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Abstract

The numerical solution of the two-dimensional Burgers equation in unbounded domains is considered. By introducing a
circular artificial boundary, we consider the initial-boundary problem on the disc enclosed by the artificial boundary. Based on
the Cole–Hopf transformation and Fourier series expansion, we obtain the exact boundary condition and a series of approximating
boundary conditions on the artificial boundary. Then the original problem is reduced to an equivalent problem on the bounded
domain. Furthermore, the stability of the reduced problem is obtained. Finally, the finite difference method is applied to the reduced
problem, and some numerical examples are given to demonstrate the feasibility and effectiveness of the approach.
c© 2008 Elsevier Ltd. All rights reserved.

Keywords: Two-dimensional Burgers equation; Artificial boundary conditions; Dirichlet to Neumann method; Unbounded domain; Stability
analysis

1. Introduction

The Burgers equation is frequently used as testing ground for flows governed by Navier–Stokes equations [1],
which also explains the different processes occurring in a wide range of physical phenomena. Therefore,
mathematicians, engineers and physicists are attracted and devoted to the study of the Burgers equations. For analytic
solution of the multidimensional cases, Steven Nerney et al. recapitulated the derivation of the solutions to the vector
Burgers equation and showed that the generalized Cole–Hopf transformation went through for quite general coordinate
systems (refer to [2] and the references therein), Frish et al. [3] extended the pole decomposition to multidimensional
Burgers equation with no force term and derived its exact solution with a finite number of time-dependent parameters
generated by the algebraic and trigonometric polynomial solutions of the heat equation in Rn . For numerical solutions,
Han et al. discussed the one-dimensional Burgers equation on unbounded domain by the nonlinear artificial boundary
conditions [4], Nishinari et al. used the ultradiscrete method to derive the cellular automaton (CA) from the two-
dimensional Burgers equation and studied some exact solutions of the CA [5]. In this paper, we consider the numerical
solution of the Burgers equation with a source term on unbounded domains

ut = ∇
2u + 2(u · ∇)u + F(x, t), in R2, t > 0, (1.1)

∗ Corresponding author.
E-mail addresses: xwu@hkbu.edu.hk (X. Wu), jwzhang@math.hkbu.edu.hk (J. Zhang).

0898-1221/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.11.047

http://www.elsevier.com/locate/camwa
mailto:xwu@hkbu.edu.hk
mailto:jwzhang@math.hkbu.edu.hk
http://dx.doi.org/10.1016/j.camwa.2007.11.047


X. Wu, J. Zhang / Computers and Mathematics with Applications 56 (2008) 242–256 243

u(x, 0) = u0(x), (1.2)

u → 0, when |x | → +∞, (1.3)

where u = (u1, u2), ∇ ×u, the source term F(x, t) = ( f1, f2) and initial data u0(x) vanish outside a two-dimensional
disc B0 = {x : |x | ≤ R}, namely, the flow field is irrotational outside the disc B0 and

supp{F(x, t)} ⊂ B0 × [0, T ], supp{u0(x)} ⊂ B0. (1.4)

For the numerical solution of problem (1.1)–(1.3), we need to introduce artificial boundaries to make the
computational domain finite, find boundary conditions on the artificial boundaries, and reduce the original problem
to an equivalent problem on a bounded domain. Using the Cole–Hopf transformation, we transform problem (1.1)
into a heat equation outside the computational domain and find exact boundary conditions on the artificial boundaries
by considering the heat equation. Then by inverting the above transformation, the exact boundary conditions on the
artificial boundaries of the original problem are presented. This procedure is usually called artificial boundary method,
which is the most important and efficient method for numerical solution of PDEs in unbounded domain and has been
widely applied to elliptic and harmonic equations [6–10], wave equations [11–14], and the parabolic equation [15–19]
etc. The artificial boundary method is also called the natural boundary integral method, or Dirichlet to Neumann
mapping method. The exact boundary condition on the artificial boundary is just the natural integral equation, i.e. DtN
mapping. One can refer to the related books [20,21] written by Yu. For nonlinear problems, generally speaking, it is
difficult to use the artificial boundary condition directly. Recently, some nonlinear equations have been studied in
detail in [22–24], where some equations can be linearized outside the artificial boundary, and in [4,25], where the
transformation is used.

The brief organization of this article is as follows. In Section 2, we introduce the Cole–Hopf transformation and
present exact and approximate artificial boundary conditions of the two-dimensional Burgers’ equation. In Section 3,
we are devoted to the stability analysis. In Section 4, the finite difference discretizations and some iteration tactics are
given. Section 5 is to construct some numerical examples to show the effectiveness of our approach.

