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Multiaxial fatigue life prediction method based on path-dependent
cycle counting under tension/torsion random loading
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A B S T R A C T A path-dependent cycle counting method is proposed by applying the distance formula
between two points on the tension-shear equivalent strain plane for the identified half-
cycles first. The Shang–Wang multiaxial fatigue damage model for an identified half-cycle
and Miner’s linear accumulation damage rule are used to calculate cumulative fatigue
damage. Therefore, a multiaxial fatigue life prediction procedure is presented to predict
conveniently fatigue life under a given tension and torsion random loading time history.
The proposed method is evaluated by experimental data from tests on cylindrical thin-
walled tubes specimens of En15R steel subjected to combined tension/torsion random
loading, and the prediction results of the proposed method are compared with those of
the Wang–Brown method. The results showed that both methods provided satisfactory
prediction.

Keywords cycle counting; fatigue damage; life prediction; multiaxial fatigue.

I N T R O D U C T I O N

Fatigue failure of mechanical components and structures
under multiaxial loading conditions is a common concern,
because most engineering components, such as pressure
vessels, automobile suspension and transmission parts, gas
turbines, crankshafts, and so on, are subjected to multi-
axial random loading in service. Multiaxial fatigue life
prediction is an extremely intractable issue due to the in-
herent complexities of fatigue crack initiation and growth
under multiaxial random loading.

For fatigue life prediction under general multiaxial ran-
dom loading, three main steps are included: multiaxial
cycle counting, damage evaluation for a cycle and dam-
age accumulation. The accuracy of fatigue life prediction
depends on all the above steps. Firstly, an efficient cy-
cle counting method is needed to make a conversion of
random loading history into some different constant am-
plitudes. Secondly, a good multiaxial fatigue damage pa-
rameter is needed, which can be based on stress,1 strain,2

energy,3–6 and the critical plane.7–9 Finally, a multiaxial
fatigue damage accumulation model is needed to predict
fatigue life.

To predict accurately fatigue life under general mul-
tiaxial random loading, some researcher have pro-
posed some different approaches, such as, energy ap-
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proach,3 Bannantine–Soice’s method,10 Wang–Brown’s
method,11 Jiang’s method12 and EVICD method.13,14

Although there have been some research efforts to-
wards the fatigue life prediction method under multi-
axial random loading, unfortunately, there is no perfect
approach.

In this paper, a path-dependent cycle counting method
and a fatigue life prediction procedure are presented un-
der tension/torsion random loading. The path-dependent
cycle counting method can be described as a proce-
dure seeking the maximum distance from a starting point
along loading path on the ε − γ /

√
3 plane. For the fa-

tigue life prediction procedure, the path-dependent cy-
cle counting method is used to count half-cycles first.
The Shang–Wang multiaxial fatigue damage model for
an identified half-cycle and Miner’s linear accumula-
tion damage rule are used to calculate cumulative fatigue
damage.

B A C K G R O U N D T H E O R Y

A brief review for the path-dependent maximum range
(PDMR) method and the Wang–Brown method is in-
troduced. Some comments are performed for the two
methods.
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PDMR method

Dong et al.15 presented a PDMR cycle counting method
and defined the path-dependent effective stress range to
evaluate the fatigue life. First, map σs (t) and τs (t) time
histories to the σs − √

βτs plane. Search the maximum
possible distance between any two data points within the
entire loading history. Next, the load path traversed in
the process of identifying the maximum distance consists
of some load path segments, and the two time points
with the maximum distance are defined as the half-cycle.
Repeat the previous steps for the remaining loading path
segments until all paths have been counted and counted
only once.

Wang–Brown’s method

Wang and Brown11 proposed a multiaxial fatigue life pre-
diction method, which uses a multiaxial reversal count-
ing method based on the equivalent relative strain,
Wang–Brown’s damage parameter and Miner’s linear ac-
cumulation damage rule. The principle of this method is
that the maximum equivalent strain over entire history
is found and defined as the first major turning point A,
which is used as a starting point to rearrange the equiv-
alent strain history. Then, equivalent relative strain is
calculated corresponding to the first maximum reference
point. A reversal is identified from zero to the point of
maximum increase of equivalent relative strain, and then
a new major turning is found and used to determine a
new equivalent relative strain for further cycle counting.
The above steps are repeated for the residual multiaxial
loading history.

