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Asymptotic behavior of a differential
operator with discontinuities at two points3

Qiuxia Yanga,b∗† and Wanyi Wanga

In this paper, we study a Sturm–Liouville operator with eigenparameter-dependent boundary conditions and transmis-5
sion conditions at two interior points. By establishing a new operator A associated with the problem, we prove that
the operator A is self-adjoint in an appropriate space H, discuss completeness of its eigenfunctions in H, and obtain its7
Green function. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: Sturm–Liouville problem; transmission conditions; eigenparameter-dependent boundary conditions; eigenvalues;9
eigenfunction; Green function; completeness

1. Introduction11

In recent years, more and more researchers are interested in the discontinuous Sturm–Liouville problem for its application in physics
(see [1, 2]). Various physics applications of this kind of problem are found in many literatures, including some boundary value with13
transmission conditions that arise in the theory of heat and mass transfer (see [3--5]).

By using the techniques of [3, 6] and some new approaches, we define a new linear operator A associated with the problem in15
appropriate Hilbert space H such that the eigenvalues of the problem coincide with those of A. We discuss its eigenvalues and
eigenfunctions, obtain asymptotic approximation formulas for eigenvalues, prove that the eigenfunctions of A are complete and17
construct its Green function, promote and deepen the previous conclusions.

In this study, we consider a discontinuous eigenvalue problem consisting of Sturm–Liouville equation19

lu :=−(a(x)u′ (x))′+q(x)u(x)=�u(x), x ∈J (1)

where J= [a,�1)∪(�1,�2)∪(�2, b], a(x)=a2
1 for x ∈ [a,�1), a(x)=a2

2 for x ∈ (�1,�2) and a(x)=a2
3 for x ∈ (�2, b], a1>0, a2>0 and a3>0 are

given real numbers; the real value function q(x)∈L1[J, R]; �∈C is a complex eigenparameter; boundary conditions at the endpoints

l1u := �1u(a)+�2u′(a)=0 (2)

l2u := �(�′
1u(b)−�′

2u′(b))+(�1u(b)−�2u′(b))=0 (3)

and the four transmission conditions at the points of discontinuities x =�1 and x =�2

l3u := u(�1 +0)−�3u(�1 −0)−�3u′(�1 −0)=0 (4)

l4u := u′(�1 +0)−�4u(�1 −0)−�4u′(�1 −0)=0 (5)

l5u := u(�2 +0)−�5u(�2 −0)−�5u′(�2 −0)=0 (6)

l6u := u′(�2 +0)−�6u(�2 −0)−�6u′(�2 −0)=0 (7)

where �i, �i and �′
j (i=1, 6, j =1, 2) are real numbers. Here we assume that �2

1 +�2
2 �=0 and21

�1 =
∣∣∣∣∣�3 �3

�4 �4

∣∣∣∣∣>0, �2 =
∣∣∣∣∣�5 �5

�6 �6

∣∣∣∣∣>0, �=
∣∣∣∣∣�

′
1 �1

�′
2 �2

∣∣∣∣∣>0
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2. Operator formulation1

In this section, we introduce the special inner product in the Hilbert Space H :=H1 ⊕C, where H1 = (L2(J), 〈·, ·〉1), C denotes the Hilbert
space of complex numbers and a symmetric linear operator A defined on this Hilbert space such that (1)–(7) can be considered as3
the eigenvalue problem of this operator. Namely, we define an inner product in H by

〈F, G〉= �1�2

a2
1

∫ �1

a
f g dx+ �2

a2
2

∫ �2

�1

f g dx+ 1

a2
3

∫ b

�2

f g dx+ 1

�
rs (8)

5

for

F := (f, r), G := (g, s)∈H7

In the Hilbert space H consider the operator A which is defined by

D(A)={(f (x), r)∈H|f1 , f ′
1 ∈ACloc((a,�1)), f2, f ′

2 ∈ACloc((�1,�2)), f3, f ′
3 ∈ACloc((�2, b)),

lf ∈H1, l1f = l3f = l4f = l5f = l6f =0, r =�′
1f (b)−�′

2f ′(b)}
AF = (lf,−(�1f (b)−�2f ′(b))) for F = (f,�′

1f (b)−�′
2f ′(b))∈D(A)

For convenience, ∀(f, r)∈D(A), let

N(f )=�1f (b)−�2f ′(b), N′(f )=�′
1f (b)−�′

2f ′(b)9

Now we can rewrite the considered problem (1)–(7) in the operator form AF =�F.