2. Artificial boundary conditions

Denote the artificial boundary by Γ = ∂B0, the exterior domain by Ωe = R2
\ B0, and the computational domain

by Ωi = B0. In order to obtain boundary conditions on the artificial boundary Γ , we consider firstly the restriction of
the solution u on the exterior domain Ωe. On the unbounded domain Ωe the original problem (1.1)–(1.3) satisfies

ut = ∇
2u + 2(u · ∇)u, in Ωe × (0, T ] (2.1)

∇ × u = 0, in Ωe × (0, T ] (2.2)

u(x, 0) = 0, in Ωe (2.3)

u → 0, when |x | → +∞. (2.4)

Since u(x, t) is an unknown function, problem (2.1)–(2.4) is an incompletely posed problem. It can not be solved
independently. However, if we assume that the boundary values u(x, t)|Γ are given, then (2.1)–(2.4) is a well-posed
problem. Furthermore, by the Cole–Hopf transformation [2], we can reduce the nonlinear Burgers’ equation to a linear
parabolic equation. In fact, according to the irrotational condition ∇ × u = 0, we let

ω(x1, x2, t) = −

∫
∞

x1

u1(ξ, x2, t)dξ = −

∫
∞

x2

u2(x1, η, t)dη,

then,

ωt − (∇ω)2 − 4ω = 0.

Let v = ew − 1, then v satisfies

vt = 4v in Ωe × (0, T ], (2.5)

v(x, 0) = 0, (2.6)

v → 0, when |x | → +∞, (2.7)
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v|x∈Γ = v|Γ . (2.8)

In the polar coordinate, (2.5)–(2.8) can be written as

vt = vrr +
1
r
vr +

1

r2 vθθ in Ωe × (0, T ], (2.9)

v(r, θ, 0) = 0, (2.10)

v → 0, when r → +∞, (2.11)

v|Γ = v(R, θ, t). (2.12)

We try to find the solution v(r, θ, t) in the form

v(r, θ, t) = v0(r, t)+

∞∑
m=1

am(r, t) cos mθ + bm(r, t) sin mθ, (2.13)

with

am(t) =
1
π

∫ 2π

0
v(R, θ, t) cos(mθ)dθ, bm(t) =

1
π

∫ 2π

0
v(R, θ, t) sin(mθ)dθ.

Substituting the above equality (2.13) into (2.9), we have

∂v0

∂t
−
∂2v0

∂r2 −
1
r

∂v0

∂r
+

∞∑
m=1

[(
∂am

∂t
−
∂2am

∂r2 −
1
r

∂am

∂r
+

m2

r2 am

)
cos mθ

+

(
∂bm

∂t
−
∂2bm

∂r2 −
1
r

∂bm

∂r
+

m2

r2 bm

)
sin mθ

]
= 0. (2.14)

The Eq. (2.14) holds if and only if the coefficients of the series vanish, hence we have:

∂v0

∂t
−
∂2v0

∂r2 −
1
r

∂v0

∂r
= 0, (2.15)

∂am

∂t
−
∂2am

∂r2 −
1
r

∂am

∂r
+

m2

r2 am = 0, m ≥ 1, (2.16)

∂bm

∂t
−
∂2bm

∂r2 −
1
r

∂bm

∂r
+

m2

r2 bm = 0, m ≥ 1. (2.17)

Solving the above equations with the corresponding initial and boundary conditions, respectively, we have the
following exact boundary conditions on the artificial boundary Γ (refer to [17] and the references therein):

∂v(R, θ, t)

∂r
= −

1

2R
√
π3

∫ t

0

∫ 2π

0

∂v(R, φ, τ )

∂τ
dφ

H0(t − τ)
√

t − τ
dτ

−
1

R
√
π3

∫ t

0

∞∑
m=1

∫ 2π

0

∂v(R, φ, τ )

∂τ
cos m(φ − θ)dφ

Hm(t − τ)
√

t − τ
dτ

−
1

Rπ

∞∑
m=1

m
∫ 2π

0
v(R, φ, t) cos m(φ − θ)dφ (2.18)

and

∂v(R, θ, t)

∂θ
=

1
π

∞∑
m=1

m
∫ 2π

0
v(R, φ, t) sin m(φ − θ)dφ, (2.19)
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with

Hm(t) =
4
√

t
√
π3

∫
∞

0

e−µ2t

J 2
m(µR)+ Y 2

m(µR)

dµ
µ
, (2.20)

where Jm(·) and Ym(·) are two independent solutions of Bessel’s equation of order m, respectively, Ym(·) is called
Weber’s Bessel function of order m. To transform the boundary conditions (2.18) and (2.19) back into the original
variables u, we consider firstly

eωu1 = vx1 =
∂v

∂r

∂r

∂x1
+
∂v

∂θ

∂θ

∂x1
, vt = eωωt = eω(u1x1 + u2x2 + u2

1 + u2
2), (2.21)

in fact, the first term of (2.21) is trivial, for the second term, by the irrotational condition ∇ × u = 0, i.e. u1x2 = u2x1 ,
we have

