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Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competi-
tion between first generation biofuels and food production. As microbial catalysis is increasingly applied
for the conversion of biomass to biofuels, increased import has been placed on the development of novel en-
zymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining en-
zymes from microbial communities for biofuel synthesis is becoming more and more practical. The present
article highlights the latest research progress on the special characteristics of metagenomic sequencing,
which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy
field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials
are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase,
amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks.
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1. Introduction

Derived from biomass, biofuels offer an environmentally benign
and cost-effective solution for fossil fuel depletion. Of this alternative,
renewable sources of energy, biodiesel and bioethanol have attracted
growing attention from policy makers, industry and researchers for
their economic, environmental and social benefits. Significant incen-
tive exists for the development of efficient biofuel technology, with
both the U.S. and members of the EU committing to increasing the
proportion of renewable energy in their primary energy supply to
10% and 20% by 2010 and 2020, respectively. Other governments,
such as Sweden's, have adopted even more ambitious targets,
attempting to replace all fossil fuels with biofuels after 2020 to elim-
inate their dependence on oil.

Despite recent growth in global production of biofuels, significant
technological bottlenecks still exist in the production processes to effi-
ciently convert biomass into biofuels. While thermochemical conver-
sion technologies can be applied for biomass conversion, industry is
increasingly considering enzymes as a key technology for biofuels de-
velopment and utilization, citing their efficiency and selectivity in the
reaction chemistry (Jaeger et al., 1999). However, the enzymes current-
ly employed for biomass conversion cannot meet the growing demand
for economically viable biofuels due to their high cost, low activity and
poor stability under the required operating conditions. Thus, continued
development of novel enzymes for use in the production of advanced
biofuels is required (Barnard et al., 2010).

Acceleration of the novel enzyme development process is primarily
dependent on two factors: (1) efficiency and sensitivity of the screening
strategy, and (2) diversity of candidate genes (microbial). The fact that
traditionally enzymes could only be obtained from bacterial isolates
was one of the main limitations to the widespread application of en-
zymes in industry (Leresche andMeyer, 2006).More than 99% ofmicro-
organisms from natural environments cannot be efficiently cultivated
using current isolation and culture methods, severely reducing the mi-
crobial resources which can be utilized (Torsvik and Ovreas, 2002). Sci-
entists have thus focused on the development of new methods capable
of utilizing the genes of these microorganisms in biotechnology which
are independent of routine culture techniques.

Metagenomics is an advanced methodology which emerged in the
late 1990s, by means of extracting all microbial genomic DNAs in a cer-
tain environmental habitat, constructing metagenomic libraries, and
screening to seek novel functional genes and/or biologically active com-
pounds (Ferrer et al., 2005; Wang et al., 2009). Metagenomics over-
comes the disadvantages of isolation and cultivation procedures of the
traditional microbial method, and thus greatly broadens the space of
microbial resource utilization. It has become one of the powerful re-
search tools for microbiology, biotechnology, soil and environmental
sciences, and a new field of genetic engineering.

At present, with the help of the rapid development of high-
throughput sequencing methods, metagenomics has been employed
to identify enzymes for use in biofuels production. Many novel en-
zymes have been found by means of this technology, including lig-
nases, xylanase, endoglucanase, amylolytic enzymes, β-glucosidase
for bioethanol, and lipolytic enzymes for biodiesel. Some of these
have multiple functions and can catalyze a number of different reac-
tions (Kim et al., 2008; Nam et al., 2009, 2010; Palackal et al., 2007;
Please cite this article as: Xing M-N, et al, Application of metagenomic te
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Zhao et al., 2010). Some exhibit high activities (Fang et al., 2009),
specificities (Wong et al., 2010) and stability (Pottkamper et al.,
2009), and can work under a wide range of pH (Duan et al., 2009),
temperature (Sharma et al., 2010) or ionic conditions (Ilmberger
and Streit, 2010). These enzymes may have potential for new appli-
cation in biofuels production.

2. Access to novel biocatalysts from the metagenome

Research strategies for accessing novel biocatalysts from themetagen-
ome include: pretreatment of genes of interest, extraction of nucleic acid,
selection of vector and host system, and metagenomic library screening
(Fig. 1). Multidisciplinary developments in the areas of microbiology,
molecular biology and bioinformatics have enabled metagenomic tech-
nologies within each of these stages, contributing significantly to the de-
velopment of novel biocatalysts.

2.1. Pretreatment of environmental samples

Pretreatment for nucleic acid extraction processing operations in-
cludes non-enrichment or enrichment of interested genes. In most ex-
perimental research, non-enriched methods are used due to their
improved ability to maintain the diversity of microbial communities.
However, enrichment methods are known to improve the specificity
of a sample's genomic DNA, benefiting sequencing-based screening of
novel genes. Stable-isotope probing (SIP) (Radajewski et al., 2002), sup-
pression subtractive hybridization (SSH) (Galbraith et al., 2004), differ-
ential display (Liang, 2002), phage-display (Crameri and Suter, 1993),
affinity capture (Demidov et al., 2000), and microarrays (Wu et al.,
2001) are all methods of enrichment.

