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A Three-stage Operator-Splitting/Finite Element
Method for the Numerical Simulation of Liquid Crystal

Flow

Roland Glowinski ∗ Ping Lin †and Xing-Bin Pan ‡

25 October 2008

Abstract

In this article, we investigate the application of an operator-splitting/finite el-
ement method to the numerical simulation of a liquid crystal flow. The operator-
splitting is achieved through three stages, so that each stage is simpler and easier to
deal with than the step of any un-split implicit scheme. The first stage deals with the
system coupling a Stokes equation for velocity with an equation modeling the diffu-
sion of the liquid crystal director field. The second stage deals with the convection
of both the velocity and director field; a wave-like equation approach is used to treat
this advection part and proves being quite efficient. Finally, the third stage deals
with the nonlinear terms; a (quasi) closed form solution can be derived for this stage.
Overall, with this type of splitting, the nonlinear terms in the liquid crystal model
can be treated quite easily. The results of several numerical experiments show the
good performances of the three-stage splitting method discussed in this article.

Keywords: liquid crystal, incompressible flow, finite element method, operator-
splitting method

Mathematics Subject Classification. 65M60, 76A15

1 Introduction

The last two decades have been witnessing a strong interest among physicists, engineers and
mathematicians for the theory and numerical modeling of liquid crystal related phenomena,
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including the flow of such materials. Liquid crystals do not show a single transition from
solid to liquid, but rather a cascade of transitions involving new phases. The classical
Oseen-Frank theory suggests that the nematic phase of liquid crystals can be described by
a director field d, which minimizes the so-called Oseen-Frank energy. The mathematical
analysis and computational results for some special cases of the Oseen-Frank model can be
found in [1, 4, 5, 11, 20, 12, 2, 3, 9, 17]. In order to describe liquid crystal flows we need
not only the orientation, as represented by the director field d, but also the velocity field u.
Ericksen and Leslie were able to derive a hydrodynamic model for nematic liquid crystals:
a nematic flow behaves like a regular liquid with molecules of similar size. However, such a
liquid displays anisotropic properties due to the molecule alignment described by the local
director field d. In order to facilitate the mathematical understanding of the Ericksen-
Leslie theory, F. H. Lin and Liu proposed in [13] to consider a simplified model retaining
most of mathematical and physical significance of the original model, but simple enough
to make possible a rigorous mathematical discussion. The model reads as follows:

ut + (u·∇)u− ν∇ ·D(u) +∇p+ λ∇ ·
(
(∇d)T∇d

)
= 0 in Ω× (0, T ), (1.1)

∇ · u = 0 in Ω× (0, T ), (1.2)

dt + (u · ∇)d− γ (∆d− f(d)) = 0 in Ω× (0, T ) (1.3)

where in (1.1)-(1.3): (i) Ω (⊂ Rd) denotes the flow region and (0, T ) the time interval during
which the flow is taking place. (ii) u represents the flow velocity and p the associated
pressure. (iii) d represents the orientation of the liquid crystal molecules. (iv) D(u) =
(1/2)

(
∇u + (∇u)T

)
and (∇d)ij = ∂di

∂xj
. (v) f(d) = (1/ε2)(|d|2 − 1)d.

The vector-valued functions u and d (resp., the real valued function p) are defined over
Ω × (0, T ) and take their values in Rd (resp., R). For our computations we will consider
only test problems with d = 2. Concerning f(·), it is a penalty operator, used to enforce
(approximately) the condition |d| = 1 (where |d| denotes the canonical Euclidian norm of
d; actually, f(d) is the differential at d of the penalty functional F defined by

F (d) = (1/4ε2)(|d|2 − 1)2.

The condition |d| = 1 follows from the fact that the liquid crystal molecules are of sim-
ilar size. Equation (1.1) describes the conservation of the linear momentum; it combines
terms describing the flow of an isotropic fluid with an additional nonlinear term which is
anisotropic. The second equation models the incompressibility of the liquid crystal mater-
ial. The third equation is associated with the conservation of the angular momentum.