A strain-based multiaxial fatigue damage model pro-
posed by Wang and Brown16 is used here:

(
�γmax

/
2
) + S

(
ε∗

n
)

1 + v′ + (1 − v′)S
= σ ′

f − 2σn,mean

E
(
2Nf

)b

+ ε′
f
(
2Nf

)c
(1)

where �γmax, ε∗
n are the shear strain range and the nor-

mal strain excursion between two turning points of shear
strain on the maximum shear plane, respectively. S is a
material parameter that represents the influence of the
normal strain on fatigue crack growth and it can be de-
termined by correlating uniaxial and pure torsion fatigue
data. v′ is the effective Poisson’s ratio, and σmean is the
mean normal stress on the maximum shear strain plane.
The other parameters E, σ ′

f , ε′
f , b and c are the uniax-

ial strain lifetime equation constants. More details can be
found in Refs.[16–18].

Both the PDMR method and the Wang–Brown method
can identify half-cycles (or reversals) for a known multi-

axial loading history. However, both methods also have
some shortcomings in the cycle counting procedure.

In the PDMR method, it will spend a lot of computing
time because the distance between any two data points
needs to be calculated repeatedly within the entire loading
history. It may need an advanced algorithm to solve the
problem. In addition, parameter β is a material constant
in the σs − √

βτs plane, and it needs to be determined in
advance for different materials. For stress loading history,
Dong et al.15 describe a complete cycle counting proce-
dure, and the effectiveness of the PDMR method is also
demonstrated in correlating with a large amount of mul-
tiaxial fatigue data. However, for strain loading history,
Dong et al.15 describe only qualitatively the entire cycle
counting process on the ε − γ plane.

In the Wang–Brown method, the first major turn-
ing point relies on the identification of peak equiva-
lent strain (always positive). Dong et al.15 took a loading
path as an example to point out the disadvantage of the
Wang–Brown method. Wang and Brown17 also proposed
two approaches to solve the problem. One solution would
be to identify the attained peak value for the equivalent
relative strain range between the two data points. How-
ever, they also noted that this method required a double-
maximization procedure and may involve more computa-
tion. An alternative method is to identify the first turning
point from a relative strain graph, rather than the abso-
lute equivalent strain, and the mean level of strain for the
whole loading block is used as a reference value. But the
expression of the mean strain is not formulated in Ref.
[17]. Wang–Brown’s method fails to note that the mul-
tiaxial cycle count procedure does not produce a unique
set of reversals for some loading cases. For example, some
loading cases may include a number of peak points with
the same equivalent strain. In this case, a number of the
first major turning points will be identified. In addition,
the iterative process of effective Poisson’s ratio is quite
complex, which will require accurate stress and strain.

T H E P R O P O S E D F A T I G U E L I F E P R E D I C T I O N
M E T H O D

The proposed cycle counting procedure

In order to solve effectively the disadvantages of
Wang–Brown’s method and PDMR method, a simple
path-dependent cycle counting method is proposed by
applying the distance formula between two points on the
ε − γ /

√
3 plane. The method can be summarized as fol-

lows.

1 Map ε(t) and γ (t) time histories on the ε − γ /
√

3 plane.
Here the distance between two points on the ε − γ /

√
3
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plane is expressed with following formula:

εdis (t) =
√

(ε (t) − ε (tR))2 + 1
3

(γ (t) − γ (tR))2 (2)

where tR is the reference time point.
2 Search the maximum distance between every point and

any point within the whole loading history by Eq. (3):

εdis (tc ) = max
0 ≤ tc ≤ tn
0 ≤ t ≤ tn

√
(ε (t) − ε (tc ))2 + 1

3
(γ (t) − γ (tc ))2 (3)

where the time period 0 < t ≤ tn represents the loading
block, and tc represents every time point. εdis(tc ) is the
maximum distance time history between every point and
any point.

3 Find the maximum value point A of εdis(tc ) within the
whole loading history by Eq. (4), and denote the corre-
sponding time as tA :

εdis (t = tA) = max
0 < tc ≤ tn

εdis (tc ) . (4)

4 Rearrange the data so that a new data block starts from
the point A. Move the data before the point A to the end
of the data file to form a new time history.