ωt = −

∫
∞

x1

u1t (x1, x2, t)dx1

= −

∫
∞

x1

(u1x1x1 + u1x2x2 + 2u1u1x1 + 2u2u1x2)dx1

= −

∫
∞

x1

(u1x1x1 + u2x1x2 + 2u1u1x1 + 2u2u2x1)dx1

= (u1x1 + u2x2 + u2
1 + u2

2) , G(x1, x2, t). (2.22)

Hence on the artificial boundary we have

eω(R,θ,t)u1(R, θ, t) =

[
−

1

2R
√
π3

∫ t

0

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ )dφ

H0(t − τ)
√

t − τ
dτ

−
1

R
√
π3

∫ t

0

∞∑
m=1

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ ) cos m(φ − θ)dφ

Hm(t − τ)
√

t − τ
dτ

−
1

Rπ

∞∑
m=1

m
∫ 2π

0
(eω(R,φ,t) − 1) cos m(φ − θ)dφ

]
cos θ

−
1

Rπ

∞∑
m=1

m
∫ 2π

0
(eω(R,φ,t) − 1) sin m(φ − θ)dφ sin θ

=

[
−

1

2R
√
π3

∫ t

0

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ )dφ

H0(t − τ)
√

t − τ
dτ

−
1

R
√
π3

∫ t

0

∞∑
m=1

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ ) cos m(φ − θ)dφ

Hm(t − τ)
√

t − τ
dτ

−
1

Rπ

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t) cos m(φ − θ)dφ

]
cos θ

−
1

Rπ

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t) sin m(φ − θ)dφ sin θ (2.23)

noting that∫ 2π

0
sin m(φ − θ)dφ = 0 and

∫ 2π

0
cos m(φ − θ)dφ = 0.

Since the function ω(R, θ, t) contains an infinite integral over Ωe in the above boundary condition (2.23), it is rather
difficult to be used directly for computation. ω(R, θ, t) can be greatly simplified as long as we integrate the both sides
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of (2.22) term-by-term with respect to time t , namely,

ω(R, θ, t) =

∫ t

0
G(R, θ, τ )dτ

=

∫ t

0
(u1r (R, θ, τ ) cos θ − u1θ (R, θ, τ )

sin θ
R

+ u2r sin θ

+ u2θ
cos θ

R
+ u1(R, θ, τ )

2
+ u2(R, θ, τ )

2)dτ.

Thus we have the first artificial condition

u1(R, θ, t) = e−ω(R,θ,t)

[
−

1

2R
√
π3

∫ t

0

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ )dφ

H0(t − τ)
√

t − τ
dτ

−
1

R
√
π3

∫ t

0

∞∑
m=1

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ ) cos m(φ − θ)dφ

Hm(t − τ)
√

t − τ
dτ

−
1

Rπ

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t) cos m(φ − θ)dφ

]
cos θ

−
1

Rπ
e−ω(R,θ,t)

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t) sin m(φ − θ)dφ sin θ

, κ1∞(u1(R, ·, ·), u2(R, ·, ·), u1r (R, ·, ·), u1θ (R, ·, ·), u2r (R, ·, ·), u2θ (R, ·, ·))(θ, t). (2.24)

Then we consider

eωu2 = vx2 =
∂v

∂r

∂r

∂x2
+
∂v

∂θ

∂θ

∂x2
, vt = eωωt = eω(u1x1 + u2x2 + u2

1 + u2
2), (2.25)

by the same argument as obtaining u1(R, θ, t), we have the second artificial condition

u2(R, θ, t) = e−ω(R,θ,t)

[
−

1

2R
√
π3

∫ t

0

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ )dφ

H0(t − τ)
√

t − τ
dτ

−
1

R
√
π3

∫ t

0

∞∑
m=1

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ ) cos m(φ − θ)dφ

Hm(t − τ)
√

t − τ
dτ

−
1

Rπ

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t) cos m(φ − θ)dφ

]
sin θ

+
1

Rπ
e−ω(R,θ,t)

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t) sin m(φ − θ)dφ cos θ

, κ2∞(u1(R, ·, ·), u2(R, ·, ·), u1r (R, ·, ·), u1θ (R, ·, ·), u2r (R, ·, ·), u2θ (R, ·, ·))(θ, t). (2.26)

On the other hand, By using the relationships between the partial derivatives of v with respect to the pole coordinates
r , θ and the Descartes coordination x1, x2, we have

∂v

∂r
=
∂v

∂x1

∂x1

∂r
+
∂v

∂x2

∂x2

∂r
,

∂v

∂θ
=
∂v

∂x1

∂x1

∂θ
+
∂v

∂x2

∂x2

∂θ
. (2.27)

Substituting (2.18), (2.19), (2.21) and (2.25) into (2.27), we obtain the equivalent conditions
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u1(R, θ, t) cos θ + u2(R, θ, t) sin θ =

[
−

1

2R
√
π3

∫ t

0

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ )dφ

H0(t − τ)
√

t − τ
dτ

−
1

R
√
π3

∫ t

0

∞∑
m=1

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ ) cos m(φ − θ)dφ

Hm(t − τ)
√

t − τ
dτ

−
1

Rπ

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t) cos m(φ − θ)dφ

]
e−ω(R,θ,t)