2.2. Extraction of nucleic acid

Construction of a metagenomic library requires a sufficient number
of high quality DNA samples, making the extraction and purification of
DNA from the environmental samples a critical step (Wilkinson et al.,
2002). Two types of extractionmethods are commonly applied, accord-
ing to the size of target genes and different screening strategies: direct
extraction and indirect extraction. Direct extractionmethods use deter-
gents and enzymes to process the test samples without the cultivation
of microorganisms, followed by phenol or chloroform-based extraction
and separation of the DNA. Although this method has a greater DNA re-
covery rate, the smaller extracted DNA fragments (general 1–50 kb)
and elevated impurity content due to destructive mechanical forces
makes this method inappropriate for constructing large inserts libraries
(Desai and Madamwar, 2007). Nonetheless, direct extraction methods
have been successfully used to extract DNA from microbial communi-
ties (Bey et al., 2010). Indirect extraction methods (cell separation and
extraction method) employ physical means to separate the microor-
ganisms from the sample followed by lysis extraction, thus obtaining
larger DNA fragments by avoiding high mechanical strength actions di-
rectly on the DNA. The recovery rate of indirect extraction is 10–100
times lower than direct extraction (Parachin et al., 2010). Thus, in specif-
ic experiments, the extraction method should be selected by weighing
the various requirements for product recovery, including: operational
chniques in mining enzymes frommicrobial communities for biofuel
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complexity and the recovery rate, integrity and purity of the resultant
DNA.

2.3. Construction of metagenomic library

The key to metagenomic library construction is the selection of ap-
propriate vector and host systems depending on the characteristics of
environmental samples and the intended purpose of the constructed
database.

2.3.1. Vector selection
Appropriate vector selection plays an important role inmetagenomic

technology, determining whether genome or gene clusters can be tran-
suded into host cells or highly expressed. The selection of vector systems
depends on the quality of extractedDNA samples and the research objec-
tives, requiring consideration of the size of insert fragments, the copy
number of vector needed, the host used, and the screeningmethod. Plas-
mid, bacterial artificial chromosomes (BAC), cosmid, and fosmid are ex-
amples of frequently used vectors.

When the purpose is the separation of independent genes or small
size of operons using coding novel functions, plasmid can be used as a
vector insert small fragment (15 kb) (Henne et al., 1999). The purity
and recovery of DNA fragments must then be consideredwhen extract-
ing and purifying the samples.When large gene fragments encoding the
complex biosynthetic pathway are desired, cosmid (35–45 kb) (Henne
et al., 1999) or BAC (about 200 kb) (Entcheva et al., 2001) is used to
build a library containing higher lengths of DNA. The fosmid vector
has also been used for the construction of a large insert library similar
to cosmid, although the former has a higher cloning efficiency and sta-
bility when expressed in Escherichia coli. (Beja, 2004).

In addition, some other vectors have been used to build metage-
nomic libraries. P1-clone was used in the map constructed for further
understanding of the fundamental genomic architecture of Leishmania
Please cite this article as: Xing M-N, et al, Application of metagenomic te
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(Zhou et al., 2004). P1-derived artificial chromosome (PAC) was used to
facilitate themolecular classification of gliomas (Roerig et al., 2005). Clon-
ing of large chunks of human genomic DNA in recombinant systems such
as yeast or bacterial artificial chromosomes (YAC) has greatly facilitated
the construction of physical maps (Weier et al., 2009), while mammalian
artificial chromosomes (MAC) present a promising clinical strategy for
numerous diseases (Katona et al., 2011).

2.3.2. Host selection
The choice of host strain is one of the prerequisites for efficient clon-

ing or expression of recombinant genes.When selecting the host strain,
the efficiency of the conversion process, gene expression, plasmid sta-
bility in the host cells and screening of target traits should be taken
into account. Currently, E. coli is the most widely used host. However,
many eukaryotic genes cannot express functional proteins of biological
activity in E. coli due to its prokaryotic nature, necessitating the devel-
opment and establishment of a novel alternative host system (Ward,
2006).

Other microbes, such as Streptomyces and Pseudomonas, can also be
used as the host for library construction (Courtois et al., 2003; Wang et
al., 2000;Wilkinson et al., 2002). The efficiency of genetic screeningwill
be greatly improved as the technology continues to mature and new
host bacteria are developed, enabling the detection of more functional
genes and gene clusters of interest, and the discovery of novel active
substances.

2.4. Metagenomic library screening

A wealth of genetic resources and novel active substances can be
obtained from themetagenomic library. However,methods of effectively
screening functional genes from the large number ofmicrobial species in
environmental samples are still evolving, necessary for the continuedde-
velopment of a sophisticated, large capacity library. At present, there are
chniques in mining enzymes frommicrobial communities for biofuel
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four screening programs: Biological activity screening; DNA sequence
screening; Compound configuration screening; and substrate-induced
gene expression screening (SIGEX).

2.4.1. Biological activity screening
Biological activity screening, or function-based screening, involves

the identification of positive clones expressing desirable characteris-
tics, followed by the use of sequence or biochemical analysis to verify
the active clones obtained through high-throughput screening tech-
nologies. Because the biological activity screening is not dependent
on sequence information or sequence similarity to known genes,
this methodology has led to the development of novel natural prod-
ucts and protein genes, including lyase (Solbak et al., 2005), amylase
(Yun et al., 2004), esterase and protease.

Two kinds of function-based approaches have primarily been
employed for screening ofmetagenomic libraries. One is direct detection
of specific phenotypes of individual clones by adding chemical dyes and
insoluble or chromophore-containing derivatives of enzyme substrates
into the growth medium. Examples for this simple activity-based ap-
proach are the detection of positive clones with β-glucosidase activity
on LB agar plate containing esuculin hydrate and ammonium ferric
(Fang et al., 2010), or the detection of lipolytic activity by employing in-
dicator agar containing tributyrin (Rashamuse et al., 2009). The second
approach is the use of host strains that require heterologous comple-
mentation by foreign genes for growth under selective conditions. Only
recombinant clones harboring the targeted gene and producing the cor-
responding gene product in an active form are able to grow. A lysine
racemase (lyr) gene was isolated from a soil metagenome by functional
complementation for the first time by using E. coli BCRC 51734 cells as
the host and D-lysine as the selection agent (Chen et al., 2009).

