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Abstract

In this article, we give an abstract characterization of the “identity” of an operator space V by
looking at a quantity ncb(V, u) which is defined in analogue to a well-known quantity in Banach
space theory. More precisely, we show that there exists a complete isometry from V to some L(H)
sending u to idH if and only if ncb(V, u) = 1. We will use it to give an abstract characterization of
operator systems. Moreover, we will show that if V is a unital operator space and W is a proper
complete M -ideal, then V/W is also a unital operator space. As a consequece, the quotient of an
operator system by a proper complete M -ideal is again an operator system. In the appendix, we
will also give an abstract characterisation of “non-unital operator systems” using an idea arose from
the definition of ncb(V, u).

1 Introduction

Operator spaces are subspaces of L(H) (where H is a Hilbert spaces) together with the induced “matrix
norm structures”. The theory of operator spaces is a very important tool in the study of operator
algebras. Since the discovery of an abstract characterization of operator spaces by Ruan (see e.g. [19] or
[10]), there have been many more applications of operator spaces to other branches in functional analysis
(see e.g. [2], [11], [12], [13], [15], [16], [20], [21] [22] and [23]).

In the theory of operator spaces, sometimes the starting point is not general subspaces of L(H) but
unital subspaces of L(H) (i.e. subspaces that contain the identity; see e.g. [3]). It is natural to ask
whether there is an abstract characterization of unital operator spaces.

In fact, there is a Banach space characterization for the identity of a unital C∗-algebra (see e.g. [1,
Theorem 2], [6, 4.1] and [18, 9.5.16]) which gives rise to the concept of “geometric unitary” (see e.g. [14]).
More precisely, a norm one element u in a Banach space X is a geometric unitary if certain quantity
n(X ;u) is non-zero. This quantity is also related to numerical indexes of Banach spaces (see e.g. [7]).
It is natural to think that certain operator space analogue of such quantity may give a characterization
of the “identity” of an operator space.

In this paper, we will define and study such a quantity ncb(V;u) for an operator space V and a
norm one element u ∈ V. We will give some properties about it and show that there exists a complete
isometry (respective, complete isomorphism) from V to some L(H) that sends u to idH if and only if
ncb(V;u) = 1 (respectively, ncb(V;u) > 0). We will also give some relations between ncb(V;u) and
n(V ;u). As an application, we give an abstract characterization for operator systems. Furthermore, we
will show that if V is a unital operator space (respectively, operator system), then any proper complete
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M -ideal W of V will not contain the identity and the quotient V/W is again a unital operator space
(respectively, operator system).

In the appendix, we give an abstract characterisation for “non-unital operator systems” using the
similar idea as that for ordinary operator systems as in the main body of the article.

In the following, let us first recall the notion of “geometric unitary” for normed spaces. Suppose that
X is a normed space and S1(X) is the unit sphere of X . For any u ∈ S1(X), we set

S(X ;u) := {f ∈ X∗ : ‖f‖ = 1 = f(u)},

γu(x) := sup {‖f(x)‖ : f ∈ S(X ;u)} (x ∈ X),

as well as
n(X ;u) := inf {γu(x) : x ∈ S1(V )} .

A norm one element u in a normed spaceX is called a geometric unitary (respectively, strict geometric
unitary) if n(V ;u) > 0 (respectively, n(V ;u) = 1).

The following result is probably well-known. Part (a) of which is one of the motivations behind this
work. Since the arguments for it is straight forward (and also follows from a similar arguments as those
for Theorem 2.9 and Proposition 2.7(b)), we leave it to the readers to check them.

Proposition 1.1 Let X be a normed space and u ∈ S1(X).

(a) u is a strict geometric unitary (respectively, geometric unitary) if and only if there exist a compact
Hausdorff space Ω and an isometry (respectively, a contractive topological injection) ϕ : X → C(Ω) such
that ϕ(u) = 1Ω.

(b) Suppose that Y is another normed space and Ψ : X → Y is a contractive topological injection. If
Ψ(u) ∈ S1(Y ), then n(Y ; Ψ(u)) ≤ ‖Ψ−1‖ · n(X ;u).

2 Complete geometric unitaries

In analogue to the notion of geometric unitaries, one can define complete geometric unitaries for operator
spaces. In fact, we will go a step further and start with matricially normed spaces (as defined in [19,
p.217]) instead of operator spaces.