5 Find the maximum value of distance εdis(t) by Eq. (2)
with respect to the first point in the block. A half-cycle is
counted by combining a sequence of data points where
εdis(t) is increasing up to the maximum value to complete
one half-cycle. A fragment of the strain history occurs
when ever εdis(t) experiences a decrease.

6 With the first point of each fragmented data block being
the initial point defining (ε (tR) ,

γ (tR )√
3

) in the distance
formula (in Eq. (2)), repeat step (5) for each block. Fur-
ther fragmented blocks skipped over during each pass of
cycle counting are to be treated in a similar way, until all
half-cycles are counted.

Let us take an axial-torsion strain loading history shown in
Fig. 1 as an example to explain the proposed method. The
counting procedure of this complex multiaxial loading
path is depicted in detail as follows.

a. Search the maximum distance between every point and
any point within the whole loading history by Eq. (3), and
the maximum distance time history is shown in Fig. 2.

b. Find the maximum value (point A) of the maximum dis-
tance time history within the whole loading history by
Eq. (4), and denote the corresponding time as tA, shown
in Fig. 2.

c. Rearrange the data so that a new data block starts from
the point A. Move the data before the point A to the
end of the data file to form a new time history, shown in
Fig. 3. The whole cycle counting procedure will start from
the point A.

d. The proposed cycle counting procedure is described qual-
itatively in Fig. 4a for the loading path on the ε − γ /

√
3

plane. Point A is a starting point, and search the maxi-
mum distance along the direction of the arrow on whole
ε − γ /

√
3 plane. Point B will be identified as point of

the maximum distance from point A. So one half-cycle
(A–B) is identified. Then the data will be deleted between
points A and B at the same time. Point B is defined as
a staring point, and search maximum distance point be-
tween point B and any point within the remaining load-
ing history. One half-cycle (B–C–C′–D) can be obviously
identified from the Fig. 4a. The procedure will be repeat-
edly implemented, until all half-cycles are counted. For
the complex loading history, the counted eight half-cycles
include A–B, B–C–C′–D (A), C–E–E′–F, E–G, G–E′,
F–H–H′–C′, H–I, I–H′.

e. The distance formula (Eq. (2)) between two points on
the ε − γ /

√
3 plane is used to implement quantitatively

the cycle counting. The whole procedure is shown in
Fig. 4b. The distance is calculated with respect to the
point A, which is shown by a curve starting from the point
A. It can be seen that the peak point of this curve is point
B. Therefore one half-cycle (A–B) is identified. Subse-
quently the distances with respect to points B are plotted
(the curve starts from the point B). The peak point of this
curve is point D. Because the distance decreased in point
C, the curve is fragmented at point C. So one half-cycle
(B–C–C′–D) is identified. Now plot the distance with re-
spect to point C, resulting in curve starting from the point
C. One half-cycle (C–E–E′–F) is identified, which is frag-
mented at points E and F, respectively. Now plot the
curves of the distance with respect to these two points.
For the data between E and E′, two half-cycles (E–G and
G–E′) are identified. The curve starting from point F is
fragmented at point H, one half-cycle (F–H–H′–C′) is
also identified. Finally, for the data between H and H′,
two half-cycles (H–I and I–H′) are identified. Altogether
eight half-cycles are counted for this loading history.

The proposed cycle counting method is described in detail
above under axial and torsion strain loading. For uniaxial
loading or pure torsion loading, the proposed method is
equivalent to the simplified rain-flow counting for a re-
peating history in uniaxial random loading in ASTM.19

The difference between the proposed cycle counting pro-
cedure and the Wang–Brown cycle counting process ap-
pears to be the definition of equivalent strain and starting
point in the history. Comparison of the two methods will
be shown in the discussion section. The proposed cycle
counting procedure is quite simple, and it is convenient
to develop a computer code. In the study, a FORTRAN
computer code with the cycle counting procedure was
compiled to carry out the proposed path-dependent cycle
counting method.
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Fig. 1 An axial-torsional strain random loading; (a) An axial-torsional strain random loading history; (b) An axial-torsional strain loading
path on the ε − γ /

√
3 plane.