Of course, (1.1)-(1.3) have to be completed by initial and boundary conditions, such as:

u|t=0 = u0, d|t=0 = d0, u|∂Ω = u0|∂Ω = gu, d|∂Ω = gd. (1.4)

Even if the initial velocity is zero, the evolution of the director field may induce a velocity,
which in turn will affect the evolution of the director field. Since the mathematical study
of these interactions (between u and d) is difficult, their numerical study is a most natural
alternative. In [18] (resp., [19]), Liu & Walkington used an energy preserving C1-conforming
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finite element method (resp., mixed finite element method) for the solution of problem (1.1)-
(1.4). In [16], Lin & Liu further simplified the space approximations discussed in [18, 19] by
deriving an energy preserving C0-conforming finite element method. Some other methods
have been used for the space approximation of (1.1)-(1.4); for example, the spectral method
discussed in [6] appear to be efficient on rectangular domains when u and d verify periodic
boundary conditions.

Considering the good results presented in [9], by the authors of the present article, for
a simplified Oseen-Frank liquid crystal model, we would like to apply to the solution of
problem (1.1)-(1.4) a variation of the operator-splitting scheme we employed in the above
reference. As shown in, e.g., [8], the operator-splitting methodology provides quite often
simple and efficient methods for the solution of complicated partial differential equations.
In the particular case of problems such as (1.1)-(1.4), an appropriate operator-splitting time
discretization scheme will allow us to treat rather easily the contribution of the nonlinear
operator f(·), through the solution of simple cubic equations in one variable, reducing
thus considerably the associated computational time compared to an implicit un-split time
discretization scheme. In this article we are going to discuss a three-stage time-splitting
scheme for the solution of problem (1.1)-(1.4); this scheme will have the ’nice’ properties
mentioned above concerning the treatment of the nonlinear operator f(·). Our method is
easy to implement, and due to its modularity, it can take advantage of existing solvers and
mesh generators, further reducing thus the complexity of the computer implementation.

A weak formulation and a fully discrete scheme combining finite element approximation
with the backward Euler time-discretization scheme will be provided in Section 2. The
three-stage operator-splitting time discretization scheme will be described in Section 3. In
Section 4, we will use the methodology discussed in the Sections 2 and 3, in order to solve
test problems of physical interest associated with various shapes for Ω.

We hope that the numerical results presented in this article will motivate analysts
at further investigating the mathematical properties of the solution of liquid crystal flow
problems.

2 Weak formulation and full discretization of problem

(1.1)-(1.4)

From now on, we assume that Ω is bounded in Rd with d = 2 or 3. We denote by Γ the
boundary ∂Ω of Ω and we assume that Γ is reasonably smooth (Lipschitz-continuous, for
example). Define the functional spaces H1(Ω), H1

g and L2(X) by H1(Ω) = (H1(Ω))d, H1
g =

{v|v ∈ H1(Ω),v = g on Γ} and L2(X) = (L2(X))d, respectively. A weak formulation of
problem (1.1)-(1.4) reads as follows:

Find {u, p,d} ∈ [H1(0, T ;H−1(Ω))∩L2(0, T ;H1(Ω))]×L2(0, T ;L2(Ω)/R)×[H1(0, T ;H1(Ω))∩
L2(0, T ;H1(Ω))] such that a.e. on (0, T ):
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∫
Ω

(
ut · v + (u · ∇)u · v + ν∇u : ∇vdx− p(∇ · v)− λ(∇d)T∇d : ∇v

)
dx = 0

∀v ∈ H1
0(Ω), (2.1)∫

Ω

(∇ · u)qdx = 0 ∀q ∈ L2(Ω), (2.2)∫
Ω

(dt · e + (u · ∇)d · e + γ(∇d : ∇e− f(d) · e)) dx = 0 ∀e ∈ H1
0(Ω). (2.3)

u|t=0 = u0, d|t=0 = d0, u|Γ = gu, d|Γ = gd. (2.4)

Rigorously speaking, the functional space we need is W1,3(Ω) for d and the test function
of the momentum equation. But we will not explore this in this computational paper. We
are going to use C0 finite elements in our computation, which are conformal to all these
functional spaces. Problem (2.1)-(2.4) is equivalent to (1.1)-(1.4); it can be solved by a
method combining finite differences for the time-discretization with finite elements for the
space approximation. A fully implicit time-discretization scheme will guarantee temporal
stability (even so, the time-discretization step has to be small enough, since, in particular,
the nonlinear operator f(·) is not monotone). Concerning the space approximation of
problem (2.1)-(2.4), let us denote by H the space H1(Ω)× L2(Ω)×H1(Ω) and by H0 the
space H1

0(Ω)× L2(Ω)/R×H1
0(Ω); we approximate H and H0 by

Hh = Vh ×Qh × Eh(⊂ H) (2.5)

and
H0h = V0h ×Qh/R× E0h(⊂ H0), (2.6)

respectively, where, in (2.5), (2.6), Vh , Qh and Eh are finite element spaces associated
with a triangulation Th of Ω , and where V0h and E0h are defined by

V0h = {v|v ∈ Vh, v = 0 on Γ} and E0h = {e|e ∈ Eh, e = 0 on Γ}.

