f ∈ W 2,2

conf,loc(Σ\{x1, . . . , xm}, h,Rn) and∫
Σ\{x1,...,xm}

(1 + |Af |2)dµf < +∞.

The set of W 2,2 branched conformal immersions of (Σ, hk) is denoted by W 2,2
b,c (Σ, h,Rn).

For compact Σ, W 2,2
b,c (Σ, h,Rn) depends only on the conformal class of (Σ, h), not the

choice of h. When Σ is compact, we say f ∈ W̃ 2,2(Σ,Rn), if there is a smooth metric h
satisfying (1.1) on Σ, such that f ∈ W 2,2

b,c (Σ, h,Rn). In other words,

W̃ 2,2(Σ,Rn) =
⋃
h

W 2,2
b,c (Σ, h,Rn).

The first part of the paper is a study of a sequence of W 2,2 branched conformal im-
mersions and the main goal is to establish compactness in Hausdorff distance for such
immersions with uniformly bounded areas and Willmore functionals (cf. Theorem 1).

Our compactness result holds not only when hk converges smoothly in the moduli space
Mg, but also when the conformal classes ck of hk converge to a degenerated one in the
boundary of Mg. Bubbles develop near points where the Willmore energy concentrates,
and if ck goes to a point in the boundary Mg\Mg additional complication arises as the
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topology of the limit may be different from that of Σ and stratified surfaces are used
as possible limits. The main idea to deal with degenerating conformal structures in the
limit process is as follows. First, we compose fk with diffeomorphisms from an exhausting
sequence of domains Vk of the regular part of the limiting (possibly degenerate) surface
Σ0 of (Σk, hk) to a sequence of domains in Σ. Then we study convergence of fk (composed
with the diffeomorphisms) and construct bubble trees at the energy concentration points
and collars, and investigate behavior between bubbles. In particular, we will prove that
there is no loss of measure in the limit and there are no necks between the bubbles. Then
the limit f0 of fk is a union of conformal maps from some components Σ1

0, . . . ,Σ
m
0 of

Σ0 (we delete those components whose images are points) and finitely many 2-spheres

S1, . . . , Sl into Rn. “no neck” means that we can glue Σi
0’s and Sj’s to form a stratified

surface Σ∞ (see definition below), and f0 is a continuous map from Σ∞ into Rn. Then
we will apply a result of Hélein [8] and a removable singularity theorem in [12] to show
that for a sequence of branched conformal immersions with uniformly bounded measures
and Willmore functionals, the limit we get in section 2 is in fact a branched conformal
immersion of a stratified surface.

We point out that the “no loss of measure” and “no neck” phenomenon are proved
whenever the following two equations hold:

(1.2) −∆fk =
1

2
|∇fk|2Hk, with sup

k

∫
|∇fk|2(1 + |Hk|2) <∞,

(1.3) fk,x · fk,x = fk,y · fk,y and fk,x · fk,y = 0, (weakly conformal)

where ∆,∇ are the operators in hk and x, y are the isothermal coordinates on (Σ, hk).
Note that (1.2) is defined even at non-immersed points of a branched conformal immer-
sion, so it can be applied to study branched immersions. In section 2, we study the
blow-up behavior of a sequence of maps which satisfy (1.2) and (1.3).

Equation (1.2) looks similar to the equation of harmonic maps

−∆u = A(u)(du, du).

In fact, the arguments in section 2 are originated from the “energy identity” and “no
neck” arguments of harmonic maps [4, 24, 26] (also see [1, 10, 20, 16]). When conformal
structures go to the boundary of Mg, non-trivial necks exist for harmonic map ([1, 24,
32]); in our case, however, there is no non-trivial neck due to conformality although (1.2)
is much weaker than the harmonic map equation.

Definition 3. Let (Σ, d) be a connected compact metric space. We call Σ a stratified
surface with singular set P if P ⊂ Σ is a finite set such that

(1) (Σ\P, d) is a smooth Riemann surface without boundary (possibly disconnected)
and d is a smooth metric h = d|Σ\P , and

(2) For each p ∈ P , there is δ such that Bδ(p) ∩ P = {p} and Bδ(p)\{p} =
m(p)⋃
i=1

Ωi,

where 1 < m(p) < +∞, and each Ωi is topologically a disk with its center deleted.
Moreover, on each Ωi, h can be extended to be a smooth metric on the disk.
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In [1], the genus of Σ is defined by

g(Σ) =

2− χ(Σ) +
∑
p∈P

(m(p)− 1)

2
.

When g(Σ) = 0, Σ is called a stratified sphere. A stratified surface with singular set
P = ∅ is a smooth Riemann surface.

Figure 1. Stratified torus

For a stratified surface Σ with singular set P , we can write Σ\P =
⋃
i Σ

i where Σi’s
are the disjoint connected components of Σ, and each Σi is a punctured Riemann surface
when there are more than one components. The topological closure of Σi is denoted
by Σi, so as a point-set Σ =

⋃
i Σi. By (2) in Definition 3, each component Σi can be

extended to a closed Riemann surface Σi by adding finitely many points. To illustrate the
difference of these notations, take, for example, the stratified torus on the left in Figure
1: P contains two points, Σ1 is the “torus” with two points deleted and Σ2 is a 2-sphere
with one point removed, Σ1 is the “torus” and Σ2 is the 2-sphere, while Σ1 is a Riemann
sphere (adding 3 points at the punctures) and Σ2 is also a Riemann sphere (adding 1
point at the puncture).

When Σ is a stratified surface we define f ∈ W 2,2
b,c (Σ,Rn) if f is a W 2,2 non-trivial

branched conformal immersion on each Σi.

We now state the main result in the first part of the paper:

Theorem 1. Suppose that {fk} is a sequence of W 2,2 branched conformal immersions of
closed Riemann surfaces (Σ, hk) in Rn and hk satisfies (1.1). If fk(Σ)∩BR0 6= ∅ for some
fixed R0 and

sup
k
{µ(fk) +W (fk)} < +∞

then either {fk} converges to a point, or there is a stratified surface Σ∞ with g(Σ∞) ≤
g(Σ), a map f0 ∈ W 2,2

b,c (Σ∞,Rn), such that a subsequence of {fk(Σ)} converges to f0(Σ∞)
in Hausdorff distance with

µ(f0) = lim
k→+∞

µ(fk) and W (f0) ≤ lim
k→+∞

W (fk).

For any η ∈ C∞0 (Rn), we have

lim
k→+∞

∫
Σ

η(fk)dµfk =

∫
Σ∞

η(f0)dµf0 .

Moreover, if y1, . . . , ym ∈ fk(Σ) for all k, then y1, . . . , ym ∈ f0(Σ∞).

In fact, we will prove that fk converges to f0 in the sense of bubble tree: for each k,
we can find a domain Uk of Σ and a domain Vk of Σ∞, such that
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1) Vk ⊂ Vk+1, and P = Σ∞\
⋃
k Vk is a finite set which contains all singular points

of Σ∞. Moreover, Σ∞\Vk is a union of topological disks with finitely many small disks
removed, and H1

1 (Σ∞\Vk)→ 0, where H1
1 is the Hausdorff measure:

H1
1 (S) = inf

{
∞∑
i=1

diam(Ωi) : S ⊂
∞⋃
i=1

Ωi, diam(Ωi) < 1

}
.

2) Σ\Uk is a smooth surface with boundary, possibly disconnected, H1
1 (fk(Σ\Uk))→ 0.

Moreover, fk(Σ\Uk) converges to P in Hausdorff distance.
3) There is a sequence of diffeomorphisms φk : Vk → Uk, such that for any Ω ⊂⊂ Σ∞\P ,

fk ◦ φk converges in W 2,2(Ω,Rn) weakly.
In Theorem 1, the singular points of Σ∞ arise in three ways: (a) the limit point to

which a sequence of closed geodesics that are not null-homotopic in fk(Σ) pinches, (b) a
bubble point of fk, so belonging to a 2-sphere (the bubble), (c) a point where both (a)
and (b) happen.

In the second part of the paper, we apply Theorem 1 to obtain several existence results
of Willmore surfaces in compact Riemannian manifolds. Here we note that Theorem 1 is
applicable for surfaces immersed in a compact Riemannian manifold N . To see this, for
Σ immersed in N which is isometrically embedded in Rn, direct calculation shows that
the Willmore functional of Σ in Rn is dominated by its Willmore functional in N together
with the area µ(Σ), see Lemma 4.1.

We first consider 2-spheres immersed in the round unit sphere Sn, n ≥ 3. Fix at least
two distinct points y1, . . . , ym,m ≥ 2 on Sn. Define

βn0 (y1, . . . , ym) = inf
{
Wn(f) : f ∈ W 2,2

conf (S
2,Sn), y1, . . . , ym ∈ f(S2)

}
where Wn(f) =

∫
S2

(
1 + 1

4
|Hf |2

)
dµf and Hf is the mean curvature vector of f(S2) in Sn.

We show

Theorem 2. If βn0 (y1, . . . , ym) < 8π, then there is a W 2,2 conformal immersion of S2 in
Sn without self-intersections realizing βn0 (y1, . . . , ym). For any ε > 0, there exists a Will-
more sphere in Sn with Wn(f) < 4π + ε, which has at least 2 nonremovable singularities.

By results in [15], [27], a singular point of a Willmore surface with density θ2 < 2
in Rn can be removed if its residue is 0. Kuwert and Schätzle also point out that the
removability can not be true generally, for example, 0 is the true singular point of an
inverted half catenoid ([15], P. 337). The second statement in Theorem 2 provides exam-
ples of embedded Willmore surface which has a nonremovable singular point with density
θ2 = 1, and it is an application of the first statement with five points prescribed in Sn. In
fact, by a very recent result of T. Lamm and H. T. Nguyen [18], the Willmore spheres in
Theorem 2 have at least 4 nonremovable singular points. A Gap Lemma in [14] asserts
existence of a constant ε0(n), such that any closed smooth Willmore surfaces immersed
in Rn with W (f) < 4π+ ε0 must be round spheres. However, in light of Theorem 2, such
a gap result is no longer true if we allow the surfaces have singular points.

We then consider minimizers of the Willmore functional subject to area constraint. A
fundamental existence result for incompressible minimal surfaces due to Schoen-Yau [30]
and Sacks-Uhlenbeck [29] asserts: If ϕ : Σ→ N induces an injection from the fundamental
group of Σ to that of N , then there is a branched minimal immersion f : Σ→ N so that
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f induces the same action on the fundamental groups as ϕ and f has least area among
all such maps. We denote the area of the minimizer by aϕ.

Theorem 3. Let N be a compact Riemannian manifold and let Σ be a closed surface of
genus g. Then

(1) For β0(N, a) = inf{W (f) : µ(f) = a > 0, f ∈ W 2,2
conf (S

2, N)}, lima→0 β0(N, a) = 4π,
and there is an embedding realizing β0(N, a) for all sufficiently small a.

(2) Suppose ϕ : Σ→ N induces an injection ϕ# : π1(Σ)→ π1(N) and π2(N) = 0. Let

βg(N, a, ϕ) = inf{W (f) : f ∈ W̃ 2,2(Σ, N), µ(f) = a, f is homotopic to ϕ}. Then there is
δ > 0, such that for any a ∈ [aϕ, aϕ + δ) there is a branched conformal immersion f of
(Σ, h) attaining βg(N, a, ϕ). Moreover, when dimN = 3, f is an immersion for small δ.

For β0(N, a), Lamm and Metzger showed in [17] that if it is attained by a surface with
positive mean curvature in the sufficiently small geodesic ball around a point p, then the
scalar curvature of N must have a critical point at p.

When N has negative sectional curvature, the area of an immersed surface is dominated
by the Willmore functional. We now describe a sufficient condition of Douglas type
for existence. Let S(g) be the set of connected stratified Riemann surfaces Σ =

⋃
i Σi

satisfying (a) genus of Σi < g if g > 0 and (b) i > 1 if g = 0. Note that a surface in S(g)
has genus at most g and smooth surfaces of genus g are not in S(g). Isometrically embed
N into Rn. Define

α∗(g) = inf{W (f) : f ∈ W 2,2
b,c (Σ,Rn),Σ ∈ S(g)}

α(g) = inf{W (f) : f ∈ W 2,2
b,c (Σ,Rn),Σ is a smooth surface of genus g}.

Similarly, for 0 < a <∞, define

γ∗(g, a) = inf{W (f,Σ,Rn) : f ∈ W 2,2
b,c (Σ,Rn), f(Σ) ⊂ N,Σ ∈ S(g), µ(f(Σ)) ≤ a}

γ(g, a) = inf{W (f,Σ,Rn) : f ∈ W 2,2
b,c (Σ,Rn), f(Σ) ⊂ N,Σ ∈Mg, µ(f(Σ)) ≤ a}.

Theorem 4. Let N be a compact Riemannian manifold. If 0 < α(g) < α∗(g) and N has
negative sectional curvature, then there is a W 2,2 branched conformal immersion f from
a closed Riemann surface of genus g with W (f) = α(g). If 0 < γ(g, a) < γ∗(g, a) then
there is a W 2,2 branched conformal immersion f from a closed Riemann surface of genus
g with W (f) = γ(g, a).