Lemma 111
The eigenvalues and eigenfunctions of the problem (1)–(7) are defined as the eigenvalues and the first components of the corre-
sponding eigenelements of the operator A respectively.13

Lemma 2
The domain D(A) is dense in H.15

Proof
Let F = (f (x), r)∈H, F ⊥D(A) and C̃∞

0 be a functional set such that17

�(x)=

⎧⎪⎪⎨⎪⎪⎩
�1(x), x ∈ [a,�1)

�2(x), x ∈ (�1,�2)

�3(x), x ∈ (�2, b]

for �1(x)∈ C̃∞
0 [a,�1), �2(x)∈ C̃∞

0 (�1,�2) and �3(x)∈ C̃∞
0 (�2, b]. Since C̃∞

0 ⊕0⊂D(A)(0∈C), any U= (u(x), 0)∈ C̃∞
0 ⊕0 is orthogonal to19

F, namely

〈F, U〉= �1�2

a2
1

∫ �1

a
f1u dx+ �2

a2
2

∫ �2

�1

f2u dx+ 1

a2
3

∫ b

�2

f3u dx =〈f, u〉1
21

we can learn that f (x) is orthogonal to C̃∞
0 in H1, this implies f (x)=0. So for all G= (g(x), s)∈D(A), 〈F, G〉= (1 / �)rs=0. Thus r =0 since

s=N′(g) can be chosen arbitrarily. So F = (0, 0), which prove the assertion. �23

Theorem 3
The operator A is self-adjoint in H.25

Proof
Let F, G∈D(A). By two partial integrations we obtain

〈AF, G〉 = 〈F, AG〉+�1�2(W(f, g;�1 −0)−W(f, g; a))+�2(W(f, g;�2 −0)−W(f, g;�1 +0))

+W(f, g; b)−W(f, g;�2 +0)− 1

�
(N(f )N′(g)−N′(f )N(g))

where, as usual, by W(f, g; x) we denote the Wronskians f (x)g′(x)−f ′(x)g(x). �

As f and g satisfy the boundary condition (2), it follows that W(f, g; a)=0. From the transmission conditions (4)–(7), we get27

W(f, g;�i −0)=�iW(f, g;�i +0)(i=1, 2)

2

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010
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Further, it is easy to verify that1

�W(f, g; b)=N(f )N′(g)−N′(f )N(g)

Then we have 〈AF, G〉=〈F, AG〉(F, G∈D(A)). So A is symmetric.3
It remains to show that if 〈AF, W〉=〈F, U〉 for all F = (f, N′(f ))∈D(A), then W ∈D(A) and AW =U, where W = (w(x), r) and U= (u(x), s),

i.e. (i) w1, w′
1 ∈ACloc((a,�1)), w2, w′

2 ∈ACloc((�1,�2)), w3, w′
3 ∈ACloc((�2, b)) and lw ∈H1; (ii) r =�′

1w(b)−�′
2w′(b); (iii) l1w = l3w = l4w =5

l5w = l6w =0; (iv) u= lw; (v) s=−�1w(b)+�2w′(b).
For an arbitrary point F ∈ C̃∞

0 ⊕0⊂D(A) such that7

�1�2

a2
1

∫ �1

a
(lf )w dx+ �2

a2
2

∫ �2

�1

(lf )w dx+ 1

a2
3

∫ b

�2

(lf )w dx = �1�2

a2
1

∫ �1

a
f u dx+ �2

a2
2

∫ �2

�1

f u dx+ 1

a2
3

∫ b

�2

f u dx

that is 〈lf, w〉1 =〈f, u〉1. According to normal Sturm–Liouville theory, (i) and (iv) hold. By (iv), equation 〈AF, W〉 =〈F, U〉, ∀F ∈D(A),9
becomes

〈lf, w〉1 =〈f, lw〉1 + N(f )r

�
+ N′(f )s

�11

However

〈lf, w〉1 = 〈f, lw〉1 +�1�2(W(f, w;�1 −0)−W(f, w; a))

+�2(W(f, w;�2 −0)−W(f, w;�1 +0))+W(f, w; b)−W(f, w;�2 +0)

So

N(f )r

�
+ N′(f )s

�
=�1�2(W(f, w;�1 −0)−W(f, w; a))+�2(W(f, w;�2 −0)−W(f, w;�1 +0))+W(f, w; b)−W(f, w;�2 +0) (9)13

By Naimark’s Patching Lemma [7], there is an F ∈D(A) such that f (a)=f ′(a)=f (�1 −0)=f ′(�1 −0)=f (�1 +0)= f ′(�1 +0)= f (�2 −0)=
f ′(�2 −0)= f (�2 +0)= f ′(�2 +0)=0, f (b)=�′

2 and f ′(b)=�′
1. Thus N′(f )=0. Then from (9), equality (ii) be true. Similarly one proves (v).15