Notation 2.1 Throughout this article, unless specified, V is a matricially normed space (i.e. a matrix
normed space that satisfies only condition (M2) in [10, p.20]) while V is the underlying normed space
(or underlying vector space) of V. We will denote by S1(V) the unit sphere of V.

Remark 2.2 If M∞(V ) denote the set of all infinite matrices on V with only finitely many non-zero en-
tries, then by [19, 2.1], one can turn M∞(V ) into an essential normed M∞(C)-bimodule (where M∞(C)
is regarded as a normed subalgebra of L(ℓ2)). Therefore, one can construct the so-called regularization
of M∞(V ) (as in [17, 1.2]) which produces an operator space V0 (by [17, 2.1]). In fact, V0 is the
image of V in V∗∗ (V∗∗ is as defined in [10, p.41] rather than [19]) together with the induced norm.
Now, by a similar argument as that of [17, 2.5], if W is an operator space, then the canonical map from
CB(V0,W) to CB(V,W) given by the canonical map κV : V → V0 is a complete isometry.
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2.1 Definition and main results

Let u ∈ S1(V). For any n ∈ N, we define

Sn(V;u) := {ϕ ∈ CB(V,Mn) : ‖ϕ‖cb ≤ 1;ϕ(u) = In},

γu
k (x) := sup {‖ϕk(x)‖ : ϕ ∈ Sn(V;u);n ∈ N} (k ∈ N;x ∈Mk(V))

as well as
ncb(V;u) := inf {γu

k (x) : x ∈ S1(Mk(V)); k ∈ N} .

In the case when V is an operator algebra and u being the identity of V, the quantity γu
k (x) was

defined in [5, p.192] and is called the kth numerical radius of x ∈ V.

Definition 2.3 A norm one element u in V is called a complete geometric unitary (respectively, com-
plete strict geometric unitary) if ncb(V;u) > 0 (respectively, ncb(V;u) = 1).

Remark 2.4 (a) S1(V;u) = S(V ;u).

(b) If V0 is the operator space as given in Remark 2.2, then Sn(V, u) = Sn(V0, κV (u)).

(c) Sn(V;u) is a compact convex set under the point-norm topology. In fact, it is not hard to see
that Sn(V;u) is point-norm closed in the closed unit ball of CB(V,Mn) which is compact under the
point-norm topology (by part (b) and the corresponding fact for operator spaces).

(d) Suppose that V is a matrix normed subspace of a matricially normed space W and γu,W
k is defined

by Sn(W, u) in a similar way as γu
k . By the Arveson extension theorem and part (b), the canonical map

gives a surjection from S(W;u) to S(V;u). Therefore, γu
k = γu,W

k for all k ∈ N (so we can use γu
k

instead of γu,V
k ). Consequently, ncb(W, u) ≤ ncb(V, u).

(e) Suppose that X is a vector space and σk is a seminorm on Mk(X) (k ∈ N) satisfying the following
two conditions: for any m,n ∈ N, x ∈Mm(X), y ∈Mn(Y ), α ∈Mn,m and β ∈Mm,n,

I. σm+n(x⊕ y) ≤ max{σm(x), σn(y)};

II. σn(α · x · β) ≤ ‖α‖σm(x)‖β‖.

Let N = {v ∈ V : σu
1 (v) = 0}. Then σk induces a semi-norm σ̃k on Mk(X/N) (since σk((xi,j)

k
i,j=1) ≤

∑n
i,j=1 σ1(xi,j)) which also satisfies the two conditions as the above. Therefore, by [10, 2.3.6], {σ̃k} gives

an operator space structure on X/N .

Lemma 2.5 γu
k is a semi-norm on Mk(V) (k ∈ N) satisfying the two properties in Remark 2.4(e) and

they induce an operator space structure on Vu := V/Nu where Nu := {v ∈ V : γu
1 (v) = 0}.

In the following, when we talk about the operator space Vu, we consider the operator space structure
as given in the above lemma (even when Nu = (0)). Moreover, we denote by Qu the canonical complete
contraction from V to Vu.

Lemma 2.6 Let V be a matricially normed space and u ∈ S1(V).

(a) ncb(V;u) > 0 if and only if Qu is a complete isomorphism. In this case, ncb(V;u) = ‖Q−1
u ‖−1

cb .

(b) ncb(Vu, Qu(u)) = 1.