We should mention that, the Willmore type functionals of immersed 2-spheres in Rie-
mannian manifolds are also studied by Kuwert, Mondino and Schygulla recently [13].
They proved that for a 3-dimensional compact Riemannian manifold M , (i) if the sec-
tional curvature KM > 0, then there exists a smooth minimizer for E = 1

2

∫
S2 |A|2; (ii)

if the sectional curvature KM ≤ 2 and the scalar curvature RM(x) > 6 for some x ∈ M ,
then there exists a smooth minimizer for W1 =

∫
S2(1 + 1

4
|H|2)dµ. For higher codimen-

sion, Mondino and Riviere have obtained, among other results, existence of a branched
conformal immersion of S2 minimizing E among weak branched immersions of S2 with
finite total curvature [21]. For a closed surface Σ in R3 whose traceless part of the second
fundamental form is small in L2, De Lellis and Müller have shown, by estimating the
conformal metric, that Σ is W 2,2-close to S2 and the induced metric is C0-close to the
standard metric of S2, [2, 22].
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2. blow-up analysis - energy identity and absence of neck

Let (Σ, h) be a Riemann surface which may not be compact, where h is a smooth metric
compatible with the complex structure of Σ. For given p > 1 and R > 0, let Fp(Σ, h, R)
be the set of mappings f : Σ→ Rn which satisfy

(1) f ∈ W 2,p
loc (Σ, h);

(2) f(Σ) is contained in the closed ball centered at the origin with radius R in Rn;
(3) ∆hf = F (f) with |F (f)| ≤ β |∇hf |2 a.e. on Σ, where β is a nonnegative measur-

able function on Σ with ∫
Σ

β2|∇hf |2dµh < +∞.

We note that (2) is needed only for the compactness arguments.
When f ∈ Fp(Σ, h, R), we introduce a notation by

H(f) =

{
2 ∆hf
|∇hf |2

, if |∇hf | 6= 0

0, if |∇hf | = 0.

By (3), |∆hf | ≤ β|∇f |2, almost everywhere on {x : ∇hf = 0}.
We define W (f) to be

W (f) =
1

8

∫
Σ

|H(f)|2|∇hf |2dµh.

Then W (f) <∞ for f ∈ Fp(Σ, h, R) follows from (3) as

∆hf = F (f) =
1

2
H(f)|∇hf |2.

We denote by Fpconf (Σ, h, R) the set of f ∈ Fp(Σ, h, R) and f is weakly conformal a.e.,

i.e. ∂f ⊗∂f = 0 almost everywhere on Σ, where ∂f = ∂f
∂z
dz in a local complex coordinate

system on Σ.
Note that when f is a smooth conformal immersion H(f), 1

2
|∇hf |2dµh,W (f) are the

mean curvature vector, the area element and locally the Willmore functional of f(Σ),
respectively.

By the Kondrachov embedding theorem, functions in Fp(Σ, h, R) are also locally in
W 1,2. The right hand side of the equation ∆hf = F (f) is not necessarily in L2 under the
assumption (3).

We point out that H(f), Fp,Fpconf are conformally invariant, in the sense that if h′ =

e2uh for some smooth function u on Σ, we always have

Hh(f) = Hh′(f), Fp(Σ, h, R) = Fp(Σ, h′, R), Fpconf (Σ, h, R) = Fpconf (Σ, h
′, R).

Thus we may select preferred metrics h, e.g. the ones with constant curvature.
In this section, we will study regularity, compactness and the blow-up behavior of a

sequence {fk} ⊂ Fp.
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2.1. ε-regularity, removable singularity and weak limit. In this subsection, we will
show that some well-known results for harmonic maps still hold for mappings in Fp.

Let D be the unit 2-disk centered at 0. For simplicity, write Fp(D, dx2 + dy2, R) as
Fp(D,R).

Proposition 2.1. (ε-regularity) There is an ε0 = ε0(p) > 0 such that for any f ∈
Fp(D,R), 1 < p < 2, if W (f) < ε20, then

‖∇f‖W 1,p(D 1
2

) ≤ C ‖∇f‖L2(D).

Proof. By working with a smaller disk, without loss of generality, we may assume that
f ∈ L1(D). Set

f̄ =
1

|D|

∫
D

fdσ

and let η be a cut-off function which is 1 in D1/2, 0 in D\D3/4 and 0 ≤ η ≤ 1. Then for
the equation

∆
(
η(f − f̄)

)
= (f − f̄)∆η + 2∇η∇f +

1

2
ηH(f)|∇f |2 := φ

we have

|φ| ≤ C1

(
|f − f̄ |+ |∇f |

)
+

1

2
η |H(f)| |∇f |2

≤ C1

(
|f − f̄ |+ |∇f |

)
+ C2 |H(f)| |∇f |

(
|∇
(
η(f − f̄)

)
|+ |f − f̄ |

)
since

1
2
η |H(f)| |∇f |2 = 1

2
η |H(f)| ∇(f − f̄)∇f

= 1
2
|H(f)| ∇

(
η(f − f̄)

)
∇f − 1

2
|H(f)| (f − f̄)∇η∇f

≤ C2 |H(f)| |∇f |
(
|∇
(
η(f − f̄)

)
|+ |f − f̄ |

)
.

By the Lp estimates for elliptic equations,∥∥η(f − f̄)
∥∥
W 2,p(D)

≤ C3

(∥∥f − f̄∥∥
Lp(D)

+ ‖∇f‖Lp(D)

+
∥∥H(f)|∇f |

(
|∇
(
η(f − f̄)

)
|+ |f − f̄ |

)∥∥
Lp(D)

)
.

For 1 < p < 2, the Hölder inequality and the Sobolev inequality imply∥∥H(f)|∇f |
(∣∣∇ (η(f − f̄)

)∣∣+
∣∣f − f̄ ∣∣)∥∥

Lp(D)

≤ ‖H(f)∇f‖L2(D)

(
‖∇
(
η(f − f̄)

)
‖
L

2p
2−p (D)

+ ‖f − f̄‖
L

2p
2−p (D)

)
≤ ε0C4 ‖η(f − f̄)‖W 2,p(D) + ε0C5 ‖f − f̄‖W 1,p(D)

since W (f) < ε0. Applying the Poincaré inequality and noting 1 < p < 2, we get

‖f − f̄‖Lp(D) + ‖∇f‖Lp(D) + ε0C5 ‖f − f̄‖W 1,p(D) ≤ C6 ‖∇f‖L2(D).

Choose ε0 so that C3C4 ε0 < 1/2, then we get

‖η(f − f̄)‖W 2,p(D) < C7 ‖∇f‖L2(D)

which completes the proof. 2
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Proposition 2.2. (Gap constant) Let Σ be a closed Riemann surface. There is a constant
ε1 = ε1(Σ, p) > 0, such that for any f ∈ Fp(Σ, h, R) where 1 < p < 2, if W (f) < ε21, then
f is constant.

Proof. Let f̄ = 1
|Σ|

∫
Σ
f . It follows from the equation

∆h(f − f̄) =
1

2
H(f)|∇f |2

that ∫
Σ

|∇(f − f̄)|2 ≤ 1

2

∫
Σ

|f − f̄ | |H(f)| |∇f |2

≤
(∫

Σ

H(f)2|∇f |2
) 1

2
(∫

Σ

|f − f̄ |
2p

2p−2

) 2p−2
2p
(∫

Σ

|∇f |
2p
2−p

) 2−p
2p

≤ C1W (f)
1
2‖∇f‖L2(Σ)‖∇f‖

L
2p
2−p (Σ)

where we used the Sobolev inequality, the Poincaré inequality and 1 < p < 2. Then,

‖∇f‖L2(Σ) ≤ C1W (f)
1
2‖∇f‖

L
2p
2−p (Σ)

.

Using the Poincaré inequality and 1 < p < 2 again, we have

‖f − f̄‖Lp(Σ) ≤ C2‖∇f‖L2(Σ) ≤ C1C2W (f)
1
2‖∇f‖

L
2p
2−p (Σ)

.

Since∥∥∥∥1

2
H(f)|∇f |2

∥∥∥∥
Lp(Σ)

≤
(∫

Σ

1

4
H(f)2|∇f |2

) 1
2
(∫

Σ

|∇f |
2p
2−p

) 2−p
2p

= W (f)
1
2‖∇f‖

L
2p
2−p (Σ)

,

it follows from the Lp estimates for elliptic equations that∥∥f − f̄∥∥
W 2,p(Σ)

≤ C3

(∥∥H(f)|∇f |2
∥∥
Lp(Σ)

+
∥∥f − f̄∥∥

Lp(Σ)

)
≤ C3(1 + C1C2)W (f)

1
2 ‖∇f‖

L
2p
2−p (Σ)

≤ C4W (f)
1
2

∥∥f − f̄∥∥
W 2,p(Σ)

where the Sobolev inequality was used in the last step. By choosing ε1 < 1/C4 we imme-
diately have f = f . 2

We now derive a key estimate for later applications. For f : S1 × [−t, t]→ Rn, define

E(f,Q(t)) =

∫
Q(t)

|∇f |2, where Q(t) = S1 × [−t, t],

and denote Fp(Q(t), dt2 + dθ2, R) by Fp(Q(t), R). We will prove the following energy
decay estimate:

Proposition 2.3. (Decay estimate) Let f ∈ Fpconf (Q(T ), R) with T ≥ T0, 1 < p < 2.
Then there is a constant ε2 < ε0, where ε0 is the constant in Proposition 2.1, such that if

sup
t∈[−T,T−1]

W (f, S1 × [t, t+ 1]) < ε2 ≤ ε22
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then ∫
Q(t)

|∇f |2 < CE(f,Q(T ))e−(1−Cε)(T−t), ∀T > T0.

The constants T0, ε2, C depend only on p.

Proof. Define

f ∗(t) =
1

2π

∫ 2π

0

f(t, θ)dθ.

We have ∫
Q(t)

∣∣∣∣∂f ∗∂t
∣∣∣∣2 =

∫ t

−t

∫ 2π

0

(
1

2π

∫ 2π

0

∂f

∂t
dθ

)2

dθdt

≤ 1

2π

∫ t

−t

(∫ 2π

0

∣∣∣∣∂f∂t
∣∣∣∣2 dθ ∫ 2π

0

dθ′

)
dt(2.1)

=

∫ t

−t

∫ 2π

0

∣∣∣∣∂f∂t
∣∣∣∣2 dtdθ

=

∫
Q(t)

∣∣∣∣∂f∂t
∣∣∣∣2 dtdθ.

Then

(2.2)

∫
Q(t)

∇(f − f ∗)∇f =

∫
Q(t)

|∇f |2 −
∫
Q(t)

∂f

∂t

∂f ∗

∂t

≥
∫
Q(t)

|∇f |2 − 1

2

(∫
Q(t)

∣∣∣∣∂f∂t
∣∣∣∣2 +

∫
Q(t)

∣∣∣∣∂f ∗∂t
∣∣∣∣2
)

≥
∫
Q(t)

|∇f |2 −
∫
Q(t)

∣∣∣∣∂f∂t
∣∣∣∣2

=
1

2

∫
Q(t)

|∇f |2

where in the last step we used the fact that |ft|2 = |fθ|2 a.e. as f is conformal a.e. On
the other hand,
(2.3)∫

Q(t)

∇(f − f ∗)∇f = −
∫
Q(t)

(f − f ∗)∆f −
∫
∂Q(t)

∂f

∂n
(f − f ∗)

≤
∫
Q(t)

|f − f ∗||∇f |2 |H(f)|
2

+

∣∣∣∣∫
S1×{T}

∂f

∂t
(f − f ∗)

∣∣∣∣+

∣∣∣∣∫
S1×{−T}

∂f

∂t
(f − f ∗)

∣∣∣∣ .
Let m ∈ [t, t + 1) be an integer. Then for each i = −m,−m + 1, . . . ,m − 1, by (2.1)

and the hypothesis in the proposition

sup
t∈[−T,T−1]

1

4

∫
S1×[t,t+1]

|H(f)|2 < ε2 ≤ ε20

it follows from Proposition 2.1 that

(2.4) ‖f − f ∗‖C0(S1×[i,i+1]) ≤ C ‖∇f‖L2(S1×[i−1,i+2]).
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In fact, to see (2.4), denote the average of f over S × [i− 1, i+ 2] by f and observe that
from Proposition 2.1

‖∇(f − f)‖W 1,p(S1×[i,i+1]) = ‖∇f‖W 1,p(S1×[i,i+1]) ≤ C‖∇f‖L2(S1×[i−1,i+2])

and from the Poincaré inequality

‖f − f‖L2(S1×[i,i+1]) ≤ ‖f − f‖L2(S1×[i−1,i+2]) ≤ C‖∇f‖L2(S1×[i−1,i+2])

hence
‖f − f‖W 2,p(S1×[i,i+1]) ≤ C‖∇f‖L2(S1×[i−1,i+2]).

The Sobolev embedding theorem then implies

‖f − f‖C0(S1×[i,i+1]) ≤ C‖f − f‖W 2,p(S1×[i,i+1]) ≤ C‖∇f‖L2(S1×[i−1,i+2]).