Taking Eh = Vh and therefore E0h = V0h is a sensible choice. With ∆t (> 0) a time-
discretization step (that we suppose constant for simplicity), a backward Euler based fully
discrete scheme for the space-time approximation of problem (2.1)-(2.4) reads as follows:

An approximation {u0
h,d

0
h} of {u0,d0} is given in Vh × Eh. (2.7)

For n > 0, being known, we obtain {un
h, p

n
h,d

n
h} from the solution in Hh of the fol-

lowing discrete elliptic variational system:
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∫
Ω

[
un

h − un−1
h

∆t
· v + (un

h · ∇)un
h · v + ν∇un

h : ∇v − pn
h(∇ · v)

− λ(∇dn
h)T∇dn

h : ∇v
]
dx = 0, ∀v ∈ V0h, (2.8)∫

Ω

(∇ · un
h) q dx = 0, ∀q ∈ Qh, (2.9)∫

Ω

[
dn

h − dn−1
h

∆t
· e + (un

h · ∇)dn
h · e + γ[∇dn

h : ∇e− f(dn
h) · e]

]
dx = 0,

∀e ∈ E0h, (2.10)

un
h|Γ = guh, dn

h|Γ = gdh, (2.11)

where, in (2.11), guh and gdh are approximations of gu and gd belonging to the spaces

γ0Vh and γ0Eh with γ0 the trace operator from H1(Ω) onto H
1
2 (Γ) defined by γ0v = v|Γ.

The finite-dimensional problem (2.8)-(2.11) is highly nonlinear with a strong coupling
between (2.8), (2.9) and (2.10). A simple way to make the above system less nonlinear
and weaken the coupling between its various equations is to linearize the advection terms
in (2.8) and (2.10); this easily achieved by substituting (un−1

h · ∇)un
h (resp., (un−1

h · ∇)dn
h)

to (un
h · ∇)un

h (resp., (un
h · ∇)dn

h) in (2.8) (resp., (2.10)); based on our long experience with
incompressible viscous flows, we can anticipate that the resulting scheme will be almost
as stable than scheme (2.8)-(2.11), its main drawback being that the associated stiffness
matrices vary with n and that the analogue of (2.10) is still highly nonlinear. A simple way
to overcome these difficulties is to apply to the solution of problem (2.1)-(2.4) a well-chosen
operator-splitting method, following thus a strategy which has been quite successful for the
numerical solution of simpler liquid-crystal problems (see [10, 9] for details).

3 A three-stage operator splitting for the solution of

problem (1.1)-(1.4)

In order to simplify the presentation, we will describe our operator-splitting method when
applied to the continuous problem (1.1)-(1.4); its finite element implementation is straight-
forward. Our three-stage splitting scheme reads as follows (with tn = n∆t):

Initialization:
{u0,d0} = {u0,d0}. (3.1)

For n ≥ 0, we obtain {un+1, pn+1,dn+1} from {un,dn} via the solution of
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Step 1: Diffusion sub-problems

un+ 1
3 − un

∆t
− µ∇2un+ 1

3 +∇pn+1 = 0 in Ω, (3.2)

∇ · un+ 1
3 = 0 in Ω, (3.3)

dn+ 1
3 − dn

∆t
− γ∇2dn+ 1

3 = 0 in Ω, (3.4)

un+ 1
3 = gu on Γ, dn+ 1

3 = gd on Γ. (3.5)

Step 2: Advection sub-problems

∂u

∂t
+ (un+ 1

3 · ∇)u = 0 in Ω× (tn, tn+1) (3.6)

∂d

∂t
+ (un+ 1

3 · ∇)d = 0 in Ω× (tn, tn+1), (3.7)

u(tn) = un+ 1
3 , d(tn) = dn+ 1

3 , (3.8)

{u,d} = {gu,gd} on Γ− × (tn, tn+1), (3.9)

un+ 2
3 = u(tn+1), dn+ 2

3 = d(tn+1) (3.10)

with Γ− = {x | x ∈ Γ,gu(x) ·n(x) < 0}, n being the outward unit vector normal at Γ.