+
1
π

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t)−ω(R,θ,t) sin m(φ − θ)dφ

, κ ′

1∞
(u1(R, ·, ·), u2(R, ·, ·), u1r (R, ·, ·), u1θ (R, ·, ·), u2r (R, ·, ·), u2θ (R, ·, ·))(θ, t). (2.28)

− Ru1(R, θ, t) sin θ + Ru2(R, θ, t) cos θ =

[
−

1

2R
√
π3

∫ t

0

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ )dφ

H0(t − τ)
√

t − τ
dτ

−
1

R
√
π3

∫ t

0

∞∑
m=1

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ ) cos m(φ − θ)dφ

Hm(t − τ)
√

t − τ
dτ

−
1

Rπ

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t) cos m(φ − θ)dφ

]
e−ω(R,θ,t)

+
1
π

∞∑
m=1

m
∫ 2π

0
eω(R,φ,t)−ω(R,θ,t) sin m(φ − θ)dφ

, κ ′

2∞
(u1(R, ·, ·), u2(R, ·, ·), u1r (R, ·, ·), u1θ (R, ·, ·), u2r (R, ·, ·), u2θ (R, ·, ·))(θ, t). (2.29)

Furthermore, taking the first few terms of the above summations, we obtain a series of approximating artificial
boundary conditions on Γ :

u1(R, θ, t) = e−ω(R,θ,t)

[
−

1

2R
√
π3

∫ t

0

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ )dφ

H0(t − τ)
√

t − τ
dτ

−
1

R
√
π3

∫ t

0

M∑
m=1

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ ) cos m(φ − θ)dφ

Hm(t − τ)
√

t − τ
dτ

−
1

Rπ

M∑
m=1

m
∫ 2π

0
eω(R,φ,t) cos m(φ − θ)dφ

]
cos θ

−
1

Rπ
e−ω(R,θ,t)

M∑
m=1

m
∫ 2π

0
eω(R,φ,t) sin m(φ − θ)dφ sin θ

, κ1M (u1(R, ·, ·), u2(R, ·, ·), u1r (R, ·, ·), u1θ (R, ·, ·), u2r (R, ·, ·), u2θ (R, ·, ·))(θ, t). (2.30)

For brevity, the approximating conditions are written as

u1(R, θ, t) = κ1M (R, ·, ·)(θ, t),

u2(R, θ, t) = κ2M (R, ·, ·)(θ, t),

u1(R, θ, t) cos θ + u2(R, θ, t) sin θ = κ ′

1M (R, ·, ·)(θ, t),

−Ru1(R, θ, t) sin θ + Ru2(R, θ, t) cos θ = κ ′

2M (R, ·, ·)(θ, t).

Let n = (cos θ, sin θ) and s = (−sinθ, cos θ) denote the normal and tangential vectors along the artificial boundary
Γ , respectively, we have

u|Γ = (κ1M (R, ·, ·)(θ, t), κ2M (R, ·, ·)(θ, t)) (2.31)
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u · n|Γ = κ ′

1M (R, ·, ·)(θ, t), (2.32)

Ru · s|Γ = κ ′

2M (R, ·, ·)(θ, t). (2.33)

It is obvious that when M −→ +∞, the approximating boundary conditions are exact. By the truncated boundary
conditions (2.31)–(2.33), the original problem (1.1)–(1.3) is reduced to the following approximation problem:

ut = ∇
2u + 2(u · ∇)u + F(x, t), in Ωi , t > 0, (2.34)

u(r, θ, 0) = u0(r, θ) in Ωi , (2.35)

u|Γ = (κ1M (R, ·, ·)(θ, t), κ2M (R, ·, ·)(θ, t)) or (2.36)

u · n|Γ = κ ′

1M (R, ·, ·)(θ, t), Ru · s|Γ = κ ′

2M (R, ·, ·)(θ, t). (2.37)

3. Stability analysis

For 0 ≤ t ≤ T we consider the stability analysis of Burgers equation with a source term on computational domains

ut = ∇
2u + 2(u · ∇)u + F(x, t), in Ωi × (0, T ], (3.1)

u(x, 0) = u0(x), (3.2)

u1|Γ = g1, u2|Γ = g2. (3.3)

Multiply the system (3.1) by (u1, u2), integrate over the domain Ωi × [0, t], respectively, then simplify by using
Green’s theorem we get

1
2
‖u1‖

2
Ωi

=
1
2
‖u10‖

2
Ωi

+

∫ t

0

∫
Γ

∂u1

∂n
g1 − |u1|

2
Ωi ×[0,t]

+
2
3

∫ t

0

∫
Γ

u3
1dx2 + 2

∫ t

0

∫
Ωi

u1u2u1x2 +

∫ t

0

∫
Ωi

f1u1, (3.4)