Next choose F ∈D(A) so that f (b)= f ′(b)= f (�1 −0)= f ′(�1 −0)= f (�2 −0)= f ′(�2 −0)=0, f (a)=�2 and f ′(a)=−�1. Then N′(f )=N(f )=0.
So from (9), we get �1w(a)+�2w′(a)=0. Let F∈D(A) satisfies f (b)= f ′(b)= f (a)= f ′(a)= f (�1 +0)= f (�2 −0)= f ′(�2 −0)= f (�2 +0)=17
f ′(�2 +0)=0, f (�1 −0)=−�3, f ′(�1 −0)=�3 and f ′(�1 +0)=�1. Then N′(f )=N(f )=0. By (9), we have w(�1 +0)=�3w(�1 −0)+
�3w′(�1 −0). Similarly one prove l4w = l5w = l6w =0.19

Corollary 4
All eigenvalues of the problem (1)–(7) are real, and if �1 and �2 are two different eigenvalues, then the corresponding eigenfunctions21
f (x) and g(x) of this problem are orthogonal in the sense of

�1�2

a2
1

∫ �1

a
f g dx+ �2

a2
2

∫ �2

�1

f g dx+ 1

a2
3

∫ b

�2

f g dx+ 1

�
(�′

1f (b)−�′
2f ′(b))(�′

1g(b)−�′
2g′(b))=0

23

3. Simplicity of eigenvalues

Lemma 525
Let the real-valued function q(x)∈C[a, b] be continuous on [a, b] and f (�), g(�) are given entire functions. Then for ∀�∈C Equation (1)
has a unique solution u=u(x,�) satisfying the initial conditions27

u(a)= f (�), u′(a)=g(�) (or u(b)= f (�), u′(b)=g(�))

For each fixed x ∈ [a, b], u(x,�) is an entire function of �.29

Let �1(x,�) be the solution of Equation (1) on the interval [a,�1), satisfying the initial conditions

�1(a,�)=�2, �′
1(a,�)=−�1 (10)31

By virtue of Lemma 5, after defining this solution we can define the solution �2(x,�) of Equation (1) on the interval [�1,�2) by the
initial conditions33

�2(�1,�)=�3�1(�1,�)+�3�′
1(�1,�), �′

2(�1,�)=�4�1(�1,�)+�4�′
1(�1,�) (11)

After defining this solution we can define the solution �3(x,�) of Equation (1) on the interval [�2, b] by the initial conditions35

�3(�2,�)=�5�2(�2,�)+�5�′
2(�2,�), �′

3(�2,�)=�6�2(�2,�)+�6�′
2(�2,�) (12)

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010
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Analogously we shall define the solution 	3(x,�), 	2́(x,�) and 	1(x,�) by initial conditions

	3(b,�) = ��′
2 +�2, 	′

3(b,�)=��′
1 +�1 (13)

	2(�2,�) = �6	3(�2,�)−�5	′
3(�2,�)

�2
, 	′

2(�2,�)= �6	3(�2,�)−�5	′
3(�2,�)

−�2
(14)

	1(�1,�) = �4	2(�1,�)−�3	′
2(�1,�)

�1
, 	′

1(�1,�)= �4	2(�1,�)−�3	′
2(�1,�)

−�1
(15)

1
Let us consider the Wronskians


i(�) :=W�(�i ,	i ; x) :=�i	
′
i −�′

i	i , x ∈�i(i=1, 3)3

which are independent of x ∈�i(i=1, 3) and are entire functions, where �1 = [a,�1), �2 = (�1,�2) and �3 = (�2, b]. This sort
of calculation gives 
3(�)=�2
2(�)=�1�2
1(�). Now we may introduce in consideration the characteristic function 
(�) as5

(�) :=
1(�).

Theorem 67
The eigenvalues of the problem (1)–(7) consist of the zeros of function 
(�).

Proof9
Let u0(x) be any eigenfunction corresponding to eigenvalue �0. Then the function u0(x) may be represented in the form

u0(x)=

⎧⎪⎪⎨⎪⎪⎩
C1�1(x,�0)+C2	1(x,�0), x ∈ [a,�1)

C3�2(x,�0)+C4	2(x,�0), x ∈ (�1,�2)

C5�3(x,�0)+C6	3(x,�0), x ∈ (�2, b]

(16)

11

where at least one of the constants ci (i=1, 6) is not zero. �

Consider the true function13

lv(u0(x))=0, v =1, 6

as the homogenous system of linear equations in the variables ci(i=1, 6) and taking into account (10)–(15), it follows that the15
determinant of this system is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 
1(�0) 0 0 0 0

0 0 0 0 
3(�0) 0

−�2(�1,�0) −	2(�1,�0) �2(�1,�0) 	2(�1,�0) 0 0

−�′
2(�1,�0) −	′

2(�1,�0) �′
2(�1,�0) 	′

2(�1,�0) 0 0

0 0 −�3(�2,�0) −	3(�2,�0) �3(�2,�0) 	3(�2,�0)

0 0 −�′
3(�2,�0) −	′

3(�2,�0) �′
3(�2,�0) 	′

3(�2,�0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=�3

1�2
2
(�0)4 =0

17

Definition 7
The analytic multiplicity of an eigenvalue � of the problem (1)–(7) is its order as a root of the characteristic equation 
(�)=0.19

Definition 8
The geometric multiplicity of an eigenvalue � of the problem (1)–(7) is the dimension of its eigenspace, i.e. the number of its linearly21
independent eigenfunctions.