Fatigue life prediction procedure

Once half-cycles are identified through the proposed
method above, fatigue damage can be calculated. In order
to estimate conveniently fatigue damage, an axial strain-
based multiaxial fatigue damage parameter, which does
not include the weight constants, proposed by Shang and

Wang9 is used here.

√
ε∗2

n + 1
3

(
�γmax

2

)2

=σ ′
f − 2σn,mean

E
(
2Nf

)b + ε′
f
(
2Nf

)c

(5)
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Fig. 2 The maximum distance between every point and any point
in strain loading history.
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Fig. 3 Rearranged strain loading history with the starting point A
(identified in Fig. 2).

where �γmax, ε∗
n

are the shear strain range and the nor-
mal strain excursion between two turning points of shear
strain on the maximum shear plane, respectively, σmean

is the mean normal stress on the maximum shear strain
plane. The other parameters E, σ ′

f , ε′
f , b and c are the

constants of uniaxial strain lifetime equation.
Once the fatigue damage is calculated for each half-cycle

identified, total fatigue damage for the known loading is
accumulated with the Miner linear rule:

D =
n∑

i=1

1
2Nfi

(6)

where n is the number of half-cycles and Nfi associated
fatigue life with amplitude being equal to the ith half-
cycle. The total fatigue damage for the loading block is
given as D.

Determination of fatigue damage parameter on the
critical plane in the counted half-cycle

In this study, only a plane stress state will be consid-
ered, because fatigue cracks often occur on the surface
of a component. The �γmax plane can be determined by
checking the shear strain history on all planes inclined
from the axis of the specimen. For an identified half-
cycle loading history, the actual search for the maximum
shear plane, the normal strain excursion, the mean normal
stress on the maximum shear plane and computation of
the damage are executed by a computer code developed
in this study. In the algorithm of the program, the an-
gle measured counter-clockwise from the specimen axis
to the normal vector on an incline plane is denoted byθ .
For each increment of θ by 1◦ the stress and strain pro-
files, the fatigue parameter and the damage are evaluated.
The determination procedure of fatigue damage param-
eter �γmax/.2, ε∗

n and σn,mean on the critical plane in the
counted half-cycles are depicted in detail as follows.

For the tubular specimen under tension/torsion loading,
the strains on the plane that makes an angle θ with the X
axis defined the direction of tensile loading, are expressed
as

εθ = εx + εy

2
+ εx − εy

2
cos (2θ ) + γxy

2
sin (2θ ) (7a)

γθ

2
= εx − εy

2
sin (2θ ) − γxy

2
cos (2θ ) (7b)

where εy = −vεx .
Equation (7) can be rewritten as

εθ = 1 − v

2
εx + 1 + v

2
εx cos (2θ ) + γxy

2
sin (2θ ) (8a)

γθ

2
= (1 + v) εx

2
sin (2θ ) − γxy

2
cos (2θ ) . (8b)

Here, the critical plane is defined as the plane of max-
imum range of shear strain with the maximum normal
strain range. If the identified half-cycle by the proposed
multiaxial cycle counting method is used to calculate mul-
tiaxial fatigue damage by the critical plane approach, the
critical plane in an half-cycle needs to be determined dur-
ing a multiaxial strain loading. The procedure for finding
the orientation of the critical plane and relevant stress and
strain parameters on it is as follows:

1 Read the data of a multiaxial stress–strain history in a
half-cycle counted strain cycle time period.

2 Calculate the shear strain range �γ and normal strain
range �ε in a determined interval of angle from 0◦ to
180◦. In this paper, it was found that, when the interval

c© 2011 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 34, 782–791
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Fig. 4 The proposed cycle counting quantitatively procedure for the loading path.

angle was taken 1◦, a more accurate result can be obtained
for calculating the multiaxial fatigue damage.

3 Search the angle of the maximum shear plane with the
maximum normal strain range as the orientation of the
critical plane θc .