1
2
‖u2‖

2
Ωi

=
1
2
‖u20‖

2
Ωi

+

∫ t

0

∫
Γ

∂u2

∂n
g2 − |u2|

2
Ωi ×[0,t]

+
2
3

∫ t

0

∫
Γ

u3
2dx1 + 2

∫ t

0

∫
Ωi

u1u2u2x1 +

∫ t

0

∫
Ωi

f2u2, (3.5)

where u0(x) = (u10, u20), here and below, ‖ · ‖D is the standard L2-norm and

‖v‖2
Ωi ×[0,T ]

=

∫ T

0

∫
Ωi

v2(x, y, t)dxdydt =

∫ T

0

∫
Ωi

v2.

|v|2Ωi ×[0,T ]
=

∫ T

0

∫
Ωi

(
v2

x (x, y, t)+ v2
y(x, y, t)

)
dxdydt =

∫ T

0

∫
Ωi

(
v2

x + v2
y

)
.

In order to simplify (3.4) and (3.5), we introduce an auxiliary problem on unbounded domain Ωe:

ut = ∇
2u + 2(u · ∇)u + F(x, t), in Ωe × (0, T ], (3.6)

u(x, 0) = (u10, u20) = 0, (3.7)

u1|Γ = g1, u2|Γ = g2. (3.8)

Multiply Eq. (3.6) by (u1, u2), respectively, integrate over Ωe × [0, t], and integrate by parts, we obtain

1
2
‖u1‖

2
Ωe

= −

∫ t

0

∫
Γ

∂u1

∂n
g1 − |u1|

2
Ωe×[0,t] −

2
3

∫ t

0

∫
Γ

u3
1dx2 + 2

∫ t

0

∫
Ωe

u1u2u1x2 , (3.9)

1
2
‖u2‖

2
Ωe

= −

∫ t

0

∫
Γ

∂u2

∂n
g2 − |u2|

2
Ωe×[0,t] −

2
3

∫ t

0

∫
Γ

u3
2dx1 + 2

∫ t

0

∫
Ωe

u1u2u2x1 . (3.10)
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Combine (3.4), (3.5), (3.9) and (3.10) together, we have

1
2
‖u1‖

2
R2 =

1
2
‖u10‖

2
Ωi

− |u1|
2
R2×[0,t] + 2

∫ t

0

∫
R2

u1u2u1x2 +

∫ t

0

∫
Ωi

f1u1

≤
1
2
‖u10‖

2
Ωi

+

∫ t

0

∫
R2
(u1u2)

2
+

∫ t

0

∫
Ωi

1
2
( f 2

1 + u2
1), (3.11)

1
2
‖u2‖

2
R2 =

1
2
‖u20‖

2
Ωi

− |u2|
2
R2×[0,t] + 2

∫ t

0

∫
R2

u1u2u2x1 +

∫ t

0

∫
Ωi

f2u2

≤
1
2
‖u20‖

2
Ωi

+

∫ t

0

∫
R2
(u1u2)

2
+

∫ t

0

∫
Ωi

1
2
( f 2

2 + u2
2). (3.12)

If the value |u1u2| is bounded in the domain R2, i.e., there exists a constant C such that |u1u2| ≤ C . From (3.11) and
(3.12) we derive

1
2
‖u‖

2
R2 ≤

1
2
‖u0‖

2
Ωi

+

(
C +

3
2

)
‖u‖

2
R2×[0,t] +

1
2

∫ t

0

∫
Ωi

( f 2
1 + f 2

2 ). (3.13)

Using the abbreviations

y(t) =

∫ t

0

∫
R2
(u2

1 + u2
2) = ‖u‖

2
R2×[0,t], φ(t) = ‖u0‖Ωi +

∫ t

0

∫
Ωi

( f 2
1 + f 2

2 ),

we have the differential inequality

y′(t) ≤ (2C + 3)y(t)+ φ(t), 0 ≤ t ≤ T,

Now Gronwall’s Lemma [26], formulated next, allows us to estimate the above y(t).

Lemma 1. Suppose that y ∈ C1
[0, T ], ψ ∈ C[0, T ] satisfy

y′(t) ≤ cy(t)+ ψ(t), 0 ≤ t ≤ T,

for some c ≥ 0. Then

y(t) ≤ ect
{

y(0)+

∫ t

0
|ψ(τ)|dτ

}
, 0 ≤ t ≤ T .