Step 3: Nonlinear sub-problems:

dn+1 − dn+ 2
3

∆t
+ γf(dn+1) = 0 (3.11)

un+1 − un+ 2
3

∆t
= −λ∇ · ((∇dn+1)T∇dn+1) in Ω. (3.12)

Through the above three-stage operator-splitting scheme, we observe that there is no cou-
pled system to solve to obtain at each time step the values of u and d. Moreover, in
Step 1, the stiffness matrix for either u or d is independent of the time step n since we do
not modify ∆t; if one chooses a direct method (Gauss’ or Cholesky’s, for example) for the
solution of the associated linear systems, these stiffness matrices need to be factored only
once; this reduces considerably the computational time. In Step 3, the nonlinear equation
providing dn+1 can be solved point-wise (in practice at the grid-points of a finite difference
or a finite element mesh); a.e. on Ω , we have to solve the following cubic equation in Rd:

dn+1(x) + α(|dn+1(x)|2 − 1)dn+1(x) = dn+ 2
3 (x), (3.13)

where, in (3.13), α = γ∆t/ε2. If α ≤ 1 equation (3.13) has a unique solution, given by

dn+1(x) =
dn+ 2

3 (x)

1− α+ α|dn+1(x)|2
, (3.14)
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where, in (3.14), |dn+1(x)| satisfies the following cubic equation:

αz3 + (1− α)z − |dn+ 2
3 (x)| = 0. (3.15)

If α < 1, in order to compute the unique solution of equation (3.15), we advocate the

Newton’s method initialized by |dn+ 2
3 |. If α = 1 one has

dn+1(x) =
dn+ 2

3 (x)

|dn+ 2
3 (x)|2/3

if dn+ 2
3 (x) 6= 0. (3.16)

If α > 1, relations (3.13) and (3.14) still apply; in that case we suggest to take for |dn+1(x)|
the unique positive solution of (3.14) (to compute it we can use the Newton’s method
initialized by z = 1).
Concerning Step 2, we will take the approach already used in [7] for the simulation of a
variety of Newtonian and non-Newtonian incompressible viscous flows (possibly tempera-
ture dependent). It relies on a wave-like reformulation of the advection problems and can
be described as follows:

Consider the following pure advection problem

∂φ

∂t
+ V · ∇φ = 0 in Ω× (t0, tf ) (3.17)

φ(t0) = φ0, (3.18)

φ = g on Γ− × (t0, tf ), (3.19)

where: (i) Γ− = {x | x ∈ Γ,V(x) ·n(x) < 0}. (ii) ∇·V = 0 and ∂V
∂t

= 0. (iii) ∂g
∂t

= 0.

As shown in, e.g., [7] proving the uniqueness of a solution to problem (3.17-(3.19) is an
easy matter (unlike proving the existence of solutions, an issue we will not address here).
Differentiating (3.17) with respect to t, we observe that (3.17)-(3.19) implies (formally, at
least) that φ verifies also

∂2φ

∂t2
−∇ · ((V · ∇φ)V) = 0, in Ω× (t0, tf ), (3.20)

φ(t0) = φ0,
∂φ

∂t
(t0) = −V · ∇φ0, (3.21)

φ = g on Γ− × (t0, tf ), V · n(
∂φ

∂t
+ V · ∇φ) = 0 on (Γ\Γ−)× (t0, tf ). (3.22)

One can easily prove that the wave-like problem (3.20)-(3.22) has a unique solution (see,
e.g., [7] for details). In order to solve the above wave-problem by a method combining finite
differences for the time-discretization and finite element for the space approximation we
can take advantage of the following equivalent weak formulation of problem (3.20)-(3.22),
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for a.e. t ∈ (t0, tf ):∫
Ω

[
∂2φ

∂t2
ψ + (V · ∇φ)(V · ∇ψ)

]
dx +

∫
Γ\Γ−

V · n∂φ
∂t
ψdΓ = 0, ∀ψ ∈ V−, (3.23)

φ(t0) = φ0,
∂φ

∂t
(t0) = −V · ∇φ0, (3.24)

φ = g on Γ−, (3.25)

with V− = {ψ | ψ ∈ H1(Ω), ψ|Γ− = 0}. Concerning the time-discretization of (3.23)-3.25)
we follow [7], that is:

(i) Let τ =
tf−t0

Q
, Q being a positive integer (Q = 5, typically).