4 Denote the time instant of a pair of γmax turning points
on the critical plane as t1 and t2 .

5 Seek the maximum excursion of the normal strain over
two turning points of shear strain on the critical plane

[t1, t2]:

ε∗
n = max εθc (t)

t1 ≤ t < t2
− min εθc (t)

t1 ≤ t < t2
. (9)

6 Determine the maximum and minimum normal stresses
by the following relationship:

σn = σx + σy

2
+ σx − σy

2
cos (2θc ) + τxy

2
sin (2θc ) (10)
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Fig. 5 Variable amplitude loading paths of En15R steel.18

where σn is the normal stress on the critical plane, θc is
the angle of the critical plane orientation, σx , σy , τxy are
the multiaxial stress components that should be obtained
from a multiaxial incremental plasticity computational
model in an half-cycle period, in which their values take
the experimental data in this paper.

7 Search the values of the maximum and minimum normal
stresses on the critical plane for all time points during
the half-cycle identified, so the mean normal stress can
be obtained on the critical plane.

C O M P A R I S O N B E T W E E N E X P E R I M E N T A L
R E S U L T S A N D P R E D I C T I O N S

The experimental data were generated at the University
of Sheffield, and was used in Refs. [11,18]. The specimens
are thin-walled tubes made of Enl5R steel alloy. A total
of 41 specimens were tested under various loading con-
ditions. In this study, data from all single-block loading
tests are used to verify the proposed method, including 20

specimens and a loading history measured from an auto-
motive vehicle. The variable amplitude loading paths are
shown in Fig. 5. The details of materials, specimen geom-
etry and fatigue tests performed in this investigation were
reported in Ref. [18]. The fatigue properties of En15R
steel are listed in Table 1.

The comparison between predicted and experimental
lives is shown in Fig. 6. The Wang–Brown method, in-
cluding Wang–Brown’s cycle count method and fatigue
damage model (Eq. (1)), is also related with the same ex-
perimental data. The comparison between predicted and
experimental lives is also shown in Fig. 6. It can be seen
that most predictions are within a factor of 2. The results
showed that the Wang–Brown method and the proposed

Table 1 Fatigue properties of En15R steel18

E(GPa) v σ ′
f (MPa) ε′

f b c

205 0.28 1114 0.259 −0.097 −0.515
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Fig. 6 Comparison between experimental and predicted lives for
En15R steel.

multiaxial fatigue life prediction method provided satis-
factory predictions.

D I S C U S S I O N

In the Wang–Brown method, the equivalent strain is ex-
pressed as

εeq (t) = 1√
2(1 + v′)

√
(εx (t) − εy (t))2 + (εy (t) − εz (t))2 + (εz (t) − εx (t))2 + 3

2
(γ 2

xy (t) + γ 2
yz (t) + γ 2

zx (t)).

The effective Poisson ratio can be evaluated using de-
formation theory, v′ = 0.5 − (0.5 − v)�σeq

/
E

(
�εeq

)
. It

is noted that the iterative process of effective Poisson’s
ratio is quite complex procedure. In addition, the first
major turning point is a crucial point, which determines
the number of half-cycles counted for whole given load-
ing history. In the Wang–Brown method, the maximum
equivalent strain over entire history is only defined as the
first major turning point. If there are many equal maxi-
mum equivalent strain over entire history, how to choose
the first major turning point, a clear solution has not been
given.

In this paper, a path-dependent cycle counting method is
proposed in the multiaxial fatigue life prediction method.
The entire cycle counting procedure is quit simple, which
is similar to the Wang–Brown method, because the dis-
tance formula on the ε − γ /

√
3 plane equivalent to von

Mises relative strain when the effective Poisson’s ratio
takes 0.5. It avoids the iterative process of effective Pois-
son’s ratio in the Wang and Brown method. For the de-
termination of the first major turning point, the method
is adopted, which is similar to the first solution of Wang
and Brown’s suggestion. The first initial point is iden-

Fig. 7 Comparison of two methods to determine the first major
turning point.

tified through double-maximum distance procedure to
avoid the major turning point relying on peak equiva-
lent strain (always positive) in the Wang–Brown method.
Although the double-maximum procedure involves more
computation, it seems to be acceptable. This is mainly
because the distance formula is simple, and that this pro-
cess is only used once. Once the first major turning point

is identified, a unique set of reversals will be counted. In
present study, the first major turning point is defined as
the point, which obtains the maximum value point A of
the maximum distance time history at the first time.

To compare the two methods which determine the first
major turning point, let us take the ellipse loading path
on the ε − γ /

√
3 plane shown in Fig. 7 as an example.