Using Lemma 1 and noting that ‖u‖
2
Ωi ×[0,t] ≤ ‖u‖

2
R2×[0,t]

we obtain

Theorem 1. Assume that u solves the problem (3.1)–(3.3), |u1u2| ≤ C, and u ∈ L2(R2) × L2(R2), then we
have

‖u‖
2
Ωi ×[0,t] ≤ e(2C+3)t

(
‖u0‖

2
Ωi

+

∫ t

0
φ(τ)dτ

)
. (3.14)

4. Numerical approximation

In this section we discuss the numerical approximation of the reduced problem (2.34)–(2.37) by Crank–Nicholson
scheme, which is unconditionally stable. In the computational domain [a, R] × [0, 2π ], let ∆r = (R − a)/I and
∆θ = 2π/J be the spatial mesh sizes in r and θ , respectively, and let ∆t = T/N be the time step, where I, J and N
are positive integers. Let the grid points and temporal mesh points be

ri = a + i∆r, θ j = j∆θ, tn = n∆t,

where i = 0, 1, . . . , I, j = 0, 1, . . . , J, n = 0, 1, . . . , N .
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For brevity, denote u = (u, v) and denote the approximation of u(ri , θ j , tn), v(ri , θ j , tn) by un
i j , v

n
i j . By the

second-order implicit Crank–Nicolson scheme, we have the following approximation of the two-dimensional Burgers
equation:

un+1
i, j − un

i, j

∆t
=

u
n+

1
2

i+1, j − 2u
n+

1
2

i, j + u
n+

1
2

i−1, j

∆r2 +
u

n+
1
2

i+1, j − u
n+

1
2

i−1, j

2ri∆r
+

u
n+

1
2

i, j+1 − 2u
n+

1
2

i, j + u
n+

1
2

i, j−1

r2
i ∆θ2

+ 2

u
n+

1
2

i, j

cos θ j
u

n+
1
2

i+1, j − u
n+

1
2

i−1, j

2∆r
−

sin θ j

ri

u
n+

1
2

i, j+1 − u
n+

1
2

i, j−1

2∆θ


+ v

n+
1
2

i j

sin θ j
u

n+
1
2

i+1, j − u
n+

1
2

i−1, j

2∆r
+

cos θ j

ri

u
n+

1
2

i, j+1 − u
n+

1
2

i, j−1

2∆θ


 + f1(ri , θ j , tn+

1
2
),

vn+1
i, j − vn

i, j

∆t
=
v

n+
1
2

i+1, j − 2v
n+

1
2

i, j + v
n+

1
2

i−1, j

∆r2 +
v

n+
1
2

i+1, j − v
n+

1
2

i−1, j

2ri∆r
+
v

n+
1
2

i, j+1 − 2v
n+

1
2

i, j + v
n+

1
2

i, j−1

r2
i ∆θ2

+ 2

u
n+

1
2

i, j

cos θ j
v

n+
1
2

i+1, j − v
n+

1
2

i−1, j

2∆r
−

sin θ j

ri

v
n+

1
2

i, j+1 − v
n+

1
2

i, j−1

2∆θ


+ v

n+
1
2

i j

sin θ j
v

n+
1
2

i+1, j − v
n+

1
2

i−1, j

2∆r
+

cos θ j

ri

v
n+

1
2

i, j+1 − v
n+

1
2

i, j−1

2∆θ


 + f2(ri , θ j , tn+

1
2
),

with i = 1, . . . , I, j = 1, . . . , J and the initial and boundary conditions

u0
i, j = u0(ri , θ j , 0), un

a, j = u0(a, θ j , tn), un
i,0 = un

i,J ,

v0
i, j = v0(ri , θ j , 0), vn

a, j = v0(a, θ j , tn), vn
i,0 = un

i,J ,

where

u
n+

1
2

i, j =
1
2
(un+1

i, j + un
i, j ), v

n+
1
2

i, j =
1
2
(vn+1

i, j + vn
i, j ).

Obviously, the above systems of equations cannot be solved uniquely since the equations are less than the unknowns.
Thus the two artificial boundary conditions are introduced to make the systems complete. Since the artificial boundary
conditions are nonlocal and very complicated, we need to deal with them carefully. On the artificial boundary Γ , we
use the trapezoid formula to discretize the integrals and manipulate the ω(R, φ, τ ) as follows which is very feasible,
one can refer to [4,25] for indications:∫ t

0

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ )dφ

H0(t − τ)
√

t − τ
dτ =

n∑
l=0

J−1∑
s=0

∆y

2
(eω

l+1
I,s Gl+1

I,s + eω
l
I,s Gl

I,s)

∫ tl+1

tl

H0(tn+1 − τ)
√

tn+1 − τ
dτ,

∫ t

0

∫ 2π

0
eω(R,φ,τ )G(R, φ, τ ) cos m(φ − θ)dφ

Hm(t − τ)
√

t − τ
dτ

=

n∑
l=0

J−1∑
s=0

1

2∆ym2 (e
ωl+1

I,s Gl+1
I,s + eω

l
I,s Gl

I,s)[2 cos m(θs − θ j )

− cos m(θs+1 − θ j )− cos m(θs−1 − θ j )]

∫ tl+1

tl

Hm(tn+1 − τ)
√

tn+1 − τ
dτ,∫ 2π

0
eω(R,φ,t) cos m(φ − θ)dφ =

J−1∑
s=0

1

∆ym2 eω
n+1
I,s [2 cos m(θs − θ j )