Therefore for any t ∈ [i, i+ 1]∣∣f ∗(t)− f ∣∣ =

∣∣∣∣ 1

2π

∫ 2π

0

(
f(t, θ)− f

)
dθ

∣∣∣∣ ≤ C‖∇f‖L2(S1×[i−1,i+2]).

It follows from the triangle inequality and the above:

‖f −f ∗‖C0(S1×[i,i+1]) ≤ ‖f − f̄‖C0(S1×[i,i+1]) +‖f ∗− f̄‖C0(S1×[i,i+1]) ≤ C‖∇f‖L2(S1×[i−1,i+2]).

Then ∫
S1×[i,i+1]

|f − f ∗||∇f |2 |H(f)|
2

≤ ‖f − f ∗‖L∞(S1×[i,i+1]) ×
(
W (f, S1 × [i, i+ 1])

∫
S1×[i,i+1]

|∇f |2
) 1

2

≤ Cε

(∫
S1×[i−1,i+2]

|∇f |2
∫
S1×[i,i+1]

|∇f |2
) 1

2

≤ Cε

∫
S1×[i−1,i+2]

|∇f |2.

Then

(2.5)

∫
Q(t)

|f − f ∗||∇f |2H(f) ≤
m−1∑
i=−m

∫
S1×[i,i+1]

|f − f ∗||∇f |2H(f)

≤ Cε
m−1∑
i=−m

∫
S1×[i−1,i+2]

|∇f |2

≤ 3Cε

∫
Q(t)

|∇f |2

+Cε

(∫
S1×[−m−1,−m]

|∇f |2 +

∫
S1×[m,m+1]

|∇f |2
)

≤ 3Cε

∫
Q(t+2)

|∇f |2.

From (2.2), (2.3), (2.5), we have

(2.6)
1

2

∫
Q(t)

|∇f |2 ≤ 1

2
C ′ε

∫
Q(t+2)

|∇f |2 +

∣∣∣∣∫
S1×{T}

(f − f ∗)∂f
∂t

∣∣∣∣+

∣∣∣∣∫
S1×{−T}

(f − f ∗)∂f
∂t

∣∣∣∣
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for some constant C ′. Moreover,

(2.7)

∣∣∣∣∫
S1×{t}

∂f

∂t
(f − f ∗)

∣∣∣∣ ≤ (∫ 2π

0

(f(θ, t)− f ∗(t))2dθ

) 1
2

(∫ 2π

0

∣∣∣∣∂f∂t (θ, t)

∣∣∣∣2 dθ
) 1

2

≤

(∫ 2π

0

∣∣∣∣∂f∂θ (θ, t)

∣∣∣∣2 dθ
) 1

2
(∫ 2π

0

∣∣∣∣∂f∂t (θ, t)

∣∣∣∣2 dθ
) 1

2

=
1

2

∫
S1×{t}

|∇f |2dθ

here we used the Poincaré inequality on S1 and the fact that |∂f
∂t
|2 = |∂f

∂θ
|2 a.e. Let

ϕ(t) =
1

2

∫
Q(t)

|∇f |2.

By (2.6) and (2.7), we have

ϕ(t) ≤ ϕ′(t) + ε′ϕ(t+ 2),

where ε′ = C ′ε. Then
−(e−tϕ(t))′ ≤ ε′ϕ(t+ 2)e−t,

and integrating the inequality from t to T − 2 leads to

(2.8)

e−tϕ(t) ≤ e−T+2ϕ(T − 2) + ε′
∫ T−2

t

ϕ(s+ 2)e−sds

= e−T+2ϕ(T − 2) + ε′
∫ T

t+2

ϕ(s)e−s+2ds

= e−T+2ϕ(T − 2) + ε′e2

∫ T−2

t+2

ϕ(s)e−sds+ ε′e2

∫ T

T−2

ϕ(s)e−sds

≤ e−T+2ϕ(T ) + ε′e2

∫ T−2

t

ϕ(s)e−sds+ ε′e2ϕ(T )
(
e−T+2 − e−T

)
as ϕ(t) is increasing in t. Let

F (t) =

∫ T−2

t

ϕ(s)e−sds

and ε2 = ε′e2 < 1. Now (2.8) leads to

−F ′(t) ≤ 2ϕ(T )e−T+2 + ε2F (t),

equivalently, (
eε2tF (t)

)′
+ 2ϕ(T )e−T+2eε2t ≥ 0.

Integrating over [t, T − 2] and noting F (T − 2) = 0, we have

(2.9) F (t) ≤ 2ϕ(T )

ε2
e2−T (eε2(T−2) − eε2t

)
e−ε2t.

Substitute (2.9) into (2.8):

ϕ(t) ≤ e2−T+tϕ(T ) + 2ϕ(T )eε2(T−t−2)e2−T+t + ε2ϕ(T )et−T+2

≤ Cϕ(T )e(1−ε2)(T−t)
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= Cϕ(T )e(1−Cε)(T−t)

for some positive constant C independent of T and f . 2

Proposition 2.4. (Removability of point singularity) Let f ∈ Fpconf (D\{0}, R), where

1 < p < 2. If
∫
D
|∇f |2 < +∞, then f ∈ Fp

′

conf (D,R) for any p′ ∈ (1, 4
3
) ∩ (1, p].

Proof. We may assume that W (f) < ε2 < ε22, otherwise, we can replace f with f(λx) for
some λ < 1. Let φ : R1 × S1 → R2 be the conformal mapping given by r = e−t, θ = θ.
Then f ′ = f(φ) is a map from [0,+∞)× S1 into Rn. By translating S1 × [t− 1, t+ 1] ⊂
S1 × [0, 2t] to S1 × [−1, 1] ⊂ S1 × [−t, t], from Proposition 2.3 we conclude∫

S1×[t−1,t+1]

|∇f ′|2 ≤ C1e
−δt, where δ = 1− Cε.

Then for any rk = e−k, we have tk = k and

(2.10)

∫
Drk−1

\Drk+1

|∇f |2 < C1r
δ
k.

Set fk(x) = f(rkx). Applying Proposition 2.1 and (2.10), we get

‖∇fk‖W 1,p(D1\De−1 ) ≤ C2 ‖∇fk‖L2(De\De−2 ) ≤ C3 r
δ
2
k .

By the Sobolev inequality, we have(∫
D1\De−1

|∇fk|q
) 1

q

≤ C4 ‖∇fk‖W 1,p(D1\De−1 ) ≤ C5 r
δ
2
k , where q ≤ 2p

2− p
.

Then ∫
D1\De−1

|∇fk|q ≤ C6 e
−qk δ

2 .

Since

r2−q
k

∫
D1\De−1

|∇fk|q =

∫
Drk\Drk+1

|∇f |q,

we have ∫
Drk\Drk+1

|∇f |q ≤ C6 e
−qk δ

2
+(q−2)k = C6 e

k(−2+q(1− δ
2

)).

When q < 4, we can choose ε suitably such that q(1− δ
2
) < 2, which yields∫

D

|∇f |q ≤ C6

∑
k

2−qk
δ
2

+(q−2)k < C7 <∞.

For any p′ ∈ (1, 4
3
), set q = 2p′

2−p′ , so q ∈ (2, 4). We have∫
D

H(f)p
′
|∇f |2p′ ≤

(∫
D

H(f)2|∇f |2
) p′

2
(∫

D

|∇f |q
) p′

q

< C8.

Therefore, F (f) ∈ Lp′(D) with p′ > 1 and then there exists v which solves the equation

−∆v = F (f), v|∂D = 0,
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and v ∈ W 2,p′(D). Obviously, f − v is a harmonic function on D\{0} with

‖∇(f − v)‖L2(D) + ‖f − v‖L2(D) < +∞.

Then f − v is smooth on D. Now f ∈ Fp
′

conf (D,R) is evident for p′ ≤ p and 1 < p′ < 4
3
. 2

We now consider weak compactness of a sequence {fk} ⊂ Fp(D,R) with W (fk) < Λ.
The blow-up set of {fk} is defined to be

C({fk}) =

{
z ∈ D : lim

r→0
lim

k→+∞
W (fk, Dr(z)) > ε22

}
.

We can always find a subsequence of {fk}, whose blow-up set is a finite set. To see this,
we let z1 ∈ C({fk}). Choose a subsequence {f 1

k} of {fk}, and a sequence r1
k → 0 such

that

W (f 1
k , Dr1k

(z1)) >
ε22
2
.

If C({f 1
k}) 6= {z1}, then we can find z2 6= z1 and a subsequence {f 2

k} of {f 1
k} and a

sequence r2
k → 0, such that

W (f 2
k , Dr2k

(z2)) >
ε22
2
.

Obviously, we have

lim
k→+∞

W (fk, D) ≥ lim
k→+∞

W (f 2
k , Dr1

′
k

(z1)) + lim
k→+∞

W (f 2
k , Dr2k

(z2)) ≥ ε22,

where {r1′

k } is the corresponding subsequence of {r1
k}. Similarly, we can find {f 3

k}, · · · ,
{fmk }. However, we must have m < 2Λ/ε2, for

Λ ≥ lim
k→+∞

W (fk, D) ≥ m
ε22
2
.

Without loss of generality, we always assume that C({fk}) is a finite set. Then for any
z ∈ D\C({fk}), we can find r and a subsequence of {fk} which is still denoted by {fk}
for simplicity, such that

lim
k→+∞

W (fk, Dr(z)) < ε20.

Then from Proposition 2.1

‖fk‖W 2,p(Dr/2(z)) < C(r, p)‖∇fk‖L2(Dr(z)).

Thus we may assume fk converges weakly in W 2,p
loc (D\C({fk})).

Corollary 2.5. Let {fk} ⊂ Fpconf (D,R) with

sup
k
{E(fk, D) +W (fk, D)} < Λ <∞

and let f0 be the weak limit of fk in W 2,p
loc (D\C({fk})). If p ∈ (1, 4

3
), then f0 ∈ Fpconf (D,R)

and

(2.11) W (f0, D) ≤ lim
k→+∞

W (fk, D).
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Proof. Set Fk = ∆fk, k ∈ N. For any Ω ⊂⊂ D\C(fk), we have ‖fk‖W 2,p(Ω) < C(Ω). Then
by the Hölder inequality and the Sobolev inequality

‖Fk‖Lp(Ω) ≤
∥∥∥∥1

2
H(fk)∇fk

∥∥∥∥
L2(Ω)

‖∇fk‖
L

2p
2−p (Ω)

≤ CΛ
1
2‖∇fk‖W 1,p(Ω) < C ′(Ω,Λ).

We may assume, by selecting subsequences if necessary, that

Fk ⇀ F0 locally in Lp(Ω) and |H(fk)||∇fk|⇀ α locally in L2(Ω).

Since we may also assume ∇fk → ∇f0 in L2(Ω) because fk ⇀ f0 in W 2,p(Ω), we have

|H(fk)||∇fk|2 ⇀ α|∇f0|

in the sense of measures in Ω. Define

β0 =

{
α
|∇f0| when |∇f0| 6= 0

0 otherwise.

Clearly, β0|∇f0|2 = α|∇f0|. Let F+
k = max{Fk, 0} and F−k = −min{Fk, 0} ≥ 0. Then

Fk = F+
k − F

−
k and |Fk| = F+

k + F−k . We may assume that

F+
k ⇀ F 1

0 and F−k ⇀ F 2
0 in Lp(Ω).

Obviously F0 = F 1
0 − F 2

0 . Then for any nonnegative function ϕ ∈ C∞0 (Ω),∫
Ω

ϕ|F0| ≤
∫

Ω

ϕ(F 1
0 +F 2

0 ) = lim
k→+∞

∫
Ω

ϕ|Fk| ≤ lim
k→+∞

∫
Ω

1

2
ϕ|H(fk)||∇fk|2 =

∫
Ω

1

2
ϕβ0|∇f0|2.

Hence we conclude

|F0| ≤
1

2
β0|∇f0|2, a.e. z ∈ D.

Then, we have ∫
Ω

β2
0 |∇f0|2 ≤

∫
Ω

α2 ≤ lim
k→+∞

∫
Ω

|Hk(fk)|2|∇fk|2.

Moreover, since fk converges in L2(Ω), it follows from ∂fk ⊗ ∂fk = 0 a.e. in D that
∂f0 ⊗ ∂f0 = 0 a.e. in D as Ω is arbitrary. Since supk{E(fk) + W (fk)} < ∞, there
are at most finitely many points in C({fk}). Then we conclude that f0 ∈ Fpconf (D,R)

if p ∈ (1, 4
3
) by removing the point singularity across C(fk) ensured by Proposition 2.4.

Furthermore, we have H(f0) ≤ β0 whenever |∇f0| 6= 0, hence we get (2.11). 2

2.2. A criterion for absence of bubbles along cylinders. Let fk ∈ Fpconf (Q(Tk), R),
with

sup
k
{E(fk) +W (fk)} < Λ <∞.

Given a sequence tk ∈ (−Tk, Tk) with

(2.12) Tk − tk → +∞ and tk − (−Tk)→ +∞,

we say the limit f0 of a subsequence of fk(θ, t + tk), as in Corollary 2.5, is nontrivial if
E(f0) > 0. When f0 is nontrivial, it is a bubble of {fk}.
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Proposition 2.6. Let fk ∈ Fpconf (S1 × (−Tk, Tk), R) with

sup
k
{E(fk) +W (fk)} = Λ <∞.