If the peak distance is defined as the first major turn-
ing point (similar to the Wang–Brown method), point A′

will be used as the first major turning point. The path
will be counted two half-cycles (A′–B, and B–A′). If the
double-maximum procedure proposed is used to deter-
mine the first major turning point, point A will be used
as the first major turning point. The path will be counted
two half-cycles (A–B, and B–A). Obviously, the latter
approach is better reasonable under the ellipse loading
path.

The entire cycle counting process on the ε − γ /
√

3
plane is also similar to the PDMR method, because both
methods borrow the distance formula on different planes.
However, the distance between any two data points needs
to be calculated repeatedly within the entire loading his-
tory in the PDMR method. It is too time consuming. To

c© 2011 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 34, 782–791
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solve the problem, an advanced algorithm was developed
by Zhigang Wei et al.20 In present study, the proposed
method does not require special algorithms, and the im-
plementation process is simple. However, it is only suit-
able for tension and torsion strain random loading con-
dition, because the cycle counting procedure depend on
loading path on the ε − γ /

√
3 plane. It has been known

that fatigue cracks often occur on the surface of a com-
ponent, where a plane stress state will be considered. The
proposed method can be applied to this condition such as
plane stress state.

For the fatigue damage calculated in the identified half-
cycles, the Wang–Brown damage parameter (Eq. (1)) is
used as the equivalent strain in the Wang–Brown variable
amplitude multiaixal fatigue life prediction method. In
the PDMR method, Dong et al.15 proposed that the path
length was defined as the effective stress or strain range
in the same stress or strain space as that of cycle counting
procedure. In this paper, Shang–Wang damage parame-
ter (Eq. (5)) is applied to evaluate the fatigue damage in
the half-cycles identified with the cycle counting method
proposed. Comparing the three damage parameters, the
Wang–Brown parameter includes a weight constant S that
tend to increase as the fatigue life increases,21 and the con-
stant S is determined by fitting the uniaxial fatigue data
and the torsion fatigue data. In the PDMR method, the
path length is computed by using the integral method. For
strain loading history, Kitade et al.22 defined the length
of strain path as a damage parameter on the ε − γ /

√
3

plane,

�εpath = 1
2

∫
cycle

d ε̄ ε̄ =
(

ε2 + γ 2

3

) 1
2

. (11)

However, Itoh et al.23 verified that scatter of the re-
sults by using the damage parameter with the length of
strain path was large. For Shang–Wang damage parame-
ter, the parameter does not include any weight constants
and the constants of uniaxial strain lifetime equation are
only required. The applicability of the Shang–Wang pa-
rameter has been verified for constant amplitude propor-
tional and nonproportional low-cycle fatigue data in Ref.
[9] In this study, Shang–Wang parameter is expanded
to predict variable amplitude multiaxial fatigue life. The
predicted results showed that the proposed multiaxial fa-
tigue life prediction method provided satisfactory pre-
dictions. Therefore, the proposed multiaxial fatigue life
prediction procedure is a promising technique for engi-
neer application. In addition, the proposed method must
be verified by more tests, and future work is needed to
examine the accuracy and efficiency of the method in
dealing with real engineering components under service
loading.

C O N C L U S I O N S

A procedure is presented to predict conveniently fatigue
life under tension and torsion random loading. The fa-
tigue life prediction method is verified and compared be-
tween predicted and experimental results on cylindrical
thin-walled tubes specimens of En15R steel subjected to
combined tension/torsion random loading. The following
conclusions can be drawn from the present study.

1 For a given loading-time history under tension and tor-
sion random loading, the proposed path-dependent cycle
counting method can identify conveniently half-cycles,
and reduce to the simplified rain-flow counting for a
repeating history in uniaxial random loading in ASTM.

2 The Wang–Brown method and the proposed method
predicted fatigue life for tension and torsion random
loading with most prediction results falling within a fac-
tor of 2. Both methods can be used under tension and
torsion random loading.

3 From the view of the implementation of both fatigue life
prediction procedures, the distance formula is simpler
than the equivalent strain formula in the Wang–Brown
method, and Shang-Wang fatigue damage model does
not include the weight constants. The proposed method
appeared to be a better choice for engineer application.
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