Theorem 923
The eigenvalues of the problem (1)–(7) are analytically simple.

Proof25

Let �=u+ iv. For convenience, set �=�(x,�), �1� = ��1
�� , �′

1� = ��′
1

�� , etc. We differentiate equation l	=�	 with respect to � and have

l	� =�	�+	 (17)27

By integration by parts, we get

〈l	� ,�〉1 −〈	�, l�〉1 =�1�2(	1��
′
1 −	′

1��1)|�1
a +�2(	2��

′
2 −	′

2��2)|�2
�1

+(	3��
′
3 −	′

3��3)|b
�2

(18)294

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010
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Substituting (17) and l�=�� into the left side of (18), we have1

�〈	�,�〉1 +〈	,�〉1 −〈	�,��〉1 =〈	,�〉1 +2iv〈	�,�〉1

Moreover3

�1�2(	1��
′
1 −	′

1��1)|�1
a +�2(	2��

′
2 −	′

2��2)|�2
�1

+(	3��
′
3 −	′

3��3)
∣∣∣b
�2

=�1�2(�1	1�(a,�)+�2	′
1�(a,�))+(�′

2�′
3(b,�)−�′

1�3(b,�))

Note that5


′(�)=�1	1�(a,�)+�2	′
1�(a,�)

So, (18) becomes7

�1�2
′(�)=〈	,�〉1 +2iv〈	�,�〉1 −(�′
2�′

3(b,�)−�′
1�3(b,�)) (19)

Next, let � be arbitrary zero of 
(�). By Corollary 4, � is real. Since9


(�)=
∣∣∣∣∣�1(x,�) 	1(x,�)

�′
1(x,�) 	′

1(x,�)

∣∣∣∣∣=0

We have �1(x,�)=c1	1(x,�)(c1 �=0), �2(x,�)=c2	2(x,�)(c2 �=0) and �3(x,�)=c3	3(x,�)(c3 �=0), where c1, c2, c3 ∈C. From11

�2(�1,�)=c1(�3	1(�1,�)+�3	′
1(�1,�))=c1	2(�1,�)

and13

�3(�2,�)=c2(�5	2(�2,�)+�5	′
2(�2,�))=c2	3(�2,�)

we get c1 =c2 =c3 �=0. Thus, a short calculation, (19) becomes15

�1�2
′(�)=c1

(
�1�2

a2
1

∫ �1

a
|	1(x,�)|2dx+ �2

a2
2

∫ �2

�1

|	2(x,�)|2dx+ 1

a2
3

∫ b

�2

|	3(x,�)|2dx+�

)
Here �1>0, �2>0, �>0 and c1>0, so 
′(�)�=0. Hence the analytic multiplicity of � is one. By Definition 7, the proof is17
completed. �

Theorem 1019
All eigenvalues of the problem (1)–(7) are also geometrically simple.

Proof21
If f and g are two eigenfunctions for an eigenvalue �0 of (1)–(7), then (2) implies that f (a)=cg(a) and f ′(a)=cg′(a) for some constant
c∈R. By the uniqueness theorem for solutions of ordinary differential equation and the transmission conditions (4)–(7), we have23
that f =cg on [a,�1), (�1,�2) and (�2, b]. Thus, the geometric multiplicity of �0 is one. �

Lemma 11
Let �=s2, s=�+ it. Then the following integral equations hold for k =0, 1:

dk

dxk
�1(x,�) = �2

dk

dxk
cos

s(x−a)

a1
− a1�1

s

dk

dxk
sin

s(x−a)

a1
+ 1

a1s

∫ x

a

dk

dxk
sin

s(x−y)

a1
q(y)�1(y,�)dy (20)

dk

dxk
�2(x,�) = (�3�1(�1,�)+�3�′

1(�1,�))
dk

dxk
cos

s(x−�1)

a2
+ a2

s
(�4�1(�1,�)+�4�′

1(�1,�))
dk

dxk
sin

s(x−�1)

a2

+ 1

a2s

∫ x

�1

dk

dxk
sin

s(x−y)

a2
q(y)�2(y,�)dy (21)

dk

dxk
�3(x,�) = (�5�2(�2,�)+�5�′

2(�2,�))
dk

dxk
cos

s(x−�2)

a3
+ a3

s
(�6�2(�2,�)+�6�′

2(�2,�))
dk

dxk
sin

s(x−�2)

a3

+ 1

a3s

∫ x

�2

dk

dxk
sin

s(x−y)

a3
q(y)�3(y,�)dy (22)