3



Proof: (a) Since the norm on Mn(Vu) is given by γ̃u
n((Qu)n(x)) := γu

n(x) (n ∈ N, x ∈Mn(V)) and

ncb(V;u) = sup {λ ∈ R+ : λ‖x‖ ≤ γu
n(x);n ∈ N; z ∈Mn(V)}, (1)

we obtain the first statement. If ncb(V;u) > 0, then

ncb(V;u)−1 = inf {µ ∈ R+ : ‖(Q−1
u )n(y)‖ ≤ µγ̃u

n(y);n ∈ N; y ∈Mn(Vu)}

which gives the second statement.

(b) Consider the map (Q̃u)n : CB(Vu,Mn) → CB(V,Mn) given by composition with Qu. It is clear
that (Q̃u)n(Sn(Vu;Qu(u))) ⊆ Sn(V;u) (n ∈ N). On the other hand, for any ϕ ∈ Sn(V;u), we have

‖ϕk(x)‖ ≤ γu
k (x) = γ̃u

k ((Qu)k(x)) (x ∈Mk(V)).

Hence there exists ψ ∈ CB(Vu,Mn) with ϕ = ψ ◦ Qu and ‖ψ‖cb ≤ 1. This shows that (Q̃u)n is a
surjection (and hence a bijection) from Sn(Vu;Qu(u)) to Sn(V;u). Consequently, NQu(u) = (0) and

γ̃u
k = γ

Qu(u)
k on Mk(Vu) = Mk(VQu(u)). Hence QQu(u) is a completely isometric isomorphism and

ncb(Vu;Qu(u)) = 1 by part (a). �

Proposition 2.7 Let V and W be matricially normed spaces. Suppose that Ψ : V → W is a complete
contraction and u ∈ S1(V) such that Ψ(u) ∈ S1(W).

(a) There exists a complete contraction Ψu : Vu → WΨ(u) with QΨ(u) ◦ Ψ = Ψu ◦Qu.

(b) If Ψ is a complete topological injection, then ncb(W; Ψ(u)) ≤ ‖Ψ−1‖cb · ncb(V;u).

Proof: (a) The composition with Ψ gives a map Ψ̃n : Sn(W; Ψ(u)) → Sn(V;u) and we have γ
Ψ(u)
n ◦Ψ ≤

γu
n (n ∈ N). This induces the required map Ψu.

(b) By Remark 2.4(d), Equality (1) and the inequality in the argument for part (a),

ncb(W; Ψ(u)) ≤ ncb(Ψ(V); Ψ(u))

= sup{λ ∈ R+ : λ‖Ψn(x)‖ ≤ γΨ(u)
n (Ψn(x));n ∈ N;x ∈Mn(V)}

≤ sup{λ ∈ R+ : λ‖Ψ−1‖−1
cb ‖x‖ ≤ γu

n(x);n ∈ N;x ∈Mn(V)}

= ‖Ψ−1‖cb · ncb(V;u).

�

Consequently, for any complete contraction Ψ : V → L(H) with Ψ(u) = idH (where u ∈ S1(V)),
there exists a complete contraction Ψu : Vu → L(H) with Ψ = Ψu ◦Qu.

The following is our first theorem which tells us that one can use strict complete geometric unitary
to describe the “identity” of an operator space. Note that one direction of this theorem appeared in
the disguised form in [5, Proposition 1.5] in the case of operator algebras and its proof can be carried
over directly to the case of operator spaces. However, we will give its easy proof here for completeness.
To do this, we need the following well-known fact (an argument for it can be found in the proof of [5,
Proposition 1.5]).

Lemma 2.8 For any Hilbert space H and any T ∈ L(Hn),

‖T ‖ = sup {‖(P ⊗ 1)T (P ⊗ 1)‖ : P ∈ L(H) is a finite dimensional projection} .
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Theorem 2.9 Let V be a matricially normed space and u ∈ S1(V). Then u is a complete strict
geometric unitary of V if and only if there exists a Hilbert space H and a complete isometry Θ : V →
L(H) such that Θ(u) = idH .

Proof: ⇐). For any finite dimensional projection P on H , if the rank of P is n, then x 7→ PΘ(x)P
can be regarded as an element of Sn(V;u). Therefore, ‖ · ‖k ≤ γu

k (and hence equal) on Mk(V ) (k ∈ N)
by Lemma 2.8. Thus, Qu is a complete isometry and ncb(V, u) = 1 (see e.g. Lemma 2.6(a)).