(ii) Take
φ0 = φ0. (3.26)

(iii) Compute φ1 and φ−1, verifying φ1 = g on Γ− and φ−1 = g on Γ−, from∫
Ω

φ1 − φ−1

2τ
ψdx = −

∫
Ω

V · ∇φ0ψdx, ∀ψ ∈ V−, (3.27)∫
Ω

[
φ1 − 2φ0 + φ−1

τ 2
ψ + (V · ∇φ0)(V · ∇ψ)

]
dx +

∫
Γ\Γ−

V · nφ
1 − φ−1

2τ
ψdΓ = 0,

∀ψ ∈ V−. (3.28)

(iv) For q = 1, . . . , Q− 1, φq and φq−1 being known, compute φq+1 verifying φq+1 = g on
Γ−, from ∫

Ω

[
φq+1 − 2φq + φq−1

τ 2
ψ + (V · ∇φq)(V · ∇ψ)

]
dx

+

∫
Γ\Γ−

V · nφ
q+1 − φq−1

2τ
ψdΓ = 0, ∀ψ ∈ V−. (3.29)

The finite element implementation of the scheme (3.27)-(3.29) is straightforward (it has
been discussed with many details in [7]).

Remark 3.1 In this article, the divergence free condition (3.3) is treated by a so-called
sequential regularization formulation, so that general C0 polynomial elements can be used
and that we do not need to worry beforehand whether our finite element approximation of
Stokes problem (3.2),(3.3),(3.5) passes the Babuska-Brezzi test (although this test may be
automatically satisfied for formulations like those discussed in, e.g., [14, 15]). For this
flow problem discussed in this article, it turns out that the penalty formulation, which is
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Figure 4.1: A uniform triangulation on a 32× 32 grid

the simplest sequential regularization formulation, works very well. Thus, in practice, we
replace (3.3) by ∫

Ω

(∇ · un+ 1
3

h + δ pn+1
h ) q dx = 0, ∀q ∈ Qh. (3.30)

We choose δ = 10−6 for our computation.

4 Numerical experiments

In this section, we will apply a finite element realization of the three-stage splitting method
discussed in Section 3, to the solution of two-dimensional liquid crystal flow test problems.
The first test problem originates from [18, 19, 13] where one discusses its un-split solution
using C1-conforming, C0 mixed and C0-conforming finite element approximations. As in
the above references, we take λ = ν = γ = 1 and Ω = (−1, 1)2 and use a uniform finite
element triangulation (like the one in Figure 4.1) for the space approximation. We use
C0-conforming piecewise quadratic finite element space approximations for u and d, while
C0-conforming piecewise linear approximations are used for p. The resulting approximation
of the Stokes problems in (3.2), (3.3), (3.5) is therefore of the Hood-Taylor type (see,
e.g., [7][Chapter 5] for further information on the Hood-Taylor approximation of Stokes
problems), implying that Babuska-Brezzi inf-sup condition is automatically verified and
that the penalty approximation associated with (3.30) is not a necessity anymore. We
kept nevertheless (3.30) has an extra robustness device, making possible the solution of the
associated discrete Stokes problem by a direct method (the iterative solution of continuous
and discrete Stokes problem is discussed in [7][Chapters 4 and 5]).

Example 4.1 We consider an example borrowed from [18]. The initial director field d0 is
given by

d0(x) = d̃(x)/

√
|d̃(x)|2 + η2,
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Figure 4.2: Example 4.1 (u0 = 0): Initial director field (left), director field at t = 1 (right,
very close to the steady state)

where
d̃(x) = (x2

1 + x2
2 − α2, 2αx2)

and α = 0.5. This director field has singularities at x = (±α, 0) with unit degrees of opposite
signs. We choose this example in order to illustrate how director field singularities of
opposite sign in the director field will move together and annihilate each other. Concerning
the initial velocity, we took u0 = 0, first. For boundary conditions we took

gu = u0|Γ, gd = d0|Γ. (4.1)

For these computations, we took ε2 = η2 = 2.5×10−3 and ∆t = 10−4. On Figure 4.2 we have
represented the initial director field (left) and the computed director field at t = 1 (right), the
computations taking place on a 32× 32 finite element grid. Figure 4.3 shows the computed
director (left) and velocity (right) fields near the time of annihilation of singularities. In
our computations the energy is decreasing and |d| ≤ 1, which shows that our method well
preserves the energy law and the maximum principle for the director variable d. Also, the
singularity transport pattern is the same as those in [18, 13] for the same example.