However, the expression of heterologous genes in a particular host
bacterium is hampered by various limitations including inefficient
transcription of target genes as well as improper assembly of the cor-
responding enzymes. Therefore, it is subject to high workload re-
quirements, low efficiencies, and limitations in detection methods.
Troeschel et al. (2010) have established an efficient expression and
screening system by using a shuttle vector that allows comparative
expression and screening of metagenomic DNA in different bacteria,
and a recombinant transposon MuExpress to enhance the expression
capacity of E. coli. Screening efficiency can also be improved by en-
richment of target bacteria, use of screening-sensitive substrates, or
the development of novel substrates (Streit and Schmitz, 2004).

2.4.2. DNA sequence screening
DNA sequence screening, or sequence-driven screening, may involve

the design and engineering of primers or probes based on a known con-
served sequence, via PCR amplification or hybridization, to filter an
objective clone. The analysis of complete genomes of a symbiotic micro-
bial community by this method has been reported (Tyson et al., 2004).
Metagenomic DNA are primarily from the acidophilic biofilm, whereby
anglicizing these DNA sequences and functional details enables the iden-
tification of a large number of biocatalysts capable of performing their
functions under extreme conditions (Schmeisser et al., 2003). However,
this strategy is limited to the isolation of new members from known
gene family or genes that contain a highly conserved region, since an un-
derstanding of the relevant gene sequences is required.

Other DNA sequence screening methods published in literature in-
clude: reverse transcription PCR (RT-PCR) (Wilson et al., 1999), DNA
microarrays (Park et al., 2008; Park et al., 2010; Wu et al., 2001), inte-
gron (Rowe-Magnus and Mazel, 2001), affinity capture (Stull and
Pisano, 2001) and subtractive hybridization magnetic bead capture
(Meiring et al., 2010; Meyer et al., 2007).

2.4.3. Substrate-induced gene expression screening (SIGEX)
SIGEX is a new method used for genetic screening, based on the

selective expression by metabolism-related genes or enzyme genes
Please cite this article as: Xing M-N, et al, Application of metagenomic te
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in the presence of certain substrates. This principle is used to filter
the target genes that do not express (Uchiyama and Miyazaki, 2010;
Uchiyama and Watanabe, 2008; Uchiyama et al., 2005; Yun and
Ryu, 2005).

2.4.4. Compound configuration screening
Compound configuration screening relies on the identification of

chromatographic peaks which differ from those of the host materials.
Clones are screened based on their ability to produce novel structural
compounds which yield diverse chromatographic peaks relative to
the host cell. While effective, this method is cost prohibitive and
labor intensive. By using rapid HPLC-ESIMS screening method and
downstream database treatment, Wang et al. (2000) identified two
transformants that contain novel compounds and five novel
compounds.

3. Research progress of metagenomic sequencing

Each of the aforementioned screening methods has advantages and
disadvantages governing their application, whereby selection of the ap-
propriate method is highly dependent on the characteristics of the test
sample extracted.While precedent examples exist ofmetagenomics ap-
plied to the screening of novel biological catalysts, high-throughput and
sensitive screening methods are desiderated due to the high library ca-
pacity and gene diversity.

3.1. Traditional sequencing and second-generation sequencing

DNA sequencing technology has undergone a long and tortuous
course of development. Using conventional technology, the DNA se-
quences obtainedwereprimarily capillary-based, semi-automated imple-
mentations of the Sanger biochemistry (Hunkapiller et al., 1991). Since
the emergence of the human genome project, attempts to establish the
reference sequence database of human and othermajormodel organisms
has enhanced short fragment mapping capabilities. The newly emerging
molecular biology techniques have promoted the development of high-
throughput DNA sequencingmethods, while co-development of comple-
mentary technology has provided greater support for DNA sequencing
technology.

Improvements in technology have led to the appearance of
second-generation sequencing products on the market, referring to
the implementations of cyclic-array sequencing capable of analyzing
dense arrays of DNA features by iterative cycles of enzymatic manip-
ulation and imaging-based data collection (Shendure et al., 2005).

3.2. Second-generation DNA sequencing

Compared with the Sanger sequencing, the second-generation or
cyclic-array strategies break the bottlenecks of restricting the mas-
sively parallel sequencing, which rely on the in vitro construction of
sequencing libraries and in vitro amplification of target DNA frag-
ments. Using the array-based sequencing, hundreds of millions of se-
quencing reads can potentially be obtained in parallel by raster
imaging of a reasonably sized surface area as the effective size of se-
quencing features can be less than 1 μm. A single reagent volume
can enzymatically manipulate array features as they immobilized to
a planar surface. Collectively, these differences translate into dramat-
ically lower costs for DNA sequence production.

The leaders of second-generation sequencing products currently
on the market are the 454 Genome Sequencer from Roche Applied
Science, the Illumina Genome Analyzer from Illumina and Solexa
technology, and the SOLiD platform from Applied Biosystems.

3.2.1. 454 pyrosequencing
The 454 sequencer has greatly increased the volume of sequenc-

ing conducted by the scientific community and expanded the range
chniques in mining enzymes frommicrobial communities for biofuel
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of problems that can be addressed by the direct readouts of DNA
sequence. Higher throughput, theminiaturization of sequencing chemis-
tries and simplified in vitro sample preparation are all key breakthroughs
in the development of the 454 sequencing platform. By pioneering solu-
tions to the three bottlenecks faced by the research community (library
preparation, template preparation and sequencing), 454 initiated the
second-generation movement. It enabled massively parallel sequencing
reactions to be carried out at improved scales and cost.