Let ε2 be the constant in Proposition 2.3. If

lim
T→+∞

lim
k→+∞

sup
t∈[−Tk+T,Tk−T ]

W (fk, S
1 × [t, t+ 1]) < ε22,

then we have the following

(1) {fk} has no bubble;
(2) there is no loss of the Dirichlet energy, i.e.

(2.13) lim
T→+∞

lim
k→+∞

∫
S1×[−Tk+T,Tk−T ]

|∇fk|2 = 0,

(3) there is no neck, i.e.

(2.14) lim
t→+∞

lim
k→+∞

fk(θ,−Tk + t) = lim
t→+∞

lim
k→+∞

fk(θ, Tk − t).

Proof. First note that (1) follows from (2).
We may assume that fk(θ,−Tk + t) and fk(θ, Tk − t) converge to f+

0 (θ, t) and f−0 (θ, t)
weakly in W 2,p

loc (S1 × [0,+∞)), respectively. Then f+
0 ◦ φ, f−0 ◦ φ ∈ Fp(D\{0}, R) with

E(f±0 ◦ φ) +W (f±0 ◦ φ) ≤ Λ

where φ is the conformal diffeomorphism between D\{0} and S1 × (0,+∞). By remov-
ability of point singularities asserted in Proposition 2.4, they are in Fp′(D,R) for some
p′ > 1. It then follows from the compact embedding W 2,p′ ⊂ L2:

lim
T→∞

∫
S1×[T,T+1]

(
|∇f+

0 |2 + |∇f−0 |2
)

= 0.

Define f ∗k (t) = 1
2π

∫ 2π

0
fk(θ, t)dθ. It is easy to check that

lim
t→+∞

lim
k→+∞

(∣∣∣∣∫
S1×{Tk−t}

(fk − f ∗k )
∂fk
∂t

∣∣∣∣+

∣∣∣∣∫
S1×{−Tk+t}

(fk − f ∗k )
∂fk
∂t

∣∣∣∣) = 0.

In fact, this can be seen as follows:

sup
S1×{±(Tk−T )}

|fk − f ∗k | ≤ osc
S1×{±(Tk−T )}

fk

which will converge to oscS1×{T}f
±
0 as k →∞. By removability of singularity,

lim
T→∞

oscS1×{T}f
±
0 = 0.

By the Sobolev trace embedding,∫
S1×{Tk−T}

|∇fk| ≤ C‖∇fk‖W 1,p(S1×[Tk−T−1,Tk−T+1]).

By ε-regularity,

‖∇fk‖W 1,p(S1×[Tk−T−1,Tk−T+1]) ≤ C‖∇fk‖L2(S1×[Tk−T−2,Tk−T+2]) < C.

Then (2.13) follows from (2.6).
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Let mk be the integer in [Tk−T, Tk−T + 1). For 0 ≤ i ≤ mk−2, applying Proposition
2.3 on S1 × [i−mk,mk] (by shifting the center circle to S1 × {i}, and the same below),
we have ∫

S1×[i−2,i+2]

|∇fk|2 < CE(fk, Q(Tk − T ))e−δ(mk−i), δ = 1− Cε2.

Then from (2.4)

osc
S1×[i−1,i+1]

fk ≤ C
√
E(fk, Q(Tk − T ))e−

δ
2

(mk−i).

When −mk + 2 ≤ i ≤ 0, applying Proposition 2.3 on S1 × [−mk,mk + i], we get∫
S1×[i−2,i+2]

|∇fk|2 < CE(fk, Q(Tk − T ))e−
δ
2

(mk−|i|),

then we obtain
osc

S1×[i−1,i+1]
fk ≤ C

√
E(fk, Q(Tk − T ))e−

δ
2

(mk−|i|).

Hence,

osc
Q(Tk−T )

fk ≤ 2C
√
E(fk, Q(Tk − T ))

mk∑
i=1

e−
δ
2

(mk−i) ≤ C ′
√
E(fk, Q(Tk − T )).

Then (2.14) can be deduced from (2.13). 2

2.3. Bubble trees for a sequence of maps from the disk D. Let fk ∈ Fpconf (D,R)
with

sup
k
{E(fk, D) +W (fk, D)} = Λ <∞.

We assume 0 is the only blow-up point of {fk}, i.e. the only point such that

lim
r→0

lim
k→+∞

W (fk, Dr(0)) ≥ ε22.

We assume that fk converges to f∞ weakly in W 2,p
loc (D\{0}). The construction of the

bubble tree at 0 will be divided into the following steps:
Step 1. Construct the first level of the bubble tree.
There exists a sequence of points zk ∈ D and a sequence of radii rk → 0 such that

(2.15) W (fk, Drk(zk)) =
ε22
2

and W (fk, Dr(z)) < ε22/2 for any r < rk and Dr(z) ⊂ D. It is easy to check that zk → 0
as 0 is the only blow-up point of {fk}.

We set f ′k(z) = fk(zk + rkz). Since C({f ′k}) = ∅, f ′k(z) converges weakly in W 2,p
loc (C).

Denote the limit by fF , which may be a trivial mapping.
Let (r, θ) be the polar coordinates centered at zk, and set Tk = − ln rk. Let φk :

S1 × [0, Tk]→ R2 be the conformal mapping given by φk(θ, t) = zk + (e−t, θ). Then

φ∗k(dx
1 ⊗ dx1 + dx2 ⊗ dx2) =

1

r2
(dt2 + dθ2).

Thus fk ◦ φk ∈ Fpconf (S1 × [0, Tk], R). We will also denote fk ◦ φk by fk for simplicity of
notations.
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Lemma 2.7. There exists a subsequence of {fk} and 0 = d0
k < d1

k < · · · < dlk = Tk with
l < Λ/ε22 + 1, such that

(2.16) lim
k→+∞

djk − d
j−1
k =∞,

(2.17) W (fk, S
1 × [djk, d

j
k + 1]) ≥ ε22, j 6= 0, l

and

(2.18) lim
T→+∞

lim
k→+∞

sup
t∈[dj−1

k +T,djk−T ]

W (fk, S
1 × [t, t+ 1]) ≤ ε22, j = 1, ..., l.

Proof. Suppose
(m− 1)ε22 < W (fk, S

1 × [0, Tk]) ≤ ε22m,

where m is a positive integer. We prove the lemma by induction on m.
When m = 1, the lemma is obvious by taking d0

k = 0, d1
k = Tk and (2.17) is vacuous.

Assuming the lemma is true for m− 1, we will prove it also true for m. First of all, if

(2.19) lim
T→+∞

lim
k→+∞

sup
t∈[T,Tk−T ]

W (fk, S
1 × [t, t+ 1]) ≤ ε22,

then the lemma follows since [dj−1
k + T, djk − T ] ⊂ [T, Tk − T ]. If (2.19) does not hold, we

can find tk such that
tk → +∞, Tk − tk → +∞,

and
W (fk, S

1 × [tk, tk + 1]) ≥ ε22.

Then

W (fk, S
1 × [0, tk]) ≤ ε22 (m− 1) and W (fk, S

1 × [tk + 1, Tk]) ≤ ε22 (m− 1).

Using the induction hypothesis on [0, tk] and [tk + 1, Tk], we can find

0 = d̄0
k < d̄1

k < · · · < d̄l̄k = tk, and tk + 1 = d̂0
k < d̂1

k < · · · < d̂l̂k = Tk,

such that
d̄ik − d̄i−1

k → +∞, d̂ik − d̂i−1
k → +∞,

W (fk, S
1 × [d̄jk, d̄

j
k + 1]) ≥ ε22, W (fk, S

1 × [d̂jk, d̂
j
k + 1]) ≥ ε22,

and
lim

T→+∞
lim

k→+∞
sup

t∈[d̄j−1
k +T,d̄jk−T ]

W (fk, S
1 × [t, t+ 1]) ≤ ε22,

lim
T→+∞

lim
k→+∞

sup
t∈[d̂j−1

k +T,d̂jk−T ]

W (fk, S
1 × [t, t+ 1]) ≤ ε22.

Put

dik =

{
d̄ik i ≤ l̄,

d̂i−l̄k i > l̄.

The induction is complete. 2

We now start to construct the bubble tree at the first level. In Lemma 2.7, if l = 1,
in view of Proposition 2.6, we do not do anything as there is no bubble developing in
S1 × [0, Tk] when k → ∞. If l > 1, we set f ik(θ, t) = fk(θ, d

i
k + t). We may assume {f ik}
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converges weakly in W 2,p to a bubble f i∞ in any compact set outside the blow-up points
of {f ik}. By Proposition 2.6, there are no other bubbles of fk between f i∞ and f i+1

∞ and
f i∞ ∪ f i+1

∞ is connected.
Clearly, {f 0

k} and {f lk} have no blow-up points. Moreover f 0
∞ is f∞ ◦ φ0|S1×[0,+∞) and

f l∞ is fF ◦φ0|S1×(−∞,0], where φ0 : S1×R→ C is given by (θ, t) 7→ (e−t, θ). Removing the
point singularity by Proposition 2.4, f 1

∞, · · · , f l−1
∞ and fF can be considered as conformal

mappings from S2 into Rn.

f∞ f1
∞ f2

∞ fF

Figure 2. Bubble tree: First level (dots denote concentration points)

For a stratified sphere, we can define a dual graph as following: 1) Associate one vertex
for each component of the stratified sphere; 2) Vertices are connected by edges if the
corresponding components meet at a point.

Let S1 be the stratified sphere with l components whose dual graph is an open path
(i.e. a tree such that each vertex has at most 2 edges attached). We define F 1 to the
continuous map from S1 into Rn, such that F 1 is f i∞ on the i-th component when i < l
and fF on the l-th component. We call F 1 the first level of bubble tree of {fk}.

We define E(F 1) and W (F 1) by

E(F 1) =
l−1∑
i=1

∫
S1×R

|∇f i∞|2 +

∫
S2

|∇fF |, W (F 1) =
l−1∑
i=1

W (f i∞) +W (fF ).

Then

lim
δ→0

lim
k→+∞

∫
Dδ

|∇fk|2 = E(F 1) +
∑
i

∑
p∈C({f ik})

lim
r→0

lim
k→+∞

∫
Br(p)

|∇f ik|2

and

lim
δ→0

lim
k→+∞

W (fk, Dδ) ≥ W (F 1) +
∑
i

∑
p∈C({f ik})

lim
r→0

lim
k→+∞

W (f ik, Br(p)).

To show convergence of |∇fk|2 in the sense of distributions, we take a test function
η ∈ C∞0 (Rn). We have∫
Dδ(zk)

η(fk)|∇fk|2 =

∫
Dδ(zk)\D

eT rk
(zk)

η(fk)|∇fk|2 +

∫
D
eT rk

(zk)

η(fk)|∇fk|2

=

(∫
S1×[− ln δ,T ]

+
l−1∑
i=1

∫
S1×[dik−T,d

i
k+T ]

+
l−1∑
i=0

∫
S1×[dik+T,di+1

k −T ]

)
η(fk)|∇fk|2

+

∫
D
eT rk

(zk)

η(fk)|∇fk|2
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=

∫
S1×[− ln δ,T ]

η(f 0
k )|∇f 0

k |2 +
l−1∑
i=1

∫
S1×[−T,T ]

η(f ik)|∇f ik|2

+
l−1∑
i=0

∫
S1×[dik+T,di+1

k −T ]

η(fk)|∇fk|2 +

∫
D
eT

η(f ′k)|∇f ′k|2.

Since |η(fk)| is bounded, and

lim
T→+∞

lim
k→+∞

∫
S1×[dik+T,di+1

k −T ]

|∇fk|2 = 0,

we have

lim
T→+∞

lim
k→+∞

∫
S1×[dik+T,di+1

k −T ]

η(fk)|∇fk|2 = 0.

Recalling that f ik and f ′k converge weakly in W 2,p on any compact sets which contain no
concentration points, we get

lim
δ→0

lim
k→+∞

∫
Dδ

η(fk)|∇fk|2 =
l−1∑
i=1

∫
S1×R

η(f i∞)|∇f i∞|2 +

∫
C
η(fF )|∇fF |2

+
∑
i

∑
p∈C({f ik})

lim
r→0

lim
k→+∞

∫
Br(p)

η(f ik)|∇f ik|2.

Step 2. We consider convergence of {f ik} near its blow-up points.
For each p ∈ C({f ik}), we find a small r such that Br(p) ⊂ S1 × R contains only one

blow-up point. Then for each p, using the arguments in Step 1, we have the first level of
bubble tree of {f ik}, which is a map Fp from a stratified sphere Sp into Rn. Each Sp is
attached to S1 at p. Taking union over p ∈ C({f ik}) gives us a continuous map F 2 from
S2, which is a union of stratified spheres, into Rn. We call F 2 the second level of the
bubble tree of {fk}.