Next, we did a simulation with d0 and gd as before, but this time we choose for initial
velocity u0 the rotating field (−ωx2, ωx1), with ω = 20 (approximately three revolutions per
time unit) and gu still defined from u0 by (4.1). Figure 4.4 depicts the velocity field at
t = ∆t (left) and the computed velocity field at t = 0.5 (near steady state); we observe that
the velocity field almost did not change through the time. Figure 4.5 depicts the director
field at (a) t = 0.1, (b) t = 0.2, (c) t = 0.24 (annihilation) and (d) t = 0.5 (near steady
state). The computed results coincide essentially with those in [18, 13].

Example 4.2 In this example, we consider a domain Ω with a circular hole in the center
of a square, as shown in Figure 4.6, where a triangulation of Ω is also depicted. The initial
director field is defined as in Example 4.1, as is gd. To solve the corresponding liquid
crystal flow problem we employ the operator-splitting/finite element based methodology we
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Figure 4.3: Example 4.1 (u0 = 0): Director (left) and velocity (right) fields near the
annihilation time

Figure 4.4: Example 4.1 (u0(x) = (−ωx2, ωx1)): Rotational velocity field
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(a) (b)

(c) (d)

Figure 4.5: Example 4.1 (u0(x) = (−ωx2, ωx1)): Director field at (a) t = 0.1, (b) t = 0.2,
(c) t = 0.24 (annihilation) and (d) t = 0.5 (steady state)

Figure 4.6: A triangular mesh on a square domain with a circular hole
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(a) (b) (c)

Figure 4.7: Example 4.2 (u0 = 0): (a) Initial director field. (b) Director field at t = 0.3.
(c) Velocity field at t = 0.3

(a) (b) (c)

Figure 4.8: Example 4.2 (u0(x) = (−ωx2, ωx1)): (a) Initial velocity field. (b) Director field
at t = 0.1. (c) Director field at t = 0.2

used to treat Example 4.1, the finite element triangulation being the one depicted in Figure
4.6 (it contains 2254 triangles); the other physical and computational parameters are as in
the above example.

Assuming that u0 = 0 and gu = 0, we obtain the results depicted in Figures 4.7. We
observe that the singular points move towards the center of Ω; however, they eventually stop
near the boundary of the circular hole. If u0 = (−ωx2, ωx1), with gu still given by (4.1),
we obtain the results depicted in Figure 4.8; they show that the two singularities rotate
around the circular hole and suggest that it is unlikely that they will meet and annihilate
each other.

Example 4.3 We consider finally an example where the initial director field is defined by

d0(x) = −(cos2θ, sin2θ),
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(a) (b)

(c) (d)

Figure 4.9: Example 4.3: (a) Director field at t = ∆t. (b) Velocity field at t = ∆t. (c)
Director field at t = 0.05. (d) Velocity field at t = 0.05

with cos θ = x1/r, sin θ = x2/r and r =
√
x2

1 + x2
2. The domain Ω is the square encountered

in Example 4.1. The boundary function gd is still defined from d0 by relation (4.1). Con-
cerning the initial velocity field, we take for u0 the steady state solution of the celebrated
wall-driven cavity flow problem with u = (1, 0) on the top boundary and u = 0 elsewhere.
For boundary conditions on u and d in the liquid crystal flow problem, we still use (4.1)
to define gu and gd from u0 and d0, respectively. All the other physical and computational
parameters are as in Example 4.1. The solution of a simplified Oseen-Frank minimum
energy model with the same initial director field was computed in [9] and two singularity
segments were observed in the steady state solution. From the theory of harmonic maps
with the same kind of topological degree 2 boundary condition, one expects a steady state
solution with two singularities at least if the domain Ω has a smooth boundary. For this
liquid crystal cavity flow problem we observe on Figures 4.9 to 4.11 that two singularities
separate from the initial singularity at the center of Ω, then move apart, roughly along a
diagonal of the square domain, and then slowly shuffle off the diagonal line until being close
to the steady state before t = 20 (we computed the solution till t = 60 and did not observe
any significant difference from the solution at t = 20).
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(e) (f)

(g) (h)

Figure 4.10: Example 4.3: (e) Director field at t = 1. (f) Velocity field at t = 1. (g)
Director field at t = 3. (h) Velocity field at t = 3
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(i) (j)

(l) (m)

Figure 4.11: Example 4.3: (i) Director field at t = 10. (j) Velocity field at t = 10. (l)
Director field at t = 20. (m) Velocity field at t = 20
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