The 454 sequencer was the first non-Sanger technology to assemble
bacterial genomes de novo (Margulies et al., 2005) and sequence an
individual human genome (Wheeler et al., 2008). 454 sequencing was
also employed in other notable studies, including: uncovering the
potential cause of the disappearance of the honeybee (Cox-Foster et
al., 2007), revealing the complexity of rearrangements between individ-
ual human genomes (Korbel et al., 2007), providing new approaches to
understand infectious diseases (Palacios et al., 2008), and sequencing
the first million base pairs of a Neanderthal (Briggs et al., 2007; Green
et al., 2006; Noonan et al., 2006).

3.2.2. Illumina Genome Analyzer
The Illumina Genome Analyzer platform has its origins in the works

by Turcatti et al., commonly referred to as ‘the Solexa’ (Fedurco et al.,
2006; Turcatti et al., 2008). Features of Illumina Genome Analyzer in-
clude the detection of homopolymers with increased certainty relative
to other platforms (i.e. 454), average raw error rates of 1–1.5%, with
higher accuracy baseswith error rates of 0.1% or less achievable through
quality metrics associated with each base-call. Compared to other sys-
tems, modifications have recently enabled mate-paired reads, with
each sequencing feature yielding 2×36 bp independent reads derived
from each end of a given library molecule several hundred bases in
length.

However, the Illumina Genome Analyzer possesses shortcomings in
regards to sequence length, including problems related to mixing with
the fluorescentmarker gene on the nucleotide, or the termination of in-
complete gene excision causing the sequencing signal to attenuate and
phase shift. These limitations introduce the greatest propensity for error
when the Illumina Genome Analyzer is used for the detection of base
substitution, followed by the detection of insertion or deletion of genes.

3.2.3. AB SOLiD
This platform has its origins in the system described by J.S. and

colleagues (Shendure et al., 2005) and in the works by McKernan
and colleagues at Agencourt Personal Genomics.

The AB SOLiD system enables the use of highly control beads
enriched with the template fragments in any order in the chip. An ad-
ditional feature of this platform is the use of two-base encoding,
which is an error-correction scheme employing two adjacent bases,
rather than a single base, correlating with the label. Each base posi-
tion is then queried twice (once as the first base, and once as the sec-
ond base, in a set of 2 bp interrogations on a given cycle) such that
miscalls can be more readily identified (Rothberg and Leamon,
2008; Shendure and Ji, 2008).

In recent years, the new generation of sequencing technology has
undergone rapid development. Projects which, previously, could only
be carried out by large-scale sequencing centers are now practical in
small laboratory settings. Sequencing research has been accelerating,
with a multitude of novel biological catalysts identified using high-
throughput and low-cost genetic screening.

4. Mining enzymes for biofuel production from metagenomes

4.1. Significance ofmetagenome-derived novel enzymes in biofuel production

Biofuel products currently obtained from organic substrates con-
tain bioethanol, biodiesel, biobutanol and biogas, all of which rely
on the use of substrates such as sugars, starch and oil crops,
Please cite this article as: Xing M-N, et al, Application of metagenomic te
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agricultural and animal wastes, and lignocellulosic biomass (Barnard
et al., 2010).

As an important renewable energy alternative to fossil fuels, bioetha-
nol can facilitate the combustion of fuel and can reduce the release of
carbonmonoxide and hydrocarbons. The production process of bioetha-
nol involves the pretreatment and bioconversion from polysaccharides
(starch, cellulose or hemicelluloses) to pentoses and hexose, and subse-
quent or simultaneous fermentation. The feedstock used for first gener-
ation bioethanol fermentation is primarily from the edible portion
of the crops, potentially contributing to a shortage of food supplies.
Second-generation technology utilizes lignocellulosic materials, derived
from agricultural residues, dedicated energy crops, wood residues and
municipal paper waste, suitable for application in the large-scale indus-
trial production of biofuel.

The major components of lignocellulosic materials are cellulose,
hemicellulose and lignin. Cellulose and hemicelluloses are the source
of fermentable polysaccharides, while lignin is primarily aromatic,
having an inhibiting effect on cellulose hydrolysis. Glycohydrolases
currently available for industrial bioethanol production are incapable
of meeting future demand due to the recalcitrant nature of lignocellu-
losic materials and the relatively low activity of currently available
hydrolytic enzymes. In order to enhance the biodegradation of ligno-
cellulosic materials for biomass conversion and industrial biofuel pro-
duction, enzymes capable of efficiently catalyzing the hydrolysis of
plant cell-wall components are the subject of intense research (Gray
et al., 2006; Lin and Tanaka, 2006).

As a substitute of high quality petrol-based diesel, biodiesel is
non-toxic, sulphur-free and biodegradable. Biodiesel production
relies on the catalyst-driven chemical reaction (transesterification)
between an oil feedstock (vegetable oil, animal fats and waste cook-
ing oil included) and an alcohol (methanol, ethanol), methyl esters
and glycerol. Transesterification has traditionally been catalyzed by
a strong base (sodium or potassium hydroxide) under high tempera-
ture conditions (230 to 250 °C). However, significant disadvantages
arise in this process due to treatment requirements of alkaline waste-
water generated during removal of the alkaline catalyst and glycerol
from the final product. Alternative methods used to overcome these
obstacles include enzymatic transesterification, whereby biocatalysts
such as lipases and esterases are used in the place of a strong base
to catalyze the hydrolysis and synthesis of ester compounds. The
biosynthesis pathway possesses several advantages due to the mild
reaction conditions, convenience of operation, and a reduction in
wastewater treatment. However, currently available lipolytic biocata-
lysts are inefficient in the use of short-chain alcohols, where low
activities and product inhibition contribute to low yields and in-
creased cost of production. In order to satisfy the industrial need of
biodiesel production from biomass, new lipolytic biocatalysts with
stability, catalytic selectivity and high reaction activity are urgently
needed.