Figure 3. Bubble tree: Second level
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Step 3. In the same way, we can build the third and higher levels of the bubble tree.
Since each step will take away at least ε22 from the Willmore functional, the construction

will stop after finite many steps. In the end we get a stratified surface S which is the
union of all levels and a mapping F from S into Rn. We collapse the components of S on
which F maps into points, i.e. deleting the ghost bubbles, then we get a new stratified
surface S ′ and a continuous map F ′ from S ′ into Rn, such that F ′ is nontrivial on each
component of S ′. We call F ′ is the bubble tree of {fk} at 0. Moreover, we have

lim
δ→0

lim
k→+∞

∫
Dδ

η(fk)|∇fk|2 =

∫
S′
η(F ′)|∇F ′|2,

and
W (F ′) ≤ lim

δ→0
lim

k→+∞
W (fk, Dδ).

2.4. Bubble trees for a sequence of maps from cylinders Q(Tk) with Tk → +∞.
In this subsection, we develop the analysis needed in subsection 2.5 when we deal with
degeneration of conformal structures.

Let fk ∈ Fpconf (Q(Tk), R) with Tk → +∞. We assume fk(θ, t + Tk) and fk(θ, t − Tk)
weakly converge in W 2,p

loc (S1 × (−∞, 0]) and W 2,p
loc (S1 × [0,+∞)), respectively. In light of

Proposition 2.6, we only need to consider the case that the following happens:

(2.20) lim
T→+∞

lim
k→+∞

sup
t∈[−Tk+T,Tk−T ]

W (fk, S
1 × [t, t+ 1]) ≥ ε22

since otherwise there will be no bubbles, no necks and no energy loss. When (2.20) holds,
there exist tk ∈ (−Tk, Tk) such that Tk − tk → +∞, Tk + tk → +∞ as k →∞ and

W (fk, S
1 × [tk, tk + 1]) ≥ ε22.

By Lemma 2.7, we can find (by translations)

−Tk = d0
k < d1

k < · · · < dlk = Tk

which satisfy (2.16), (2.17) and (2.18). Recall that l is independent of k. We may assume
f ik(t, θ) = fk(d

i
k + t, θ) converges weakly to f i∞ in W 2,p outside the blow-up points C({f ik})

of {f ik}. Let Σ1
∞ be the stratified surface with l − 1 components whose dual graph is an

open path. Then we get a continuous map F 1 from Σ1
∞ into Rn, and F 1 is f i∞ on the i-th

component for i = 1, 2, · · · , l − 1. Moreover, we have

lim
T→+∞

lim
k→+∞

∫
S1×[−Tk+T,Tk−T ]

η(fk)|∇fk|2 =

∫
Σ1
∞

η(F 1)|∇F 1|2

+
l−1∑
i=1

∑
p∈C({f ik})

lim
r→0

lim
k→+∞

∫
Br(p)

η(f ik)|∇f ik|2

and

lim
T→+∞

lim
k→+∞

W (fk, Q(Tk − T )) ≥ W (F 1) +
l−1∑
i=1

∑
p∈C({f ik})

lim
r→0

lim
k→+∞

W (f ik, Br(p)).

The first level of the bubble tree of {fk} is F 1 in this case. Then we use the arguments in

section 2.3 to construct the second level of the bubble tree at
⋃l−1
i=1 C({f ik}), and similarly
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the third level and so on. The construction stops in finitely many steps. In the end, we
get a stratified sphere S ′′, and a map F ′′ from S ′′ to N , such that

lim
T→+∞

lim
k→+∞

∫
S1×[−Tk+T,Tk−T ]

η(fk)|∇fk|2 =

∫
S′′
η(F ′′)|∇F ′′|2

and
lim

T→+∞
lim

k→+∞
W (fk, Q(Tk − T )) ≥ W (F ′′).

2.5. Convergence in Hausdorff distance. In this subsection we prove:

Theorem 2.8. Assume that {(Σ, hk)} is a sequence of closed Riemann surfaces of genus
g, where hk satisfies (1.1). Suppose that fk ∈ Fpconf (Σ, hk, R) with p ∈ (1, 4

3
) and

(2.21) sup
p
{E(fk) +W (fk)} < Λ <∞.

Then either {fk} converges to a point, or there is a stratified surface Σ∞ with g(Σ∞) ≤ g,
an f0 ∈ Fpconf (Σ∞, R), such that a subsequence of fk(Σk) converges to f0(Σ∞) in Hausdorff
distance with

E(f0) = lim
k→+∞

E(fk) and W (f0) ≤ lim
k→+∞

W (fk).

For any η ∈ C∞0 (Rn), we have

lim
k→+∞

∫
Σk

η(fk)|∇fk|2dµhk =

∫
Σ∞

η(f0)|∇f0|2dµΣ∞ .

Remark. Here f0 ∈ Fpconf (Σ∞, R) means that f0 ∈ C0(Σ∞,Rn), and for any component

Σi
∞ of Σ∞, f0 is nontrivial on Σi

∞ and f0|Σi∞ ∈ F
p(Σi

∞, hi, R).

Proof of Theorem 2.8: The proof will consist of three cases according to the genus of Σ.

Spherical case. When Σ is a sphere, as there is only one conformal structure on a
2-sphere, we may let hk ≡ h. Let C({fk}) = {p1, . . . , pm}. We can choose δ, such that
Bδ(pi)∩Bδ(pj) = ∅. Using isothermal coordinates, each Bδ(pi) with metric h is conformal
to a Euclidean disk, the results can be deduced from subsection 2.3 directly.

Toric case. Suppose that (Σ, h) is induced by lattice {1, a+bi} in C, where −1
2
< a ≤ 1

2
,

b > 0, a2 + b2 ≥ 1, and a ≥ 0 whenever a2 + b2 = 1. Then the conformal map f from

(Σ, h) into Rn can be composed with the projection C → Σ to yield a conformal map f̃
from C into Rn which satisfies

f̃(z + λ) = f̃(z), for all λ ∈ Z⊕ Z(a+ bi).

Let Π : C→ S1×R defined by x+yi→ (2πx, 2πy) be the conformal covering map, where
2πx and 2π(x + m) are the same point in S1 for m ∈ Z. Then (Σ, h) is conformal to
(S1×R)/G, where G ∼= Z is the transformation group of S1×R generated by the mapping

(θ, t)→ (θ+ 2πa, t+ 2πb). Then f̃ descents to a conformal map f ′ : S1×R→ Rn, which

satisfies f ′ ◦ Π = f̃ .
Now we assume (Σk, hk) = S1 × R/Gk, where Gk is generated by

(θ, t)→ (θ + θk, t+ bk), where bk ≥
√
π2 − θ2

k, and θk ∈ [−π
2
,
π

2
].

In the moduli space M1 of genus 1 surfaces, (Σ, hk) diverges if and only if bk → +∞.
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For fk ∈ Fpconf (Σ, hk, R) with (2.21), we lift each fk to a mapping f ′k : S1 × R → Rn

which satisfies

f ′k(θ, t) = f ′k(θ + θk, t+ bk).

After translations, we may assume that f ′k(θ, t + bk
2

) and f ′k(θ, t −
bk
2

) have no blow-up
points as k →∞. Then f ′k satisfies the conditions in subsection 2.4 for Tk = bk/2. Since
f ′k(θ,−Tk + t) = f ′k(θ+ θk, Tk + t), the weak limit of f ′k(θ,−Tk + t) in W 2,p

loc (S1× [0,+∞))

and the weak limit of f ′k(θ, Tk + t) in W 2,p
loc (S1 × (−∞, 0]) yield a conformal map from

S1×R into Rn. So the Hausdorff limit of fk(Σ) is the image of a continuous map F from
a stratified surface S of genus 1 into Rn with∫

S

η(F )|∇F |2dµS = lim
k→+∞

∫
Σk

η(fk)|∇fk|2dµhk , W (F ) ≤ lim
k→+∞

W (fk).

Hyperbolic case. For the hyperbolic case, we first briefly review the compactness of
moduli space.

Let Σ0 be a stable surface inMg with nodal points N = {a1, . . . , am′}. Geometrically,
Σ0 is obtained by pinching m′ non null homotopy curves in a surface with genus g > 1 to
points a1, . . . , am′ , thus Σ0\N can be divided to finite components Σ1

0, . . . ,Σ
s
0. For each

Σi
0, we can extend Σi

0 to a smooth closed Riemann surface Σi
0 by adding a point at each

puncture. Moreover, the complex structure of Σi
0 can be extended smoothly to a complex

structure of Σi
0.

We say h0 determines a hyperbolic structure on Σ0 if h0 is a smooth complete metric
on Σ0\N with finite volume and Gauss curvature −1. We define

Σ0(h0, δ) =
{
p ∈ Σ0\N : injradh0Σ0\N (p) < δ

}
∪N .

Around each nodal point aj in Σ0, let Σ0(aj, h0, δ) be the component of Σ0(h0, δ) which

contains aj. Let hi0 be the metric on Σi
0 which has Gauss curvature ±1 or curvature 0,

and is conformal to h0 on Σi
0.

Now, we let {Σk} be a sequence of closed Riemann surfaces of fixed genus g with
hyperbolic structures hk, such that Σk → Σ0 in the moduli space Mg. By Proposition
5.1 in [9], there exists a maximal collection Γk = {γ1

k, . . . , γ
m′

k } of pairwise disjoint, simple

closed geodesics in Σk with `jk = L(γjk)→ 0, such that after passing to a subsequence the
following holds:

(1) There are maps ϕk ∈ C0(Σk,Σ0), such that ϕk : Σk\Γk → Σ0\N is diffeomorphic
and ϕk(γ

j
k) = aj for j = 1, . . . ,m′.

(2) For the inverse diffeomorphisms ψk : Σ0\N → Σk\Γk, we have ψ∗k(hk) → h0 in
C∞loc(Σ0\N ), where h0 determine a hyperbolic structure on Σ0\N .

(3) Let ck be the complex structure over Σk, and c0 be the complex structure on
Σ0\N . Then

ψ∗k(ck)→ c0 in C∞loc(Σ0\N ).

For the transformation

(θ, t)→

(
θ, t− π2

ljk

)
,

we have the cylindrical version of the Collar Lemma (cf (4.3) and (4.5) in [32]):



24 JINGYI CHEN & YUXIANG LI

Lemma 2.9. For each γjk as above, there is a collar U j
k containing γjk, which is isometric

to the cylinder Qj
k = Q(π

2

ljk
− τk) with metric

(2.22) hjk =

 ljk

2π cos(
ljk
2π
t)

2

(dt2 + dθ2),

where τk = 2π

ljk
arctan(sinh(

ljk
2

)). Moreover, for any (θ, t) ∈ S1 × (−π2

ljk
+ τk,

π2

ljk
− τk), we

have

(2.23) sinh(injradΣk
(θ, t)) cos(

l j
k t

2π
) = sinh

l j
k

2
.

Let φjk be the isometry between Qj
k and U j

k . Then ϕk ◦φjk(θ, π
2

ljk
− τk + t)

⋃
ϕk ◦φjk(θ,−π2

ljk
+

τk + t) converges in C∞loc(S
1× (−∞, 0)∪S1× (0,∞)) to an isometry from S1× (−∞, 0)∪

S1 × (0,+∞) to Σ0(aj, h0, 1)\{aj}.

We need the following local existence and compactness of conformal diffeomorphisms.

Theorem 2.10. [3] Let hk, h0 be smooth Riemannian metrics on a surface M , such that
hk → h0 in Cs,α(M), where s ∈ N, α ∈ (0, 1). Then for each point z ∈ M there exist
neighborhoods Uk, U0 of z and smooth conformal diffeomorphisms ϑk : D → Uk, ϑ0 : D →
U , such that ϑk → ϑ0 in Cs+1,α(D,M).

Proof of Theorem 2.8 (continued): For a sequence of fk ∈ Fpconf (Σ, hk, R) satisfying the
energy bound (2.21), let

f̃k = fk ◦ ψk
which is a mapping from Σ0\N to Rn. It is easy to check that f̃k ∈ Fpconf (Σ0\N , ψ∗k(hk), R).

First, we show f̃k converges in W 2,p
loc (Σ0\(N ∪ C({fk}))). Given a point z ∈ Σ0\(N ∪

C({f̃k})), we choose Uk, U, ϑk, ϑ as in Theorem 2.10 and Uk, U ⊂ Σ0\(N ∪ C({f̃k})). Let

f̂k = f̃k ◦ ϑk
and note that f̂k ∈ Fpconf (D,R). We can assume that f̂k converges to f̂∞ in W 2,p

loc (D3/4)

with ∂f̂∞ ⊗ ∂f̂∞ = 0. Let V = ϑ(D1/2). Since ϑk converges to ϑ, ϑ−1
k (V ) ⊂ D3/4 for

sufficiently large k, f̃k = f̂k(ϑ
−1
k ) converges to f̃∞ = f̂∞(ϑ−1

0 ) weakly in W 2,p(V, h0). Then

f̃∞ ∈ Fpconf (V, h0, R). For any nonnegative continuous function ϕ supported in V , by
Fatou’s lemma, we have
(2.24)

lim
k→+∞

∫
V

ϕ|H(f̃k)|2|∇f̃k|2 = lim
k→+∞

∫
D

ϕ(ϑk)|H(f̂k)|2|∇f̂k|2 ≥
∫
D

ϕ(ϑ0)|H(f̂0)|2|∇f̂0|2.