Proof25
Consider �1(x,�) as the solution of the following non-homogeneous Cauchy problem:{

a2
1u′′(x)+s2u(x)=q(x)�1(x,�)

�1(a,�)=�2, �′
1(a,�)=−�127

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010
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Using the method of constant changing, �1(x,�) satisfies1

�1(x,�)=�2 cos
s(x−a)

a1
− a1�1

s
sin

s(x−a)

a1
+ 1

a1s

∫ x

a
sin

s(x−y)

a1
(y)�1(x,�)dy

Then differentiating it with respect to x, we have (20). The proof for (21) and (22) are similar. �3

Lemma 12
Let �=s2, Ims= t. Then for �2 �=0

dk

dxk
�1(x,�) = �2

dk

dxk
cos

s(x−a)

a1
+O(|s|k−1e

|t| x−a
a1 )

dk

dxk
�2(x,�) = −�2�3s

a1
sin

s(�1 −a)

a1

dk

dxk
cos

s(x−�1)

a2
+O

(
|s|ke

|t|
(

�1−a
a1

+ x−�1
a2

))

dk

dxk
�3(x,�) = �2�3�5s2

a1a2
sin

s(�1 −a)

a1
sin

s(�2 −�1)

a2

dk

dxk
cos

s(x−�2)

a3
+O(|s|k+1e

|t|( �1−a
a1

+ �2−�1
a2

+ x−�2
a3

)
)

while if �2 =0

dk

dxk
�1(x,�) = − a1�1

s
sin

s(x−a)

a1
+O(|s|k−2e

|t| x−a
a1 )

dk

dxk
�2(x,�) = −�1�3 cos

s(�1 −a)

a1

dk

dxk
cos

s(x−�1)

a2
+O(|s|k−1e

|t|( �1−a
a1

+ x−�1
a2

)
)

dk

dxk
�3(x,�) = �1�3�5

a2
s cos

s(�1 −a)

a1
sin

s(�2 −�1)

a2

dk

dxk
cos

s(x−�2)

a3
+O(|s|k e

|t|( �1−a
a1

+ �2−�1
a2

+ x−�2
a3

)
)

k =0, 1. Each of this asymptotic equalities hold uniformly for x as |�|→∞.

Theorem 135
Let �=s2, Ims= t. Then for �2 �=0 and �′

2 �=0, the characteristic function 
(�) has the following asymptotic representation:


(�)= �2�′
2�3�5s5

a1a2a3�1�2
sin

s(�1 −a)

a1
sin

s(�2 −�1)

a2
sin

s(b−�2)

a3
+O(|s|4e

|t|( �1−a
a1

+ �2−�1
a2

+ b−�2
a3

)
)7

Proof
The proof is obtained by substituting the asymptotic equalities (dk / dxk)�3(x,�) into the representation9

�1�2
(�)= (�1 +��′
1)�3(b,�)−(�2 +��′

2)�′
3(b,�)

�11

Theorem 14
Let �2 �=0, �′

2 �=0, the following asymptotic formulas hold for the eigenvalues and eigenfunctions of the boundary value transmission13
problem (1)–(7): √

�′
n = a1(n−1)

�1 −a
+O

(
1

n

)
,
√

�′′
n = a2(n−1)

�2 −�1
+O

(
1

n

)
,
√

�′′′
n = a3(n−1)

b−�2
+O

(
1

n

)
15

All these asymptotic formulas hold uniformly for x.

Proof17
By applying the known Rouche theorem, we can obtain these conclusions (cf. [8, Theorem 2.3]).

The conclusions of the other cases �2�′
2 =0 are omitted, and the proof are similar. �19

4. Completeness of eigenfunctions

Theorem 1521
The operator A has only point spectrum, i.e. �(A)=�p(A).

Proof23
It suffices to prove that if � is not an eigenvalue of A, then �∈�(A). Here we investigate the equation (A−�)Y =F ∈H, where �∈R,
F = (f, r). �25

6
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Consider the initial-value problem1 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lu−�u= f, x ∈J

�1u(a)+�2u′(a)=0

u(�1 +0)=�3u(�1 −0)+�3u′(�1 −0)

u′(�1 +0)=�4u(�1 −0)+�4u′(�1 −0)

u(�2 +0)=�5u(�2 −0)+�5u′(�2 −0)

u′(�2 +0)=�6u(�2 −0)+�6u′(�2 −0)

(23)