Considering the processes of industrial biofuel production, en-
zymes play a critically important role and are of growing industrial
interest. But only a small percentage microorganism can be cultured,
so the type and quantity of enzymes got from traditional cultivation-
based method is not enough and cannot meet the industry demand.
Metagenomics has recently appeared as an alternative approach to
conventional microbial screening and the analysis of DNA from envi-
ronmental samples, representing a strategy for discovering diverse
enzymes encoded in nature (Ferrer et al., 2005; Wang et al., 2009). Fol-
lowing the rapid development of sequencing and high-throughput
screening techniques, various novel enzymes with unique activities and/
or sequences from different environments have been identified using
metagenomics. These novel enzymes display high activities, specificities
and stability, and can work under a wide range of pH, temperature
or ionic conditions, all of which are needed for effective biomass utiliza-
tion and biofuel development. To date, correlative biomass-degrading
enzymes screened from environmental samples include: carboxyl-
chniques in mining enzymes frommicrobial communities for biofuel
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hydrolases (esterases, lipases), polysaccharide-modifiying enzymes
(cellulases, α-amylases, xylanases, 1, 4-α-glucan branching enzymes),
oxidoreductases, dehydrogenases, and oxygenases. A list of recently
discovered representative enzymes is provided in Table 1.

4.2. Lignocellulose degrading enzymes for biofuel production

In order to efficiently utilize plant biomass for biofuel production,
lignocellulose degrading enzymes need to be widely developed and
utilized. Metagenomics have been used to identify a number of en-
zymes, including lignase, xylanase and cellulases.

4.2.1. Lignin degrading enzymes
The accessability cellulose and hemicellulose for biofuel production

is limited by crosslinking between lignin, cellulose and hemicellulose
via ester and ether linkages. The efficiency of enzymatic hydrolysis is
Table 1
Examples of recently identified biocatalysts from metagenomic libraries.

Enzyme name Sample source Library vector/
host

Average
insert
size

To

Laccase Surface water
of the sea

pIndigoBAC-5
vector/E. coli EPI300

50–150 kb 1.4

Xylanase Soil pHBM803/
E. coli DE3

7–10 kb –

Xylanase Holstein cows
rumen

pCClBAC/
Escherichia coli EPI300

54.5 kb 83

Endoglucanase;
Exoglucanase;
β-glucosidase

Contents of
buffalo rumen

Cosmid pWEB/
E. coli EPI100

35 kb 52

Endoglucanase;
β-glucosidase

Forest soil, elephant
dung, cow rumen,
rotted tree

Lambda ZAP Expression vector/
E. coli

5.3 kb 21

Endoglucanase Compost Cosmid pWEB/
E. coli EPI100

33 kb 3.3

Endoglucanase Human gut pCC1FOS fosmid/
E. coli

30–40 kb 5.4

β-glucosidase Sludge from biogas
reactor

Cosmid/E. coli 35 kb 1.0

β-glucosidase Alkaline polluted
soil

pGEM-3Zf (+)/
E. coli DH5α

3.5 kb 10

Exoglucanase Casts of two

earthworm species

pCCFOS Fosmid
vector/E. coli EPI300

– 40

Mannanase–
xylanase–
glucanase

Cow rumen fluid Lambda ZAP
vector/E. coli

3.0 kb –

Glucanase–
xylanase

Soil (Korean) Fosmid
pSuperCosI/
E. coli DH5α

– –

Esterase/lipase Deep sea sediment Fosmid pCC1FOS/
E. coli

32.3 kb 28

Lipase Dairy cow rumen BAC/E. coli
TransforMax
EPI300

54.5 kb 83

Lipases/
esterases

Peat–swamp
forest soil

Fosmid pCC1FOS/
E. coli EPI300

20–40 kb –

Esterase Marine sediment Fosmid/E. coli 36 kb 75

Esterase Composting Fosmid pCC2FOS/E. coli 35 kb –

Esterase Marine sponge
Hyrtios erecta

vector pHSG398/
E. coli DH10B

3–5 kb 79

Esterase Arctic soil Fosmid/E. coli – –

Amylase Human gut Fosmid/E. coli 30–40 kb 5.4

Amylase Soil (Astaka) Cosmid SuperCos1/
E. coli

32 kb 27
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thus dependent on the ability of pretreatment to remove lignin from
the feedstock. In addition to traditional physical, physical–chemical
and chemical pretreatment methods, biological treatments are increas-
ingly considered in biofuel biotechnologies (Alvira et al., 2010).Metage-
nomic approaches have been developed to isolate enzymes for this
purpose, including peroxidases, such as lignin peroxidase, manganese
peroxidase and versatile peroxidase, and many phenol-oxidases of lac-
case type (Beloqui et al., 2006; Fang et al., 2011; Ferrer et al., 2010; Ye et
al., 2010).