We may thus assume f̃k converges weakly to f̃∞ in W 2,p
loc (Σ0\(N ∪ C({fk}))). Then

f̃∞|Σi0 ∈ W 2,p
loc (Σi

0, h
i
0). So for p ∈ (1, 4

3
), f̃∞|Σi0 extends to a map in Fpconf (Σi

0, h
i
0, R).

Further,

lim
k→+∞

∫
Σk

η(fk)|∇fk|2dµhk =

∫
Σ0

η(f̃∞)|∇f̃∞|2dµΣ0
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+
∑
j

lim
δ→0

lim
k→+∞

∫
ϕ−1
k (Σ0(aj ,δ))

η(fk)|∇fk|2dµhk +
∑

z∈C({f̃k})

lim
r→0

lim
k→+∞

∫
Br(z,h0)

η(f̃k)|∇f̃k|2dµψ∗k(hk)

and from (2.24)

lim
k→+∞

W (f̃k) ≥ W (f̃∞)+
∑

z∈C({f̃k})

lim
r→0

lim
k→+∞

W (f̃k, Br(z, h0))+
∑
j

lim
δ→0

lim
k→+∞

W (f̃k,Σ0(aj, δ)).

Next, we construct a bubble tree at a point z ∈ C({fk})\N . We have a bubble tree F

of f̂k at z. We define it to be a bubble tree of f̃k at z. By the arguments in subsection
2.3, we have

lim
r→0

lim
k→+∞

∫
Br(z,h0)

η(f̃k)|∇f̃k|2dµψ∗k(hk) = lim
r→0

lim
k→+∞

∫
Dr

η(f̂k)|∇f̂k|2 =

∫
S′
η(F )|∇F |2,

and

lim
r→0

lim
k→+∞

W (f̃k, Br(z, h0)) = lim
r→0

lim
k→+∞

W (f̂k, Dr) ≥ W (F ).

Lastly, we consider convergence of fk on the collars. Set

f̌ jk = fk ◦ φjk and T jk =
π2

ljk
− T.

We may choose T to be sufficiently large such that the two sequences f̌ jk(T jk − t, θ) and

f̌ jk(−T jk + t, θ) have no blow-up points in [0, T ] and [−T, 0] respectively. Then f̌ jk satisfies

the conditions in subsection 2.4. We get a bubble tree F j. So the convergence of f̌ jk is
clear. Since

f̌ jk = fk ◦ φjk = fk ◦ ψk ◦ (ϕk ◦ φjk) = f̃k(ϕk ◦ φjk),
we have

f̌ jk(T jk − t, θ) = f̃k(ϕk ◦ φjk(T
j
k − t, θ)),

f̌ jk(t− T jk , θ) = f̃k(ϕk ◦ φjk(t− T
j
k , θ)).

By the convergence statement in the Collar Lemma, ϕk ◦ φjk(t + T − π2/ljk, θ) and ϕk ◦
φjk(π

2/ljk − T − t, θ) converge in C∞loc((−∞, 0) × S1 ∪ (0,∞) × S1) to an isometry from
(−∞, 0)×S1 ∪ (0,+∞)×S1 to Σ0(aj, 1) \ {aj}. We conclude that the image of the limit

of f̌ jk(T jk − t, θ) and that of f̌ jk(−T jk + t, θ) are both contained in the image of f̃∞. As in
subsection 2.4,

lim
δ→0

lim
k→+∞

∫
Σ0(aj ,δ)

η(fk)|∇fk|2dµhk = lim
T→+∞

lim
k→+∞

∫
Q(Tk−T )

η(f̌)|∇f̌ |2 =

∫
S′′
η(F j)|∇F j|2,

and

lim
δ→0

lim
k→+∞

W (f̃k,Σ0(aj, δ)) = lim
T→+∞

lim
k→+∞

W (f̌ , Q(Tk − T )) ≥ W (F j).

Thus, we complete the proof. 2



26 JINGYI CHEN & YUXIANG LI

Remark 2.11. When Σ0 ∈Mp, i.e. N = ∅, ψk is a sequence of smooth diffeomorphisms
from Σ to Σ. In this case, g(Σ∞) = g(Σ), and

Σ∞ = Σ′∞ ∪ S1 ∪ S2 · · · ∪ Sm,
where Σ′∞ is a smooth Riemann surface of genus p, and each Si is a sphere.

some components

of Σ0 do not
appear in Σ∞

bubbl tree from
concentration

bubbl tree
from collar

Figure 4. Σ0 (limit of (Σ, hk)) and Σ∞

We now generalize Theorem 2.8 to surfaces with marked points. Let us briefly review
the compactification of the moduli space of surfaces with marked points. Let Mg,m be
the moduli space of compact Riemann surfaces of genus g with m marked points. Let
(Σ0, x0,1, . . . , x0,m) ∈ ∂Mg,m with nodal points N = {a1, . . . , am′}. Geometrically, Σ0 is
obtained by pinching some homotopically nontrivial closed curves which do not pass any
of x0,1, . . . , x0,m into the points in N , and Σ\N can be divided to connected components

Σ1
0, · · · , Σs

0. For each Σi
0, we can extend Σi

0 to a smooth closed Riemann surface Σi
0 by

adding a point at each puncture. Moreover, the complex structure of Σi
0 can be extended

smoothly to a complex structure of Σi
0.

We say h is a hyperbolic structure on (Σ, x1, . . . , xm) ∈Mg,m if h is a smooth complete
metric on Σ\{x1, . . . , xm} with curvature −1 and finite volume. We say h0 is a hyperbolic
structure on (Σ0, x0,1, . . . , x0,m) ∈Mg,m\Mg,m if h0 is a smooth complete metric on

Σ\{a1, . . . , am′ , x0,1, ..., x0,m}
with curvature −1 and finite volume.

For a surface Σ with hyperbolic structure h and with marked points x1, . . . , xm, we
define Σ∗ = Σ\{x1, . . . , xm}, and h∗ to be the hyperbolic structure on (Σ, x1, . . . , xm)
which is conformal to h on Σ∗.

Let {(Σk, xk,1, . . . , xk,m} be a sequence of marked surfaces in Mg,m with hyperbolic
structures hk and

(Σk, xk,1, . . . , xk,m)→ (Σ0, x0,1, . . . , x0,m) in Mg,m.

By Proposition 5.1 in [9] again, there exists a maximal collection Γk = {γ1
k, . . . , γ

m′

k } of

pairwise disjoint, simple closed geodesics in Σk with `jk = L(γjk) → 0 as k → ∞, such
that, after passing to a subsequence if necessary, the following holds:

(1) There are maps ϕk ∈ C0(Σk,Σ0), such that ϕk : Σk\Γk → Σ0\N is diffeomorphic
and ϕk(γ

i
k) = ai for i = 1, . . . ,m′, and ϕk(xk,j) = x0,j for j = 1, . . . ,m.

(2) For the inverse diffeomorphisms ψk : Σ0\N → Σk\Γk, we have ψ∗k(hk) → h in
C∞loc(Σ

∗
0\N ).

(3) Let ck be the complex structure on Σk, and c0 be the complex structure on Σ0\N .
Then ψ∗(ck)→ c0 in C∞loc(Σ0\N ).

Moreover, the Collar Lemma also holds for the moduli space with marked points.
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Theorem 2.12. In addition to the assumptions in Theorem 2.8, we assume y1, . . . , ym ∈
fk(Σ) for m ≥ 2. Then there is a stratified surface Σ∞ with g(Σ∞) ≤ g, and an f0 ∈
Fpconf (Σ∞, R) with y1, . . . , ym ∈ f0(Σ∞), such that a subsequence of {fk(Σk)} converges
to f0(Σ∞) in Hausdorff distance with

E(f0) = lim
k→+∞

E(fk) and W (f0) ≤ lim
k→+∞

W (fk).

For any η ∈ C∞0 (Rn), we have

lim
k→+∞

∫
Σk

η(fk)|∇fk|2dµhk =

∫
Σ∞

η(f0)|∇f0|2dµΣ∞ .

Proof. Let f̃k = fk ◦ ψk. In view of Theorem 2.8, we only need to consider convergence

of {f̃k} near x0,j, j = 1, . . . ,m.
Choose a complex coordinate {U, (x, y)} on Σ0 compatible with c0, with x0,j = (0, 0).

Let c′k = ψ∗k(ck). We set

e1 =
∂

∂x
, e2 = c′k(e1),

and h′k to be the metric on U defined by

h′k(e1, e1) = h′k(e2, e2) = 1, h′k(e1, e2) = 0.

Then h′k is compatible with c′k, and converges smoothly to a metric which is compatible

with c0 in U . Then we consider the weak convergence of {f̃k} in U\C({f̃k}), using the
arguments in subsection 2.3.

It remains to check that each marked point yi is on the image of f∞ or one of the

bubbles. If x0,j is not a blow up point of {f̃k}, it is obvious that yj ∈ f∞(U). Now

assume x0,j is the only blow-up point in D. We take Uk, U0, ϑk, ϑ0, f̂k, V as in the proof
of Theorem 2.8 for z = x0,j. We will prove it by induction on the number of the levels of

the bubble tree. We take zk, rk, φk and dk as in subsection 2.3 for f̂k. If |zk|/rk < L for
some fixed L, then we may assume −zk/rk → z∞, by selecting a subsequence if necessary.

Recalling that f̂k(0) ≡ yj, we get yj = f̂F (z∞). Let (r, θ) be the polar coordinates
centered at zk, Tk = − ln rk and φk : [0, Tk] × S1 → R2 be the conformal mapping
given by φk(t, θ) = (e−t, θ). We set φ−1

k (0) = (tk, θk). Then |zk|/rk → +∞ means that
tk ∈ [0, Tk] and Tk − tk → +∞. Thus we may assume tk ∈ [dik, d

i+1
k ] for some i, where

dik are defined in Lemma 2.7. Then, if tk − dik → +∞ and di+1
k − tk → +∞, we have

yj = f i∞(+∞) = f i+1
∞ (−∞). If at least one of tk − dik and di+1

k − tk is bounded above for
all large k, then we repeat the above argument at the second level of the bubble tree, and
proceed in this way for the finitely many levels of the bubble tree if necessary, and we

conclude that yj is on one of the bubbles of {f̃ ik} or {f̃ i+1
k }.

Finally, as m ≥ 2 and all yi ∈ f0(Σ∞), fk cannot converge to a single point. 2

3. Branched conformal immersions and proof of Theorem 1

For a branched conformal immersion, we have the following result:
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Theorem 3.1. [12] Suppose that f ∈ W 2,2
conf,loc(D\{0},Rn) satisfies∫

D

|Af |2 dµg <∞ and µg(D) <∞,

where gij = e2uδij is the induced metric. Then f ∈ W 2,2(D,Rn) and we have

u(z) = λ log |z|+ ω(z) where λ ≥ 0, λ ∈ Z, ω ∈ C0 ∩W 1,2(D),

−∆u = −2λπδ0 +Kge
2u in D.

The density of f(Dσ) as varifolds at f(0) is given by λ+ 1 for any small σ > 0.

The classical Gauss-Bonnet formula is generalized in [5] to smooth branched immersions
and in [12] to W 2,2 conformal immersions. Following arguments in [5] and [12], we provide
a Gauss-Bonnet formula for W 2,2 branched conformal immersions.

Lemma 3.2. Let (Σ, g) be a closed Riemann surface. Then for any f ∈ W 2,2
b,c (Σ, g,Rn),

there holds

(3.1)

∫
Σ

Kfdµf = 2πχ(Σ) + 2πb,

where b is the number of branch points counted with multiplicities and at each branch
point p the branching order is λ = θ2(p)− 1.

Proof. Without loss of generality, we assume f has only one branch point p. Let gf = e2ug
be the metric induced by f and Kf be its Gauss curvature. It is shown in [12] that

−∆gu = Kfe
2u −Kg

holds weakly on Σ\{p}: for any smooth ϕ with support in Σ\{p}, it holds∫
Σ

∇gu∇gϕdµg =

∫
Σ

ϕKfe
2udµg −

∫
Σ

ϕKgdug.

Take a complex coordinate chart {U ; z} around p = 0. For any small ε > 0, we choose
a function ϕε(z) = ϕε(|z|) between 0 and 1 with |ϕ′ε| < C/ε and equals 1 outside Dε and
0 in Dε/2. Then we have∫

Dε

∂u

∂r
ϕ′εdx =

∫
Σ

ϕεKfe
2udµg −

∫
Σ

ϕεKgdug.

By Theorem 3.1, u = λ log |z|+ ω,∫
Dε

∂u

∂r
ϕ′εdx =

∫
Dε

∂ω

∂r
ϕ′εdx+ 2πλ (ϕε(ε)− ϕε(0)) =

∫
Dε

∂ω

∂r
ϕ′εdx+ 2πλ.

Since∫
Dε

∣∣∣∣∂ω∂r ϕ′ε
∣∣∣∣ ≤ C

(∫
Dε\Dε/2

∣∣∣∣∂ω∂r
∣∣∣∣2
)1/2(∫

Dε\Dε/2

1

r2

)1/2

≤ C‖∇ω‖L2(Dε) → 0, as ε→ 0,

the classical Gauss-Bonnet theorem on (Σ, g) implies∫
Σ

Kfdµf = lim
ε→0

∫
Σ

ϕεKfdµf = lim
ε→0

∫
Σ

ϕεKgdµg + lim
ε→0

∫
Σ

∂u

∂r
ϕ′εdµg = 2πχ(Σ) + 2λπ

and complete the proof. 2
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Remark 3.3. Since
∫

Σ
Kfdµf ≤ W (f), it follows from Lemma 3.2

b ≤ 1

2π
W (f)− χ(Σ).