Let u(x) be the solution of the equation lu−�u=0 satisfying the transmission conditions (4)–(7). In fact3

u(x)=

⎧⎪⎪⎨⎪⎪⎩
u1(x), x ∈ [a,�1)

u2(x), x ∈ (�1,�2)

u3(x), x ∈ (�2, b]

where u1(x) is the unique solution of the initial-value problem5 {−a2
1u′′+q(x)u=�u, x ∈ [a,�1)

u(a)=�2, u′(a)=−�1

u2(x) is the unique solution of the problem7 ⎧⎪⎪⎨⎪⎪⎩
−a2

2u′′+q(x)u=�u, x ∈ (�1,�2)

u(�1 +0)=�3u(�1 −0)+�3u′(�1 −0)

u′(�1 +0)=�4u(�1 −0)+�4u′(�1 −0)

and u3(x) is the unique solution of the problem9 ⎧⎪⎪⎨⎪⎪⎩
−a2

3u′′+q(x)u=�u, x ∈ (�2, b]

u(�2 +0)=�5u(�2 −0)+�5u′(�2 −0)

u′(�2 +0)=�6u(�2 −0)+�6u′(�2 −0)

Let11

w(x)=

⎧⎪⎪⎨⎪⎪⎩
w1(x), x ∈ [a,�1)

w2(x), x ∈ (�1,�2)

w3(x), x ∈ (�2, b]

be a solution of lw−�w = f satisfying13

�1w(a)−�2w′(a)=0

w(�1 +0) = �3w(�1 −0)+�3w′(�1 −0), w′(�1 +0)=�4w(�1 −0)+�4w′(�1 −0)

w(�2 +0) = �5w(�2 −0)+�5w′(�2 −0), w′(�2 +0)=�6w(�2 −0)+�6w′(�2 −0)

Then, (23) has the general solution15

y(x)=

⎧⎪⎪⎨⎪⎪⎩
du1 +w1, x ∈ [a,�1)

du2 +w2, x ∈ (�1,�2)

du3 +w3, x ∈ (�2, b]

(24)

where d ∈C.17
As � is not an eigenvalue of (1)–(7), we have

�1u3(b)−�2u′
3(b)+�(�′

1u3(b)−�′
2u′

3(b)) �=0 (25)19

The second component of (A−�)Y =F means the equation

�2y′(b)−�1y(b)−�(�′
1y(b)−�′

2y′(b))= r (26)21

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010
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substituting (24) into (26), we get1

(�2u′
3(b)−�1u3(b)+��′

2u′
3(b)−��′

1u3(b))d = r+�1w3(b)−�2w′
3(b)+��′

1w3(b)−��′
2w′

3(b)

In view of (25), we know that d is uniquely solvable. So y is uniquely determined.3
The above equation show that (A−�I)−1 is defined on all of H. We get that (A−�I)−1 is bounded by Theorem 3 and the closed

Graph Theorem. Thus �∈�(A). Hence, �(A)=�p(A).5

Lemma 16
The eigenvalues of the boundary value problem (1)–(7) are bounded below, and they are countably infinite and can cluster only7
at ∞.

Lemma 179
The operator A has compact resolvents, i.e. for each �∈R / �p(A), (A−�I)−1 is compact on H (cf. [4, Theorem 6.3.3]).

By the above Lemmas and the spectral theorem for compact operator, we obtain the following theorem:11

Theorem 18
The eigenfunctions of the problem (1)–(7), augmented to become eigenfunctions of A, are complete in H, i.e. if we let {�n =13
(�n(x), N′(�n)); n∈N} be a maximum set of orthonormal eigenfunctions of A, where {�n(x); n∈N} are eigenfunctions of the problem
(1)–(7), then for all F ∈H, F =∑∞

n=1〈F, �n〉�n.15

5. Green function

Let us consider the following differential equation:17

−(a(x)u′(x))′+q(x)u(x)−�u(x)=−f (x), x ∈J (27)

where J= [a,�1)∪(�1,�2)∪(�2, b], a(x)=a2
1 for x ∈ [a,�1), a(x)=a2

2 for x ∈ (�1,�2) and a(x)=a2
3 for x ∈ (�2, b], a1>0, a2>0 and a3>019

are given real numbers; together with the eigenparameter-dependent boundary and transmission conditions (2)–(7).
We can represent the general solution (16) of homogeneous differential Equation (1), appropriate to Equation (27). By applying the21

standard method of variation of constants, we shall search the general solution of the non-homogeneous differential Equation (27)
in the form23

U(x)=

⎧⎪⎪⎨⎪⎪⎩
C1(x,�)�1(x,�)+C2(x,�)	1(x,�), x ∈ [a,�1)

C3(x,�)�2(x,�)+C4(x,�)	2(x,�), x ∈ (�1,�2)

C5(x,�)�3(x,�)+C6(x,�)	3(x,�), x ∈ (�2, b]

(28)

where the functions Ci(x,�) (i=1, 6) satisfy the linear system of equation25 {
C′