4.2.2. Xylanase
As the second most abundant renewable polymer in lignocellulos-

ic material after cellulose, hemicellulose consists of a complex matrix
of polysaccharides constructed from xylan (β-1, 4-linked xylose) and
mannan (β-1, 4-linked mannose), which is rapidly hydrolyzed into
monosaccharides undermild catalytic conditions. The principle enzyme
tal size Number of
clones
screened

Positive
clones

Screening
technology

Sequencing
techniques

Reference

Gb 20,000 1gene Sequence-
based( PCR)

Sanger
sequencing

Fang et al.,
2011

24,000 1 Function-
based

Sanger
sequencing

Hu et al., 2008

7 Mb 15,360 18 Function-
based

Sanger
sequencing

Zhao et al.,
2010

5 Mb 15,000 11; 2;
48

Function-
based

Sanger
sequencing

Duan et al.,
2009

2 Mb 40,000 5; 2 Function-
based

Sanger
sequencing

Wang et al.,
2009

Gb 100,000 4 Function-
based

Sanger
sequencing

Pang et al.,
2009

6Gb 704,000 11 Multi-step
Functional
screening

Pyrosequencing
−454 GS FLX

Tasse et al.,
2010

5Gb 30,000 1 Function-
based

Sanger
sequencing

Jiang et al.,
2010

5 Mb 30,000 2 Function-
based

Sanger
sequencing

Jiang et al.,
2011

0 Mb 5,760 1 Function-
based; PCR

Sanger
sequencing

Beloqui et al.,
2010

50,000 2 Function-
based

Sanger
sequencing

Palackal et al.,
2007

70,000 1 Function-
based

Sanger
sequencing

Kim et al.,
2008; Nam et
al., 2009

4 Mb 8,823 1 Function-
based

Sanger
sequencing

Jeon et al.,
2009

7 Mb 15,360 18 Function-
based

Sanger
sequencing

Zhao et al.,
2009

15,000 25 Functional
and
sequence-
based

Pyrosequencing
−454 GS FLX

Bunterngsook
et al., 2010

6 Mb 40,000 19 Function-
based

Sanger
sequencing

Hu et al., 2010

23,400 19 Function-
based

Sanger
sequencing

Kim et al.,
2010

.5–180 Mb 26,496 1 Function-
based

Sanger
sequencing

Okamura et al.,
2009

60,000 121 Function-
based

Sanger
sequencing

Yu et al., 2011

6Gb 156,000 6 Multi-step
Functional
screening

Pyrosequencing
on −454 GS
FLX

Tasse et al.,
2010

2 Mb 35,000 1 Function-
based

Sanger
sequencing

Sharma et al.,
2010
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in the progressive breakdown of xylan is endo-β-1, 4-xylanase
(EC3.1.2.8), which attacks the non-hydrolyzed polymer (Brennan et
al., 2004).

Based on functional assay, several novel xylanase have been
screened from environmental DNA libraries (Brennan et al., 2004). In
2006, successful cloning of a cold-active xylanase Xyn8 was reported
(Lee et al., 2006). Another xylanase was later obtained from a soil-
derived metagenomic library, displaying high activity at reduced tem-
peratures, under weakly alkaline conditions (Hu et al., 2008). A highly
active, substrate-specific, and endo-acting alkaline xylanase (Xyl6E)
with considerably wide pH tolerance and stability has also been re-
trieved from the metagenomic library of microbiome extracted from
fungus-growing termites (Liu et al., 2011), but with limited industrial
applicability due to it's extremely low thermostability.

4.2.3. Cellulase
Cellulose is the most abundant biopolymer in nature, and has been

long-recognized as a potential source for biofuel production. It consists
of linear β-1, 4-linked glucose chains, necessitating a combination of
multiple classes of cellulase for biodegradation. High cellulase activity
levels are determined by endoglucanases (EC 3.2.1.4), which randomly
sever internal amorphous sites in the cellulose chain; exoglucanases
(cellobiohydrolase) (EC 3.2.1.91 and EC 3.2.1.74), which progressively
act on the reducing or non-reducing ends of cellulose chains, releasing
either cellobiose or glucose; and β-glucosidases (EC 3.2.1.21), which
hydrolyze soluble cellodextrins and cellobiose to glucose.

Cellulases applied in the industrial generation of bioethanol often
have to function under extreme conditions, requiring cellulolytic activ-
ity under a range of pH, temperature, or ionic conditions (Ilmberger and
Streit, 2010).

In recent years, many novel cellulases with special properties have
been screened from different metagenomic libraries. By functional
screening for cellulase activities from a ruminal metagenomic library,
one novel endoglucanase was found with optimal activity at low pH
(4.5) and stability for a broad pH range (3.5 to 10.5) (Duan et al.,
2009). Another endoglucanase (CelA) was reported with high toler-
ance in ionic liquids, having sufficient stability and activity to create
novel options for cellulose degradation in homogenous catalysis
(Pottkamper et al., 2009). By functional screening and recombinant
expression, a β-glucosidase (Bgl1A) with excellent glucose tolerance
from marine metagenome libraries was identified, having great po-
tential for industrial applications due to its low sensitivity to product
inhibition (Fang et al., 2010). Another β-glucosidase (Bgl1B) was also
obtained from the same library, exhibiting relatively higher activity
and stability at pH values between 7.0 and 9.0 (Fang et al., 2009). A
novel β-glucosidase (Bgl1D) retrieved from an uncultured soil meta-
genomic library exhibited higher activity in lower temperature and at
high ionic concentrations, and displayed remarkable activity across a
broad pH range (5.5–10.5) (Jiang et al., 2011). The efficient perfor-
mance of these cellulases in special conditions makes them potential
candidates for industrial applications for cellulose degradation and
saccharification.