Moreover, ∫
Σ

|Af |2dµf = 4W (f)− 2

∫
Kf ≤ 4W (f)− 2πχ(Σ).

Then supkW (fk) < +∞ implies that supk bk < +∞ and supk
∫

Σ
|Afk |2dµfk < +∞.

To study convergence of conformal immersions, we recall an important result of Hélein.

Theorem 3.4. [8] Let fk ∈ W 2,2
conf (D,Rn) be a sequence of conformal immersions with

induced metrics (gk)ij = e2ukδij, and assume∫
D

|Afk |2 dµgk ≤ γ < γn =

{
8π for n = 3,

4π for n ≥ 4.

Assume also that µgk(D) ≤ C and fk(0) = 0. Then fk is bounded in W 2,2
loc (D,Rn), and

there is a subsequence such that one of the following two alternatives holds:

(a) uk is bounded in L∞loc(D) and fk converges weakly in W 2,2
loc (D,Rn) to a conformal

immersion f ∈ W 2,2
conf,loc(D,Rn).

(b) uk → −∞ and fk → 0 locally uniformly on D.

The above result is proved for γn = 8π/3 in [8, Theorem 5.1.1]. In [12] γn in Theorem
3.4 is shown to be optimal.

Before proving Theorem 1, we recall a monotonicity formula for proper W 2,2 conformal
immersions f : (Σ, h)→ Rn (for more details, see [15, 31]). Since f is locally Lipschitz, the
measure µ = f(µh) is an integral varifold with multiplicity function θ2(µ, x) = #f−1{x}
and approximate tangent space Txµ = dfpTpΣ a.e. for x = f(p). The immersion f satisfies∫

Σ

divgX dµg = −
∫

Σ

〈X,H〉 dµg for any X ∈ W 1,1
0 (Σ,Rn).

For the varifold µ this implies the first variation formula∫
divµφ dµ = −

∫
〈φ,Hµ〉 dµ for φ ∈ C1

c (Rn,Rn),

where the weak mean curvature is given by

Hµ(x) =

{
1

θ2(µ,x)

∑
p∈f−1{x}H(p) if θ2(µ, x) > 0,

0 else.

Observing that Hµ(x) is µ a.e. perpendicular to Txµ, the monotonicity formula in [31] is
valid for integral varifolds [15]: that for Bσ(x0) ⊂ B%(x0) one has

gx0(%)− gx0(σ) =
1

16π

∫
B%(x0)\Bσ(x0)

∣∣∣Hµ + 4
(x− x0)⊥

|x− x0|2
∣∣∣2 dµ,

where

gx0(r) =
µ(Br(x0))

πr2
+

1

4π
W (µ,Br(x0)) +

1

2πr2

∫
Br(x0)

〈x− x0, Hµ〉 dµ.
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When Σ is compact and connected, if we let σ → +∞, and % → 0, then we get the
Li-Yau inequality [19]

(3.2) θ2(µ, x0) ≤ 1

4π
W (f).

If we only let %→ 0, then we get

(3.3) θ2(µ, x0) ≤ µ(Bσ(x0))

πσ2
+ CW (f,Bσ(x0)) + C

(
µ(Bσ(x0))

πσ2

) 1
2

W (f,Bσ(x0))
1
2 .

Another useful consequence (cf. [31], [15]) is: for a compact surface Σ, it holds

(3.4)
(µ(f(Σ))

W (f)

) 1
2 ≤ diam f(Σ) ≤ C

(
µ(f(Σ))W (f)

) 1
2
.

Proof of Theorem 1. Consider a branched conformal immersion fk ∈ W 2,2
b,c (Σ, hk,Rn),

where hk satisfies (1.1). The following equation clearly holds on Σ away from the finitely
many branch points; the singularities at the branch points can be removed by using
Theorem 3.1 in the isothermal coordinates, thus it holds on entire Σ:

∆hkfk =
1

2
Hfk |∇hkfk|2.

By Remark 3.3, the number of branch points and ‖Afk‖L2 are both bounded from above.
By (3.4), diamfk(Σ) ≤ R for some R > 0. Then fk ∈ F2

conf (Σ, hk, R + R0). By
Theorems 2.8 and 2.12, fk converges in the bubble tree sense to a mapping f0 which is
a point or a conformal mapping from a stratified surface into Rn. When f0 is a constant
map, we need to do nothing. Thus, we may assume f0 is a conformal mapping from a
stratified surface Σ∞ into Rn. On each component Σi

∞ of Σ∞, f0 is not a point and can

be extended to a conformal mapping from Σi
∞, which is a smooth Riemann surface, into

Rn.
To finish the proof, we only need to prove that f0 is also a branched W 2,2 conformal

immersion of Σi
∞ in Rn. Recalling that locally f0 is the weakly W 2,p limit of a sequence in

F2
conf (D,R + R0) for some p ∈ (1, 4

3
), we only need to prove the following: For branched

conformal immersions f ′k from D into Rn with uniform upper bounds on the number of
branch points and µ(fk) + ‖Af ′k‖L2(D), if the weak limit of f ′0 in W 2,p

loc (D \ C({fk})) is not

a point, then f ′0 is a branched conformal immersion, and f ′k converges weakly in W 2,2 on
D minus a finite set.

Let P be the limit set of the branch points of f ′k, and let

S({f ′k}) = {z ∈ D : lim
r→0

lim
k→+∞

∫
Dr(z)

|Ak|2 ≥ ε̂2},

where 0 < ε̂ ≤ min{
√

4π, 4ε0}. Using the arguments we get C({fk}) is a finite set , we can
prove that, after passing to a subsequence, S({f ′k}) is also a finite set. By Theorem 3.4,
after passing a subsequence, f ′k will converge weakly in W 2,2

loc (D\(S ∪ P )) to a conformal
immersion of D \ (S ∪ P ) in Rn. By Theorem 3.1, the limit can be extended across the
finite set S ∪ P to a branched conformal immersion of D in Rn. 2
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4. Willmore functional for surfaces in compact manifolds

Let N be a compact Riemannian manifold without boundary. We embed N into Rn

isometrically so that any immersion of Σ in N can be regarded as an immersion in Rn.
Let AΣ,N , AΣ,Rn and AN,Rn be the second fundamental forms of Σ in N , in Rn and N in
Rn respectively. The L2 integrals of these quantities can be related as in the following
simple lemma, whose proof can be deduced from the compactness of N and Remark 3.3.

Lemma 4.1. For any f ∈ W 2,2
b,c (Σ, h,N), and i : Σ→ Rn, which is isometric embedding,

we have

(4.1)

∫
Σ

|Hi◦f,Σ,Rn|2dµi◦f ≤ Cµ(f) +

∫
Σ

|Hf,Σ,N |2dµf ,

and

(4.2)

∫
Σ

|Ai◦f,Σ,Rn|2dµf ≤ C

∫
Σ

(1 + |Hf,Σ,N |2)dµf + C ′,

where C only depends on N and C ′ only depends on the Euler characteristic of Σ.

4.1. Willmore sphere passing through fixed points. In this subsection, we let

Wn(f) =

∫
S2

(
1 +

1

4
|Hf |2

)
dµf

where f is a W 2,2 conformal immersion of S2 in the round unit sphere Sn for some
n > 2. It is known that Wn(f) corresponds to the Willmore functional in Rn under the
stereographic projection.

We consider the existence of minimizers of

βn0 (y1, . . . , ym) = inf{Wn(f) : f ∈ W 2,2
conf (S

2,Sn), y1, . . . , ym ∈ f(S2)}
where y1, . . . , ym are fixed distinct points in Sn. When m ≥ 2, βn0 (y1, . . . , ym) is positive
by the conformality of the functions f .

Proposition 4.2. Let m ≥ 2. If βn0 (y1, . . . , ym) is less than 8π, then βn0 (y1, . . . , ym) is
attained by a W 2,2-conformally embedded S2 in Sn.

Proof. Let {fk} be a minimizing sequence of βn0 (y1, . . . , ym). We can consider fk as
conformal map from S2 into Rn+1. By Theorem 1, fk (pass to a subsequence if necessary)
will converge to a mapping f0 which is a W 2,2 branched conformal immersion from a
stratified sphere Σ∞ into Sn with

y1, . . . , ym ∈ f0(Σ∞), Wn(f0) ≤ βn0 (y1, . . . , ym) < 8π.

Composing with a stereographic projection Π from Sn minus a point not on f0(Σ∞) into
Rn, we see Wn(f0) = W (Π ◦ f0) and θ2

f0(p) = θ2
Π◦f0(p). Now, by (3.2) we have

θ2
f0(p) ≤

1

4π
Wn(f0).

By Theorem 3.1

λ(p) + 1 = θ2
f0(p) ≤

1

4π
Wn(f0) < 2

thus λ(p) = 0 which means f0 has no branched points. Moreover, that the area density of
Σ∞ is one everywhere implies that Σ∞ has only 1 component and f0 has no intersection
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points. Thus Σ∞ = S2, and f0 is an (Lipschitz) embedding. 2

Corollary 4.3. For any ε > 0, there is a Willmore sphere f : S2 → Sn with Wn(f) <
4π + ε, which has at least 2 nonremovable singular points.

Proof. Take five distinct points y1, . . . , y5 ∈ Sn, such that there is no round 2-sphere
passing through all of them. Recall the Willmore functional Wn of a round 2-sphere is
4π. We can choose the five points to be very closed to a round 2-sphere, such that there
is a 2-sphere Σ which is not round and contains y1, . . . , y5 with

Wn(Σ) < 4π + ε.

Then we can find a W 2,2 conformal embedding f : S2 → Sn, such that f(S2) passes
through y1, . . . , y5, and attains βn0 (y1, . . . , y5), by Proposition 4.2.

Choose a point P ∈ Sn\Σ as the north pole. Let Π be the stereographic projection

from Sn\{P} to Rn, and denote ỹi = Π(yi) and f̃ = Π(f). By the conformal invariance
of the Willmore functional, we have

Wn(f) =
1

4

∫
S2

|Hf̃ |
2dµf̃ .

Then f̃ attains

inf

{
1

4

∫
S2

|Hϕ|2dµϕ : ϕ ∈ W 2,2
conf (S

2,Rn), ỹ1, . . . , ỹ5 ∈ ϕ(S2)

}
.

Then by results in [27], f̃(S2) is smooth on f̃(S2)\{ỹ1, . . . , ỹ5}. However, the Gap Lemma
in [14, Theorem 2.7] tells us that there is an ε > 0, such that any closed smooth Willmore
sphere with Willmore functional < 4π + ε is a round sphere. Therefore, at least one of
ỹ1, . . . , ỹ5 is a nonremovable singular point. However, a Willmore sphere cannot have only

one singular point, by Lemma 4.2 in [15] (which is true in Rn), therefore f̃ has at least 2
singular points. 2

4.2. Minimizing Willmore functional subject to area constraint. In this sub-
section, N stands for a compact submanifold of Rn with induced metric. We say f ∈
W 2,2
conf (Σ, h,N) if f ∈ W 2,2

conf (Σ, h,Rn) and f(Σ) ⊂ N . For f ∈ W 2,2
conf (Σ, h,N), we define

W (f) = W (f,Σ, N) =
1

4

∫
Σ

|Hf,Σ,N |2dµf .

First, we consider the case of genus zero. Set

β0(N, a) = inf{W (f) : µ(f) = a, f ∈ W 2,2
conf (S

2, N)}.

Proposition 4.4. We have

lim
a→0

β0(N, a) = 4π.

Moreover, when a is sufficiently small, there is an embedding f ∈ W 2,2
conf (S

2, N), such that

µ(f) = a, and W (f) = β0(N, a).
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Proof. First, we show that

(4.3) lim sup
a→0

β0(N, a) ≤ 4π.

Take a point p ∈ N and a normal coordinate neighborhood U around p. Let

Sr = {(x1, x2, x3, 0, . . . , 0) ∈ TpN : (x1)2 + (x2)2 + (x3)2 = r2}.

It is easy to check that

lim
r→0

W (expp(Sr), N) = 4π.

For any a which is sufficiently small, we can find r = r(a) such that µ(expp(Sr)) = a and
r → 0 as a→ 0. Then (4.3) follows from β0(N, a) ≤ W (expp(Sr)).

Next, we prove that β0(N, a) can be attained by an embedded 2-sphere. Let fk ∈
W 2,2
conf (S

2, N) be a minimizing sequence of β0(N, a). By Lemma 4.1 and (4.3), when a is
sufficiently small and k is sufficiently large

W (fk, S
2,Rn) ≤ W (fk, S

2, N) + Cµ(fk) < 4π + ε(a, k) + Ca

where ε(a, k) → 0 as a → 0 and k → ∞. By Theorem 1, {fk} has a limit f0, which is a
branched conformal immersion from a stratified sphere S into N with

µ(f0) = a and W (f0) ≤ β0(N, a).