1(x,�)�1(x,�)+C′
2(x,�)	1(x,�) = 0

C′
1(x,�)�′

1(x,�)+C′
2(x,�)	′

1(x,�) = f (x)

for x ∈ [a,�1),27 {
C′

3(x,�)�2(x,�)+C′
4(x,�)	2(x,�) = 0

C′
3(x,�)�′

2(x,�)+C′
4(x,�)	′

2(x,�) = f (x)

for x ∈ (�1,�2), and29 {
C′

5(x,�)�3(x,�)+C′
6(x,�)	3(x,�) = 0

C′
5(x,�)�′

3(x,�)+C′
6(x,�)	′

3(x,�) = f (x)

for x ∈ (�2, b]. Because the characteristic function 
(�) �=0, the following relations can be easily obtained:

C1(x,�) = 1


(�)

∫ �1

x
f	1dy+C1 , C2(x,�)= 1


(�)

∫ x

a
f�1 dy+C2 , x ∈ [a,�1)

C3(x,�) = 1


2(�)

∫ �2

x
f	2 dy+C3 , C4(x,�)= 1


2(�)

∫ x

�1

f�2 dy+C4 , x ∈ (�1,�2)

C5(x,�) = 1


3(�)

∫ b

x
f	3 dy+C5 , C6(x,�)= 1


3(�)

∫ x

�2

f�3 dy+C6 , x ∈ (�2, b]
31

8
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Here, Ci(i=1, 6) are arbitrary constants. Substituting the above equations in (28), the general solution of the non-homogeneous1
differential Equation (27) are obtained as

U(x,�)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1(x,�)


(�)

∫ �1

x
f	1 dy+ 	1(x,�)


(�)

∫ x

a
f�1 dy+C1�1(x,�)+C2	1(x,�), x ∈ [a,�1)

�2(x,�)


2(�)

∫ �2

x
f	2 dy+ 	2(x,�)


2(�)

∫ x

�1

f�2 dy+C3�2(x,�)+C4	2(x,�), x ∈ (�1,�2)

�3(x,�)


3(�)

∫ b

x
f	3 dy+ 	3(x,�)


3(�)

∫ x

�2

f�3 dy+C5�3(x,�)+C6	3(x,�), x ∈ (�2, b]

(29)

3

where Ci(i=1, 6) are arbitrary constants. By differentiating (29) we have

U′(x,�)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�′
1(x,�)


(�)

∫ �1

x
f	1 dy+ 	′

1(x,�)


(�)

∫ x

a
f�1 dy+C1�′

1(x,�)+C2	′
1(x,�), x ∈ [a,�1)

�′
2(x,�)


2(�)

∫ �2

x
f	2 dy+ 	′

2(x,�)


2(�)

∫ x

�1

f�2 dy+C3�′
2(x,�)+C4	′

2(x,�), x ∈ (�1,�2)

�′
3(x,�)


3(�)

∫ b

x
f	3 dy+ 	′

3(x,�)


3(�)

∫ x

�2

f�3 dy+C5�′
3(x,�)+C6	′

3(x,�), x ∈ (�2, b]

(30)

5

By using the system of Equation (29) and the proof process of Theorem 6, the following equalities are obtained for li(U), i=1, 6:

l1(U) = C2
(�) (31)

l2(U) = C5
2(�) (32)

l3(U) = �2(�1 +0,�)


2(�)

∫ �2−0

�1+0
f	2 dy− 	2(�1 +0,�)


(�)

∫ �1−0

a
f�1 dy

−C1�2(�1 +0,�)−C2	2(�1 +0,�)+C3�2(�1 +0,�)+C4	2(�1 +0,�) (33)

l4(U) = �′
2(�1 +0,�)


2(�)

∫ �2−0

�1+0
f	2 dy− 	′

2(�1 +0,�)


(�)

∫ �1−0

a
f�1 dy

−C1�′
2(�1 +0,�)−C2	′

2(�1 +0,�)+C3�′
2(�1 +0,�)+C4	′

2(�1 +0,�) (34)

l5(U) = �3(�2 +0,�)


3(�)

∫ b

�2+0
f	3 dy− 	3(�2 +0,�)


2(�)

∫ �2−0

�1+0
f�2 dy

−C3�3(�2 +0,�)−C4	3(�2 +0,�)+C5�3(�2 +0,�)+C6	3(�2 +0,�) (35)

l6(U) = �′
3(�2 +0,�)


3(�)

∫ b

�2+0
f	3 dy− 	′

3(�2 +0,�)


2(�)

∫ �2−0

�1+0
f�2 dy

−C3�′
3(�2 +0,�)−C4	′

3(�2 +0,�)+C5�′
3(�2 +0,�)+C6	′

3(�2 +0,�) (36)

Because U(x,�) is a solution and 
(�) �=0, from boundary condition (2) and equality (31) we have C2 =0. Similarly from equality7
(32) and boundary condition (3) we have C5 =0.