Many other cellulases have been mined from various metage-
nomic libraries by function-based screening. Examples include:
carbohydrate-modifying enzymes (2β-Glucosidase, 3 Endoglucanase,
and 1 β-Cellobiohydrolase) retrived from guts and casts of earthworms
(Beloqui et al., 2010); 5 endoglucanases and 2 β-glucosidases from four
different environmental DNA libraries (Wang et al., 2009); endoglucanase
uncovered in the transcriptome of Formosan subterranean termite
(Zhang et al., 2011), or the metagenome of the compost soils (Pang et
al., 2009); β-glucosidase from uncultured microorganisms in contents
of a bioreactor (Jiang, et al., 2010), a marine metagenome (Fang et al.,
2009), or a soil metagenome (Jiang et al., 2009). A novel exo-glucanase
with exclusive specificity towards only xyloglucan and oligoxyloglucan
substrates was also isolated from a rumenal microbial metagenomes
(Wong et al., 2010).
Please cite this article as: Xing M-N, et al, Application of metagenomic te
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High-throughput functional screening was first applied to the
human gut metagenomic library, encoding the CAZymes and isolating
310 clones showing beta-glucanase, hemicellulase, galactanase, amy-
lase, and pectinase activities (Tasse et al., 2010). Apart from activity-
based functional screening, the non-functional screeningmethods began
to rapidly develop, especially the sequence-derived screening based on
high-throughput analysis. Hess et al. (2011) recently sequenced and
analyzed 268 gigabases of metagenomic DNA from microbes adherent
to plant fiber incubated in cow rumen, identifying 27,755 putative
carbohydrate-active genes and expressing 90 candidate proteins, of
which 57% were enzymatically active against cellulosic substrates.
These data sets provide a substantially expanded catalog of genes partic-
ipating in the deconstruction of cellulosic biomass.

4.2.4. Multifunctional enzymes
Some of the multifunctional enzymes mined using metagenomic

approaches are of great interest for industrial applications in plant
processing, such as biomass saccharification.

A unique multifunctional glycosyl hydrolase was discovered by
screening an environmental DNA library prepared from a microbial
consortium collected from cow rumen. It consisted of two adjacent
catalytic domains: one (GH family) catalytic site hydrolyzing β-1,4-
linked mannan substrates, and a second (GH family 26) catalytic
site hydrolyzing β-1,4-linked xylan and β-1,4-linked glucan sub-
strates (Palackal et al., 2007).

Another novel mutifuntional endo-type cellulase (CelM2) was
screened frommetagenomic libraries (Kim et al., 2008). Its crystalline
structure and two domains, which are able to effectively hydrolyze
glucan and xylan, were described by Nam et al. (2009). The novel
structural characteristics of the metal-binding site and the structure
of the complex formed between glucanase–xylanase CelM2 and its
substrate were later reported (Nam et al., 2010). It showed that
CelM2 is attractive as an industrial enzyme and that the structural re-
sults provided insights relevant to the genetic engineering of multi-
functional enzymes

A novel endo-β-1, 4-xylanase with two catalytic domains of family
GH43 and two cellulose-binding modules (CBMs) of family IV was re-
cently identified through functional screening of a rumen BAC library.
Partial characterization showed that this endo-xylanase has a greater
specific activity than a number of other xylanases over a wide tem-
perature range at neutral pH, with potential industrial applications
(Zhao et al., 2010).

4.3. Lipolytic enzymes for biodiesel production

Many lipolytic enzymes with special characteristics, including li-
pases that hydrolyze long-chain acylglycerols, and esterases that hydro-
lyze short-chain acylglycerols, have been identified by function-based
or sequence-based screening approaches from different environmental
samples, such as soil, marine sediment, fermented compost, and animal
rumen (Table 1).

A number of novel lipolytic enzymes belonging to novel families of
the bacterial lipolytic enzyme have recently been reported in literature.
Two lipolytic active proteins, FLS18C and FLS18D, could not be assigned
to any known family (Hu et al., 2010), while esterase (EstD2), exhibit-
ing increased enzymatic activity in the presence of 15% butanol and
15% methanol, was shown to be a member of a novel lipolytic family
by phylogenetic analysis (Lee et al., 2010). Using a highly efficient
activity-based cluster screening, EstGK1 and EstZ3 having only minor
overall sequence similarity to known esterases were found (Bayer et
al., 2010). A new lipase (LipEH166) belonging to a novel lipolytic family
was isolated froman intertidal flatmetagenome andwas characterized as
a novel cold-adapted alkaline lipase (Kim et al., 2009). Other cold-active
alkaline lipolytic enzymes, EML1 (Jeon et al., 2009) and lipCE (Elend et
al., 2007), were also obtained. Another novel, low-temperature-active
alkaliphilic esterase from an Antarctic desert soil metagenomes has also
chniques in mining enzymes frommicrobial communities for biofuel
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been identified as a potential candidate for industrial application (Heath
et al., 2009).

Many other acidic or alkaline lipolytic enzymes are suitable for com-
mercial development. The EstPS2 enzyme retrieved from peat–swamp
forest soil possesses lipolytic activity under acidic conditions, exhibiting
highest activity toward p-nitrophenyl butyrate at 37 °C and a pH 5
(Bunterngsook et al., 2010). A novel alkaline esterase (Est2K) froma com-
post metagenomic library was optimally active at pH 10.0 and 50 °C, was
stable in the presence of 30% methanol, and preferred short to medium
length p-nitrophenyl esters as its substrate (Kim et al., 2010).