Then by (3.2), for any p ∈ S it holds

θ2(f0(p)) < 2.

Thus S is a 2-sphere and f0 has no branch points and no self-intersection points. Hence
f0 is an embedding. Therefore f0 is a minimizer for β0(N, a):

W (f0) = β0(N, a).

Finally, we prove

lim
a→0

β0(N, a) ≥ 4π.

By Lemma 4.1,

W (f0, S
2,Rn) ≤ W (f0, S

2, N) + Ca.

It is well-known that W (f0, S
2,Rn) ≥ 4π, which completes the proof. 2

We now consider the case of genus larger than 0. Recall a result of Schoen-Yau [30]
and Sacks-Uhlenbeck [29]: If ϕ : Σ→ N induces an injection from the fundamental group
of Σ to that of N , then there is a branched minimal immersion f : Σ → N so that f
induces the same action on the fundamental groups as ϕ and f has least area among all
such maps. If π2(N) = 0 then f is minimizing in its homotopy class. We denote the area
of the branched minimal immersion fϕ by aϕ.

Let g > 0 be the genus of a compact Riemann surface Σ and let φ : Σ → N be a
continuous map. Define

βg(N, a, φ) = inf
{
W (f) : f ∈ W̃ 2,2(Σ, N), µ(f) = a, f ∼ φ

}
,

where f ∼ φ means that f is homotopic to φ.
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Proposition 4.5. Let Σ be a closed Riemann surface with genus g > 0 and let N be
a compact Riemannian manifold with π2(N) = 0. Let ϕ : Σ → N be a map which
induces an injective ϕ# : π1(Σ) → π1(N). Then we can find an δ > 0, such that for
any a ∈ [aϕ, aϕ + δ), there is a branched conformal immersion f0 of a smooth Riemann
surface (Σ, h) of genus g in Rn, such that µ(f0) = a and W (f0) = βg(N, a, ϕ) and f0 is
homotopic to ϕ. Moreover, when dimN = 3, we can choose δ to be small such that f0 is
an immersion.

Proof. The proof will be divided into several steps.
Step 1. We prove that lima→a0 βg(N, a, ϕ) = 0.
Let F ∈ C∞(Σ× [0, 1],Rn), such that F (·, t) is an immersion for each t and

F (·, 0) = fϕ, µ(F (·, 1)) ≥ aϕ.

As F (·, t) ∼ ϕ and fϕ is a minimal surface,

lim
a→aϕ

βp(N, a, ϕ) ≤ lim
t→0

W (F (·, t)) = W (fϕ) = 0.

Step 2. Smooth convergence of conformal structures.
We take a minimizing sequence {fk} of βg(N, a, f). Recall that fk are W 2,2 branched

conformal immersions from (Σ, hk) into Rn, where hk are the smooth metrics with cur-
vature 0 or −1. Because π2(N) = 0 and fk ∼ ϕ for each k, fk induces the same injective
action on the fundamental groups as ϕ does; hence the conformal structures of hk stay
in a compact set of the moduli space for both the cases g > 1 and g = 1, therefore,
after passing to a subsequence if necessary, Σk = (Σ, hk) converges to a Riemann surface
(Σ, h0) in Mg (cf. [30]). The results in [30] applies as fk belong to W 1,2 ∩ C0.

Step 3. We prove that {fk} has no bubbles, i.e. the limit f0 is a map defined on Σ.
By Remark 2.11, f0 is defined on Σ∞ = Σ0∪S1∪S2 · · ·∪Sm, where Si are all 2-spheres

and Σ0 is a smooth surface of genus g. We prove m = 0. Assume m ≥ 1. By Theorem
1, µ(f0) = a and W (f0) ≤ βp(N, a, ϕ). Further, fk(Σ) converges to f0(Σ∞) in Hausdorff
distance and f0|Sj is homotopic to a constant map for each j = 1, . . . ,m as π2(N) = 0.
We conclude that f0|Σ0 is homotopic to ϕ. Consequently, µ(f0(Σ0)) ≥ aϕ. Then we get

µ(f0, Si) ≤ µ(Σ)− µ(Σ0) ≤ a− aϕ and W (f0, Si, N) ≤ βg(N, a, ϕ).

By Lemma 4.1 and Step 1,

W (f0, Si,Rn) ≤ C(a− aϕ) + βg(N, a, ϕ)→ 0 as a→ aϕ.

This, however, contradicts Proposition 2.2 when the Willmore functional of Si goes below
the gap constant.

Step 4. We consider the case of dimN = 3.
We will use the result that there are no branch points for minimal surfaces [6, 23] to

prove that f0 has no branch points when δ is sufficiently small.
If the claimed result is not true, then there is a sequence of numbers ak > aϕ with

ak → aϕ and a sequence of W 2,2 branched conformal immersions f0,k of (Σ, hk) in N with
µ(f0,k) = ak, W (f0,k,Σ, N) = βg(N, ak, ϕ) by the first part of the proposition, and each
f0,k has at least a branch point pk. By Step 1, W (f0,k,Σ, N)→ 0.

As in Step 2, (Σ, hk) converges to a smooth surface (Σ, h0) in Mg. For simplicity,
we will still denote f0,k ◦ ψk (see Remark 2.11) by f0,k which is a branched conformal
immersion from (Σ, ψ∗k(hk)) into Rn. By Theorem 2.8, we may set f0,0 to be the limit of
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f0,k with µ(f0,0) = a and W (f0,0) = 0. Arguing as in Step 3, {f0,k} has no bubbles, and

f0,0 ∈ W 2,2
b,c (Σ, h0,Rn) for some smooth h0. Moreover, f0,0 is a minimal surface in N . By

the results of Gulliver and Osserman, f0,0 is a smooth immersion of Σ in N .
Since pk is a branch point, by Theorem 3.1, the area density

θ2
f0,k(pk)(f0,k(U)) ≥ 2,

where U is a neighborhood of pk → p in Σ for sufficiently large k. As f0,0 is immersive,
we can take U small so that f0,0 is an embedding on U and µ(f0,0(U)) < ε′. Further, by
the monotonicity formula for minimal surfaces, for small r and geodesic balls BN

r (f0,0(p))
in N , it holds

µ(f0,0(U) ∩BN
r (f0,0(p))) ≤ (1 + ε′)πr2.

From the expansion of metric in normal coordinates, for small r and the Euclidean ball
Br(f0,0(p)) in Rn we have

µ(f0,0(U) ∩Br(f0,0(p))) ≤ µ(f0,0(U) ∩BN
r+cr2(f0,0(p))) ≤ (1 + ε′)πr2 +O(r3)

where c depends on N .
In light of Lemma 4.1, W (f0,k, U,Rn) < ε20 if we choose ε′ to be very small and k large

enough. Then {f0,k} has no blow-up points in U by the ε-regularity. Then we have

µ(f0,k(U) ∩Br(f0,k(pk)))→ µ(f0,0(U) ∩Br(f0,0(p))) as k →∞.
By Lemma 4.1,

W (f0,k, U,Rn) ≤ Cε′ +W (f0,k, U,N).

Then by (3.3),

θ2
f0,k(p)(f0,k(U)) ≤ µ(f0,k(U) ∩Br(f0,k(pk)))

πr2
+W (f0,k, U,Rn) + CW (f0,k, U,Rn)

1
2 .

Hence,

2 ≤ lim
U→p

lim
k→∞

(
µ(f0,k(U) ∩Br(f0,k(pk)))

πr2
+W (f0,k, U,Rn) + CW (f0,k, U,Rn)

1
2

)
≤ 1 + ε′.

This is impossible for ε′ small. 2

4.3. Minimizing Willmore functional of surfaces with a Douglas type condition.
In this subsection, we consider a sufficient condition of Douglas type as in the minimal
surface theory for existence of minimizers of the Willmore functional.

First, we assume N to be a compact Riemannian manifold with negative sectional
curvatures. In negatively curved N , surface area is bounded by the Willmore functional
and the genus of the surface.

Lemma 4.6. Let N be a compact Riemannian manifold with K ≤ −c < 0. Then for any

f ∈ W̃ 2,2(Σ, N),
µ(f) ≤ c−1 (W (f,Σ, N)− 2πχ(Σ)) .

Especially, when g(Σ) = 0 or 1,

µ(f) ≤ c−1W (f,Σ, N).
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Proof. From the Gauss equation:

RΣ(X, Y,X, Y ) = RN(X, Y,X, Y ) + 〈A(X,X), A(Y, Y )〉 − 〈A(X, Y ), A(X, Y )〉.
we have

KΣ ≤ Kf∗(TΣ) +
1

4
|Hf,Σ,N |2.

Then from the generalized Gauss-Bonnet formula - Lemma 3.2, we have

2πχ(Σ) + 2πb ≤ −cµf (Σ) +W (f,Σ, N)

where b is the number of branch points, in turn

cµf (Σ) ≤ W (f,Σ, N)− 2πχ(Σ).

When g(Σ) ≤ 1 the Euler number χ(Σ) is nonnegative, in this case

cµf (Σ) ≤ W (f,Σ, N).

Dividing by c yields the desired area bounds. 2

Recall that any connected stratified surface Σ can be written as union of finitely many
connected 2-dimensional components: Σ =

⋃
i Σi. Denote the genus of Σ and Σi by g(Σ)

and g(Σi), accordingly. We introduce a subset S(g) of all stratified surfaces as follows.

(1) If g > 0, S(g) = {Σ : Σ =
⋃
i Σi with g(Σi) < g for all i} .

(2) If g = 0, S(0) = {Σ : Σ =
⋃
i Σi with g(Σ) = 0 and i ≥ 2} .

Note that any Σ ∈ S(g) with g(Σ) = g must be singular, in the sense that it has more
than one components. Especially, S(g) ∩Mg = ∅. However, when g ≥ 1, S(g) contains
smooth surfaces of genus ≤ g − 1.

Define

α∗(g) = inf{W (f,Σ,Rn) : f ∈ W 2,2
b,c (Σ,Rn), f(Σ) ⊂ N,Σ ∈ S(g)}

α(g) = inf{W (f,Σ,Rn) : f ∈ W 2,2
b,c (Σ,Rn), f(Σ) ⊂ N,Σ ∈Mg}.

We now state a sufficient condition, similar to the Douglas condition for minimal sur-
faces, for existence of minimizers for the Willmore functional.

Proposition 4.7. Let N be a compact Riemannian manifold with negative sectional cur-
vatures. If 0 < α(g) < α∗(g), then there is a W 2,2 branched conformal immersion f from
a smooth surface of genus g into N which minimizes the Willmore functional among all
such maps.

Proof. Let fk : (Σ, hk) → N ↪→ Rn be a minimizing sequence of α(g). By Lemma 4.6,
the areas µ(fk(Σ)) are uniformly bounded. Since S2 ∈ S(g) for any g ≥ 0, α∗(g) ≤ 4π
by Proposition 4.4, hence by assumption α(g) < α∗(g) ≤ 4π. The sequence {fk} cannot
converge to a point since otherwise the images fk(Σ) would lie in a coordinate chart of
the point in N and then for any ε > 0, W (fk) ≥ 4π − ε for large k, in turn α(g) ≥ 4π as
{fk} is a minimizing sequence of α(g). Then from Theorem 1, there exists a subsequence
of {fk}, still denoted by {fk}, a limit map f0 ∈ W 2,2

b,c (Σ∞,Rn) from a stratified Riemann
surface Σ∞ with g(Σ∞) ≤ g into N ↪→ Rn, and

W (f0,Σ∞,Rn) ≤ lim
k→∞

W (fk,Σ,Rn) = α(g).
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We write Σ∞ =
⋃m
i=1 Σi. If g(Σ∞) = g, we consider two cases. Case 1: g(Σi) = g for

some i = 1, ...,m. In this case,

W (f0|Σ1 ,Σ1,Rn) ≤ W (f0,Σ∞,Rn) = α(g).

So f0(Σi) is a smooth genus g surface attains α(g). Case 2: g(Σi) < g for all i = 1, ...,m.
Thus Σ∞ ∈ S(g), and in turn

α∗(g) ≤ W (f0,Σ∞,Rn) ≤ α(g) < α∗(g).

This contradiction rules out Case 2. If g(Σ∞) < g then Σg ∈ S(g). Therefore

α∗(g) ≤ W (f0,Σ∞,Rn) ≤ α(g) < α∗(g)

and this is impossible. 2

Instead of the curvature assumption on N , we set, for 0 < a <∞,

γ∗(g, a) = inf{W (f,Σ,Rn) : f ∈ W 2,2
b,c (Σ,Rn), f(Σ) ⊂ N,Σ ∈ S(g), µ(f(Σ)) ≤ a}

γ(g, a) = inf{W (f,Σ,Rn) : f ∈ W 2,2
b,c (Σ,Rn), f(Σ) ⊂ N,Σ ∈Mg, µ(f(Σ)) ≤ a}.

Since there is no loss of measure in the limit process, as asserted in Theorem 1, the same
proof above allows us to conclude

Proposition 4.8. Let N be a compact Riemannian manifold. If 0 < γ(g, a) < γ∗(g, a),
then there is a W 2,2 branched conformal immersion f from a smooth surface of genus g
into N which minimizes the Willmore functional among all such maps.
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