On the other hand, by taking into account Equations (35), (36), and transmission conditions, the following linear equation system9
according to the variables C1, C3, C4 and C6 are obtained as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1�2(�1 +0,�)−C3�2(�1 +0,�)−C4	2(�1 +0,�)= �2(�1 +0,�)


2(�)

∫ �2−0

�1+0
f	2 dy− 	2(�1 +0,�)


(�)

∫ �1−0

a
f�1 dy

C1�′
2(�1 +0,�)−C3�′

2(�1 +0,�)−C4	′
2(�1 +0,�)= �′

2(�1 +0,�)


2(�)

∫ �2−0

�1+0
f	2 dy− 	′

2(�1 +0,�)


(�)

∫ �1−0

a
f�1 dy

C3�3(�2 +0,�)+C4	3(�2 +0,�)−C6	3(�2 +0,�)= �3(�2 +0,�)


3(�)

∫ b

�2+0
f	3 dy− 	3(�2 +0,�)


2(�)

∫ �2−0

�1+0
f�2 dy

C3�′
3(�2 +0,�)+C4	′

3(�2 +0,�)−C6	′
3(�2 +0,�)= �′

3(�2 +0,�)


3(�)

∫ b

�2+0
f	3 dy− 	′

3(�2 +0,�)


2(�)

∫ �2−0

�1+0
f�2 dy

(37)

11
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By using the definitions of solutions �i(x,�) and 	i(x,�) (i=1, 2), the following relation is obtained for the determinant of this1
linear equation system: ∣∣∣∣∣∣∣∣∣∣∣

�2(�1 +0,�) −�2(�1 +0,�) −	2(�1 +0,�) 0

�′
2(�1 +0,�) −�′

2(�1 +0,�) −	′
2(�1 +0,�) 0

0 �3(�2 +0,�) 	3(�2 +0,�) −	3(�2 +0,�)

0 �′
3(�2 +0,�) 	′

3(�2 +0,�) −	′
3(�2 +0,�)

∣∣∣∣∣∣∣∣∣∣∣
=−
2(�)
3(�)

3

As this determinant is different from zero, the solution of (37) is unique. If we solve system (37), we get the following equality
for the coefficients C1, C3, C4 and C6:

C1 = 1


2(�)

∫ �2

�1

f	2 dy+ 1


3(�)

∫ b

�2

f	3 dy, C3 = 1


3(�)

∫ b

�2

f	3 dy

C6 = 1


(�)

∫ �1

a
f�1 dy+ 1


2(�)

∫ �2

�1

f�2 dy, C4 = 1


(�)

∫ �1

a
f�1 dy

Finally, by substituting the coefficients Ci(i=1, 6) in (29), the following formulae are obtained for the resolvent U(x,�):5 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1(x,�)


(�)

∫ �1

x
f	1 dy+ 	1(x,�)


(�)

∫ x

a
f�1 dy+ �1(x,�)


2(�)

∫ �2

�1

f	2 dy+ �1(x,�)


3(�)

∫ b

�2

f	3 dy, x ∈ [a,�1)

�2(x,�)


2(�)

∫ �2

x
f	2 dy+ 	2(x,�)


2(�)

∫ x

�1

f�2 dy+ �2(x,�)


3(�)

∫ b

�2

f	3 dy+ 	2(x,�)


(�)

∫ �1

a
f�1 dy, x ∈ (�1,�2)

�3(x,�)


3(�)

∫ b

x
f	3 dy+ 	3(x,�)


3(�)

∫ x

�2

f�3 dy+ 	3(x,�)


(�)

∫ �1

a
f�1 dy+ 	3(x,�)


2(�)

∫ �2

�1

f�2 dy, x ∈ (�2, b]

(38)

Let7

�(x)=

⎧⎪⎪⎨⎪⎪⎩
�1(x), x ∈ [a,�1)

�2(x), x ∈ (�1,�2),

�3(x), x ∈ (�2, b]

	(x)=

⎧⎪⎪⎨⎪⎪⎩
	1(x), x ∈ [a,�1)

	2(x), x ∈ (�1,�2)

	3(x), x ∈ (�2, b]

Then9

U(x,�)= �(x)


i(�)

∫ b

x
f	dy+ 	(x)


i(�)

∫ x

a
f�dy, i=1, 3 (39)

Thus, the resolvent of the boundary-value transmission problem is obtained. We can find the Green function from the resolvent11
(39). Namely, denoting

G(x, y;�)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�(y,�)	(x,�)


i(�)
, a�y�x�b, x �=�1,�2, y �=�1,�2

�(x,�)	(y,�)


i(�)
, a�x�y�b, x �=�1,�2, y �=�1,�2

i=1, 3

13

We can rewrite the resolvent (39) in the next form

U(x,�)=
∫ b

a
G(x, y;�)f (y)dy15
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