− cos m(θs+1 − θ j )− cos m(θs−1 − θ j )],
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0
eω(R,φ,t) sin m(φ − θ)dφ =

J−1∑
s=0

1

∆ym2 eω
n+1
I,s [2 sin m(θs − θ j )− sin m(θs+1 − θ j )− sin m(θs−1 − θ j )],

where

ωn+1
I,s = ωn

I,s +
∆t

2
(Gn+1

I,s + Gn
I,s)

and

Gl
I,s =

ul
I+1,s − ul

I−1,s

2∆r
cosφs −

ul
I,s+1 − ul

I,s−1

2R∆θ
sinφs +

vl
I+1,s − vl

I−1,s

2∆r
sinφs

+
vl

I,s+1 − ul
I,s−1

2R∆θ
cosφs + (ul

I,s)
2
+ (vl

I,s)
2.

The above scheme is implicit, we need to use an iterative method to solve it numerically. Some strategies are given to
iterate the nonlinear term as references by

u
n+

1
2

i, j cos θ j
u

n+
1
2

i+1, j − u
n+

1
2

i−1, j

2∆r
= (u

n+
1
2

i, j )(k)

cos θ j
u

n+
1
2

i+1, j − u
n+

1
2

i−1, j

2∆r


(k+1)

,

v
n+

1
2

i j sin θ j
u

n+
1
2

i+1, j − u
n+

1
2

i−1, j

2∆r
= (v

n+
1
2

i j )(k)

sin θ j
u

n+
1
2

i+1, j − u
n+

1
2

i−1, j

2∆r


(k+1)

,

where the superscript k denotes the kth iteration to solve the nonlinear difference equations at each time step. The
initial iteration is given as (un+1

i, j )
(0)

= un
i, j , (v

n+1
i, j )

(0)
= vn

i, j . We can use the same strategy to cope with the iteration
on the artificial boundary by

eω
n+1
I,s Gn+1

I,s = (eω
n+1
I,s )(k)(Gn+1

I,s )
(k+1).

The last difficulty is to handle the integral kernel∫ tl+1

tl

Hm(τ )
√
τ

dτ =
4

√
π3

∫
∞

0

∫ tl+1
tl

e−µ2τdτ

J 2
m(µR)+ Y 2

m(µR)

dµ
µ
,

which decays so slow that it has a great influence on the computational efficiency. However the integral is independent
of the variables u and v, hence we can make some tables first to enhance the computational efficiency before starting
the numerical computing.

5. Numerical examples

In order to demonstrate the effectiveness of the artificial boundary conditions given in this paper, we present some
numerical examples in this section.

Example 5.1. Consider the following initial boundary value problem:

ut = ∇
2u + 2(u · ∇)u + F, in Ωi , t > 0,

u(a, θ, t) = g(θ, t),

u(r, θ, 0) = 0,

with a = 2,F = 0 and

g1(θ, t) = −
e−

(a cos θ−x0)
2
+(a sin θ−y0)

2

4t (a cos θ − x0)

(2te−
(a cos θ−x0)

2+(a sin θ−y0)
2

4t + 2t2)

,
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Fig. 1. Errors of the difference solution |u(R, θ, 1)− uh(R, θ, 1)| with x0 = 0, y0 = 0, M = 4 and t = 1.

Fig. 2. Errors of the difference solution |v(R, θ, 1)− vh(R, θ, 1)| with x0 = 0, y0 = 0, M = 4 and t = 1.

g2(θ, t) = −
e−

(a cos θ−x0)
2
+(a sin θ−y0)

2

4t (a sin θ − y0)

(2te−
(a cos θ−x0)

2+(a sin θ−y0)
2

4t + 2t2)

.

The exact solutions of the problem are

u(r, θ, t) = −
e−

(r cos θ−x0)
2
+(r sin θ−y0)

2

4t (r cos θ − x0)

(2te−
(r cos θ−x0)

2+(r sin θ−y0)
2

4t + 2t2)

,

v(r, θ, t) = −
e−

(r cos θ−x0)
2
+(r sin θ−y0)

2

4t (r sin θ − y0)

(2te−
(r cos θ−x0)

2+(r sin θ−y0)
2

4t + 2t2)

.



X. Wu, J. Zhang / Computers and Mathematics with Applications 56 (2008) 242–256 253

Fig. 3. Errors of the difference solution u(R, θ, 1)− uh(R, θ, 1) with x0 = 0.25, y0 = 0.25, M = 4 and t = 1.