⇒). If Ωn is the compact Hausdorff space Sn(V;u) (under the point-norm topology; see Remark 2.4(c)),
then A =

⊕∞
n=1 C(Ωn,Mn) is a unital C∗-algebra. We define Θ : V → A by Θ(x) = (Θ(n)(x))n∈N where

Θ(n) : V → C(Ωn,Mn) given by

Θ(n)(x)(ϕ) = ϕ(x) (x ∈ V;ϕ ∈ Ωn).

For any k ∈ N and z ∈ Mk(V ), we have Θk(z) ∈ Mk(A) ∼=
⊕∞

n=1 C(Ωn,Mnk) and Θ
(n)
k (z)(ϕ) = ϕk(z)

(ϕ ∈ Ωn). Thus,

‖Θk(z)‖ = sup{‖ϕk(z)‖ : n ∈ N;ϕ ∈ Sn(V;u)} = γu
k (z) = ‖z‖

(as ncb(V, u) = 1) and so, Θ is a complete isometry. It is not hard to see that Θ(u) = idH . �

One can also prove the necessity of the above theorem by taking H =
⊕∞

n=1

⊕

ϕ∈Sn(V;u) Cn and

adapting the argument of [10, 2.3.5].

Corollary 2.10 (a) Suppose that V is a matricially normed space. Then ncb(V;u) > 0 if and only if
there exists a Hilbert space H and a completely contractive complete topological injection Ψ : V → L(H)
such that Ψ(u) = idH .

(b) If V is an operator space, then ncb(V;u) = ncb(V
∗∗;u).

Proof: (a) If ncb(V;u) > 0, then by Lemma 2.6(a), Qu : V → Vu is a completely contractive complete
isomorphism, and one can apply Theorem 2.9 to Vu (because of Lemma 2.6(b)). The converse follows
from Proposition 2.7(b) and Theorem 2.9.

(b) Note that if ncb(V, u) = 0, then ncb(V
∗∗, u) = 0 (by Remark 2.4(d)). Moreover, if ncb(V, u) = 1,

then there is a Hilbert space H and a complete isometry Θ : V → L(H) such that Θ(u) = idH

(Theorem 2.9), and so, Θ∗∗ : V∗∗ → L(H)∗∗ is a complete isometry with Θ∗∗(u) = idH which implies
that ncb(V

∗∗, u) = 1 (note that there exists a faithful unital representation for L(H)∗∗ and we can
apply Theorem 2.9). We now suppose that ncb(V, u) > 0. Then by Lemma 2.6(a), Qu is a complete
isomorphism and so is Q∗∗

u : V∗∗ → (Vu)∗∗. By Lemma 2.6(b), we have ncb(Vu, Qu(u)) = 1 and the
above implies that ncb((Vu)∗∗, Qu(u)) = 1. Consequently, Lemma 2.6(a), Proposition 2.7(b) as well as
Remark 2.4(d) tell us that

ncb(V;u) = ‖Q−1
u ‖−1

cb = ‖(Q∗∗
u )−1‖−1

cb ≤ ncb(V∗∗;u) ≤ ncb(V;u).

�

Remark 2.11 (a) It is clear that if V is a matricially normed space having a complete strict geometric
unitary, then V is an operator space (by Theorem 2.9). More generally, if V has a complete geometric
unitary, then V is pseduo L∞ in the sense that there exists κ ≥ 1 such that ‖u⊕ v‖ ≤ κmax{‖u‖, ‖v‖}
for any u ∈Mm(V ), v ∈Mn(V ) and m,n ∈ N (by Corollary 2.10(a)). Consequently, if p ∈ [1,∞), then
any Lp-matricially normed space will not have a complete geometric unitary.
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(b) Let V be a matricially normed space and u ∈ S1(V). Suppose that H is a Hilbert space and
Θ : Vu → L(H) is a complete isometry such that Θ(Qu(u)) = idH (by Lemma 2.6(b) and Theorem
2.9). Then Θ ◦ Qu : V → L(H) satisfies certain universal property in the following sense: if K is any
Hilbert space and Ψ : V → L(K) is a complete contraction with Ψ(u) = idK , then there exists a complete
contraction (not necessarily unique) Λ : L(H) → L(K) such that Ψ = Λ ◦ Θ ◦Qu. Indeed, Ψ = Ψu ◦Qu

(where Ψu : Vu → L(K) is as in Proposition 2.7(a)) and there exists, by the Averson extension theorem,
a complete contraction Λ : L(H) → L(K) such that Ψu = Λ ◦ Θ.