The stability and activity of lipolytic biocatalysts with unique sub-
strate specificities is important for industrial applications. A new
thermostable esterase (EstE1) was cloned from thermal environment
samples, showing activity towards short-chain acyl derivatives at
temperatures of 30–90 °C, and displaying a high thermostability
above 80 °C (Byun et al., 2006). Another esterase (Est1) from a hot
spring metagenomic library exhibited more than 50% of its maximum
activity at alkaline pH and in the temperature range of 50–75 °C, sta-
ble at 70 °C for at least 120 min (Tirawongsaroj et al., 2008). Three li-
pases derived from dairy rumen microflora had different substrate
specificity and good thermal stability, providing a basis for large-
scale industrial applications (Zhao et al., 2009). A novel esterase
(EstHE1) exhibited activity against C2, C4, and C6 substrates, and
had the thermal stability and salt tolerance necessary for industrial
utilization (Okamura et al., 2009). EstMY isolated from an activated
sludge metagenomic library exhibited the highest activity at 35 °C
and pH 8.5 by hydrolysis of p-NP caprylate, maintaining comparable
activity over wide temperature and pH spectra and in the presence
of metal ions and detergents (JunGang et al., 2010). The high level
of stability of these esterases makes them valuable for downstream
biotechnological applications.

The esterase pFLS10was also reported to have good thermal stability
and high lipolytic activity at low temperatures and under basic condi-
tions (Xu et al., 2010). Functional screening for lipolytic enzymes at
low temperatures resulted in the isolation of the novel cold-active ester-
ases, EstM-N1 and EstM-N2, from a metagenomic DNA library of arctic
soil samples. Both enzymes exhibited very narrow substrate specificity
and were expected to be useful for potential biotechnological applica-
tions as interesting biocatalysts (Yu et al., 2011).

Though metagenomic approaches have identified a number of
novel genes encoding lipolytic enzymes, and many interesting novel
lipolytic enzymes have been discovered, the fact remains that the ma-
jority of biocatalysts are still uncharacterized.
4.4. Other enzymes involved in biofuel production

Following the rapid development of sequencing and screening
techniques, metagenomics has been used to obtain a plethora of en-
zymes with special characteristics, with increasing potential for the
discovery new enzymes for industrial use. While many of the en-
zymes discussed have potential applications for biofuel production
from lignocellulosic material, there remains a broad range of accesso-
ry enzymes and alternative feedstock which have yet to be discussed.

While starches have traditionally been acid-hydrolysed to yield
starch-derived glucose, largely utilized by industry for ethanol pro-
duction through fermentation, consideration is being given to the
transition to microbial enzymes.

Amylases have been the focus of many metagenomic studies with
several reports available on the isolation of novel amylolytic enzymes
from metagenomes DNA libraries (Lammle et al., 2007; Tasse et al.,
2010; Yun et al., 2004). The enzymeα-amylase (1 EC 3.2.1.1) is current-
ly used in a broad array of industrial applications. Recently, a gene
(pAMY) found encoding for amylase from a soil-derived metagenomic
library was discovered, and the amylase was observed to have a maxi-
mal activity at 40 °C under nearly neutral pH conditions. The amylase
Please cite this article as: Xing M-N, et al, Application of metagenomic te
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retained 90% of its activity at low temperatures, making it unique
among existing reports in literature (Sharma et al., 2010).

Cyclodextrinase can be used to hydrolyze cyclodextrin into malt-
oses or glucoses. A novel cyclodextrinase (RA 04) from metagenomic
DNA of rumen fluid exhibited maximum activity at 70 °C and was ac-
tive within an unusually broad pH range. It hydrolyzed alpha-D-(1, 4)
bonds 13-fold faster than alpha-D-(1, 6) bonds and exhibited trans-
glycosylation activity (Ferrer et al., 2005, 2007)

Metagenomics has also been responsible for the discovery of many
other enzymes applicable to biofuel production, such as alcohol/alde-
hyde dehydrogenase (Wexler et al., 2005), alcohol oxidoreductase
(Knietsch et al., 2003).

5. Conclusion

The potential of long-term energy shortages with the depletion of
fossil fuels continues to drive exploration of alternative fuel resources.
As an essential renewable energy source, biofuels have attracted con-
siderable interest and government support throughout the world. En-
zymes play an important role in the process for efficient microbial
conversion of biomass into biofuels. The inefficiency and low activities
of currently available enzymes for producing two of themost important
biofuels, bioethanol and biodiesel, has limited industrial-scale produc-
tion. Therefore, mining for enzymes, especially novel enzymes with
special characteristic, is a key step in the development of industrial bio-
fuel production. The appearance of metagenomic technology offers an
alternative approach to conventional microbial screening, enabling
the detection of novel enzymes from environmental samples indepen-
dent of routine culture techniques. With the help of high-throughput
sequence screening techniques, metagenomics has been used to identi-
fy various novel enzymes with unique activities, specificities and stabil-
ities, with the potential for subsequent development into industrial
biocatalysts.

Nonetheless, metagenomics is still a new technology, with a num-
ber of pending issues to be resolved for the construction of metage-
nomic libraries. It is necessary to explore more suitable eukaryotic
expression vectors and host cells for the construction of metagenomic
libraries, while also strengthening the combination of metagenomic
techniques and bioinformatics. Access to the complex metagenomic
sequence information is a huge project, where traditional methods
of genetic analysis are labour intensive, subject to low efficiencies
and high cost. Bioinformatics has the potential to be a powerful tool
offering researchers increased convenience. With the continuous de-
velopment of biology, improvements in library construction and
screening strategies, and enhanced heterologous gene expression,
metagenomics technology will be one of the most important means
of studying microbial diversity in natural environment and screening
for new genes and biologically active substances.
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