Table 1
L1-norms for different meshes and M at (x0 = y0 = 0.0) and (x0 = y0 = 0.25)

M I × J Error M I × J Error M I × J Error M I × J Error

0 4 × 24 1.03e−2 0 4 × 24 2.18e−2 3 4 × 24 6.57e−3 3 4 × 24 6.86e−3
8 × 48 5.30e−3 8 × 48 2.03e−2 8 × 48 2.08e−3 8 × 48 3.20e−3
12 × 72 4.33e−3 12 × 72 1.90e−2 12 × 72 1.01−3 12 × 72 1.36e−3
16 × 96 3.72e−3 16 × 96 1.87e−2 16 × 96 5.77e−4 16 × 96 7.11e−4
24 × 144 3.09e−3 24 × 144 1.77e−2 24 × 144 2.92e−4 24 × 144 3.60e−4

1 4 × 24 6.57e−3 1 4 × 24 8.11e−3 4 4 × 24 6.57e−3 4 4 × 24 6.86e−3
8 × 48 2.08e−3 8 × 48 5.46e−3 8 × 48 2.08e−3 8 × 48 3.20e−3
12 × 72 1.01−3 12 × 72 3.95e−3 12 × 72 1.01e−3 12 × 72 1.17e−3
16 × 96 5.77e−4 16 × 96 3.72e−3 16 × 96 5.77e−4 16 × 96 7.06e−4
24 × 144 2.92e−4 24 × 144 3.53e−3 24 × 144 2.92e−4 24 × 144 3.49e−4

2 4 × 24 6.57e−3 2 4 × 24 6.89e−3 5 4 × 24 6.57e−3 5 4 × 24 6.86e−3
8 × 48 2.08e−3 8 × 48 3.30e−3 8 × 48 2.08e−3 8 × 48 3.20e−3
12 × 72 1.01−3 12 × 72 1.36e−3 12 × 72 1.01e−3 12 × 72 1.17e−3
16 × 96 5.77e−4 16 × 96 9.66e−4 16 × 96 5.77e−4 16 × 96 7.06e−4
24 × 144 2.92e−4 24 × 144 6.81e−4 24 × 144 2.92e−4 24 × 144 3.49e−4

Let the artificial boundary Γ = {(r, θ) : r = R, 0 ≤ θ ≤ 2π} with R = 3. Taking ∆r =
R−a

I , J = 6I, N = I,∆θ =

2π
J ,∆t = T/N , and denote the L1-norm E1 by

E1 =
1

(I + 1)(J + 1)(N + 1)

N∑
n=0

I∑
i=0

J∑
j=0

(|u(ri , θ j , tn)− un
i j | + |v(ri , θ j , tn)− vn

i j |).

Table 1 gives L1 errors for different M at points (x0 = 0.0 and y0 = 0.0) and (x0 = 0.25 and y0 = 0.25), respectively.
The numerical errors decrease fast with the increasing of M judged from Table 1. When x0 = y0 = 0 the exact
solution is reduced to

u(r, θ, t) = −
e−

r2
4t r cos θ

(2te−
r2
4t + 2t2)

,

v(r, θ, t) = −
e−

r2
4t r sin θ

(2te−
r2
4t + 2t2)

.
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Fig. 4. Errors of the difference solution v(R, θ, 1)− vh(R, θ, 1) with x0 = 0.25, y0 = 0.25, M = 4 and t = 1.

Fig. 5. u(R, θ, 1)− uh(R, θ, 1) for different M with mesh = 24 × 144 and x0 = y0 = 0.25.

For x0 = y0 = 0, the solution is relatively simple, and from Table 1, we can see that M = 1 would be enough for the
computation. For x0 = y0 = 0.25, the solution is relatively complicated. In this case, we need to take M = 4.

Figs. 1 and 2 plot the errors |u(R, θ, 1) − uh(R, θ, 1)| and |v(R, θ, 1) − vh(R, θ, 1)| with different meshes
I = 8, 12, 16, 24 on the artificial boundary at time t = 1, M = 4, x0 = 0 and y0 = 0, respectively. Figs. 3 and
4 plot the errors u(R, θ, 1) − uh(R, θ, 1) with different meshes I = 8, 12, 16, 24 on the artificial boundary at time
t = 1, M = 4, x0 = 0.25 and y0 = 0.25, respectively. Figs. 5 and 6 plot the errors u(R, θ, 1) − uh(R, θ, 1) and
v(R, θ, 1)− vh(R, θ, 1) for different truncated numbers M from 0 to 5 with mesh = 24 × 144 when x0 = y0 = 0.25.

6. Conclusion

By introducing an artificial boundary, we reduced the original problem to an equivalent problem defined on a
bounded domain. Based on the Cole–Hopf transformation and Fourier series expansion, we obtained exact boundary
conditions on the artificial boundary, and then provided a series of approximations to the artificial boundary conditions.
In addition, we presented the stability analysis of the analytic solution and the numerical approximation scheme.



X. Wu, J. Zhang / Computers and Mathematics with Applications 56 (2008) 242–256 255

Fig. 6. |v(R, θ, 1)− vh(R, θ, 1)| for different M with mesh = 24 × 144 and x0 = y0 = 0.25.

Finally, some numerical examples were given to demonstrate the effectiveness and feasibility of the artificial boundary
conditions.
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