2.2 Relationships with geometric unitaries

In this subsection, we will give some comparison between ncb(V, u) and n(V, u).

Corollary 2.12 Let V be a matricially normed space. If ncb(V;u) > 0 (respectively, ncb(V;u) = 1),
then n(V ;u) > 0 (respectively, n(V ;u) ≥ 1

2).

Proof: Let Ψ be the completely contractive complete topological injection (respectively, complete
isometry) given by Corollary 2.10(a) (respectively, Theorem 2.9). Then Ψ is a contractive topological
injection (respectively, isometry) and Proposition 1.1(b) and [8, Theorem 3] shows that n(V ;u) ≥
n(L(H);1)
‖Ψ−1‖ ≥ 1

2‖Ψ−1‖ . �

Next, we compare n and ncb for the minimal quantization.

Proposition 2.13 Let X be a normed space and u ∈ S1(X).

(a) n(X ;u) ≤ ncb(minX;u).

(b) n(X ;u) > 0 if and only if ncb(minX;u) > 0.

Proof: (a) Since S1(minX;u) = S(X ;u), it suffices to prove that for any k ∈ N and x = (xij) ∈
S1(Mk(minX)), we have

n(X ;u) ≤ sup{‖fk(x)‖ : f ∈ S(X ;u)}. (2)

Suppose that Ω is a compact Hausdorff space such that minX ⊆ C(Ω) as operator subspace (hence,
Mk(minX) ⊆ C(Ω;Mk)). There exist ω ∈ Ω and (ci), (di) ∈ S1(C

n) with

1 = ‖x‖ = ‖x(ω)‖ =

∣

∣

∣

∣

∣

∣

∑

ij

cixij(ω)dj

∣

∣

∣

∣

∣

∣

which implies that ‖
∑

ij cixijdj‖ ≥ 1. On the other hand, it is easy to see that ‖
∑

ij cixijdj‖ ≤ ‖x‖ = 1.
Now, for any f ∈ S(X ;u),

‖fk(x)‖ ≥

∣

∣

∣

∣

∣

∣

∣

〈

(f(xij))







d1

...
dk






,







c1
...
ck







〉

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

f





∑

ij

cixijdj





∣

∣

∣

∣

∣

∣

.

Hence, γu(
∑

ij cixijdj) ≤ sup{‖fk(x)‖ : f ∈ S(X ;u)} and Equality (2) is verified.

(b) This part follows from part (a) as well as Corollary 2.12. �
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Remark 2.14 (a) The arguement of the above actually shows that for any (xij) ∈ Mk(minX), there
exists (ci), (di) ∈ S1(C

n) such that ‖(xij)‖ = ‖
∑

ij cixijdj‖. This could be a known fact although we do
not find it in the literatures.

(b) Let X be a finite dimensional normed space and X be any quantization of X. Then the identity map
is a completely contractive complete isomorphism from X to minX (see e.g. [10, 2.2.4]). Consequently,
by Propositions 2.7(b) and 2.13(b), if u ∈ S1(X), then ncb(X, u) > 0 if and only if n(X,u) > 0.
(c) If V is an operator space and u ∈ S1(V) such that ncb(V;u) > 0, then ncb(minV;u) > 0 (by
Corollary 2.12 and Proposition 2.13). This fact is not easy to obtain directly from the definition.

2.3 An example

Let us start this subsection with the following result concerning ncb for C∗-algebras. Note that (i)⇒(ii)
follows from Theorem 2.9 while (iii)⇒(i) follows from Corollary 2.12 as well as [6, 4.1].

Corollary 2.15 For a C∗-algebra A and u ∈ S1(A), the following statements are equivalent.

(i) u is a unitary.

(ii) ncb(A;u) = 1.

(iii) ncb(A;u) > 0.

Note that from [8, Theorem 3], if A is a commutative unital C∗-algebra, then n(A; 1) = 1 but if A
is noncommutative, then n(A; 1) = 1

2 . By considering ncb, the above corresponding result looks cleaner
but one losses the ability to detect whether A is commutative.

On the other hand, for a general operator spaces V and any u, v ∈ S1(V), it is possible that both
ncb(V, u) and ncb(V, u) are non-zero but ncb(V;u) 6= ncb(V; v). In order to give such an example, we
need the following lemma which is probably known. However, since we cannot find it in the literatures,
we give a proof here for completeness.

Lemma 2.16 Let X and Y be two normed spaces and u ∈ S1(X). Then n(X ⊕1 Y ; (u, 0)) = n(X ;u).

Proof: Let E = X ⊕1 Y . For any (f, g) ∈ X∗ ⊕∞ Y ∗, we have (f, g) ∈ S(E; (u, 0)) if and only if
max{‖f‖, ‖g‖} = 1 = f(u). Hence, S(E; (u, 0)) = S(X ;u) × Ball(Y ∗) (where Ball(Y ∗) is the closed unit
ball of Y ∗). Thus,

γ(u,0)(x, y) ≤ γu(x) + ‖y‖ ((x, y) ∈ E).

On the other hand, for any ǫ > 0, there exists f ∈ S(X ;u) and g ∈ Ball(Y ∗) such that γu(x) < |f(x)|+ ǫ
and g(y) = ‖y‖. If f(x) = |f(x)| eiθ, then

∣

∣f(x) + (eiθg)(y)
∣

∣ = |f(x)| + ‖g‖ ≥ γu(x) + ‖y‖ − ǫ. This

shows that γ(u,0)(x, y) = γu(x) + ‖y‖. Consequently,

n(E; (u, 0)) = inf{γu(x) + ‖y‖ : (x, y) ∈ E; ‖x‖ + ‖y‖ = 1} ≤ n(X ;u)

(since ‖y‖ = 0 is possible). On the other hand, for any n ∈ N, there exists (xn, yn) ∈ E with

‖xn‖ + ‖yn‖ = 1 and γu(xn) + ‖yn‖ < n(E; (u, 0)) +
1

n
.

If there are infinitely many n with xn = 0, then there exists a subsequence such that 1 = ‖ynk
‖ <

n(E; (u, 0)) + 1
nk

which implies that n(E; (u, 0)) = 1 and so n(X ;u) = 1 as well. Otherwise, we can

assume that all xn are non-zero and take zn = xn

1−‖yn‖ ∈ S1(X). Since

(γu(xn) + ‖yn‖)(1 − ‖yn‖) = γu(xn) + ‖yn‖(1 − γu(xn) − ‖yn‖) ≥ γu(xn)
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(note that γu(xn) ≤ ‖xn‖ = 1 − ‖yn‖), we have γu(zn) ≤ γu(xn) + ‖yn‖ < n(E; (u, 0)) + 1
n
. Therefore,

n(X ;u) ≤ n(E; (u, 0)) as required. �

Example 2.17 If E is a finite dimensional Banach space with n(E;u) = 1/e (see e.g. [9, 3.5]), then
for any quantization E of E, we have 0 < ncb(E;u) < 1 (by Remark 2.14(b) and the fact that 1/e < 1/2
together with Corollary 2.12). Moreover, if F = C⊕1E, then n(F ; (0, u)) = 1/e and n(F ; (1, 0)) = 1 (by
Lemma 2.16) and so, by the above, 0 < ncb(minF; (0, u)) < 1 but ncb(minF; (1, 0)) = 1 (by Proposition
2.13(a)).

3 Applications

3.1 An abstract definition for operator systems

If V is an operator space, u ∈ S1(V) and Ψ : V → L(H) is a complete isometry such that Ψ(u) = idH ,
then it is known that Ψ−1(Ψ(V) ∩ Ψ(V)∗) is an operator system which is independent of the choice of
(H,Ψ). The following result gives an alternative and intrinsic description for this operator system.

Proposition 3.1 Suppose that V is a matricially normed space and u is a complete strict geometric
unitary of V. For any n ∈ N, we set

Kn
u := {x ∈Mn(V) : ϕn(x) ≥ 0;ϕ ∈ Sk(V;u); k ∈ N}.

If Ψ : V → L(H) is any complete isometry with Ψ(u) = idH , then Ψn(Kn
u) = Ψn(Mn(V)) ∩ L(H(n))+.

Conseqently, Vs = span K1
u is an operator system with matrix order structure given by Kn

u ∩Mn(Vs).

Proof: If A and Θ are as in the argument for Theorem 2.9, then clearly, Θn(Kn
u) = Θn(Mn(V)) ∩

Mn(A)+. Regard A as a unital C∗-subalgebra of some L(K). If Ψ : V → L(H) is as in the statement,
then there exist (by Remark 2.11(c)) complete contractions Γ1 : L(H) → L(K) and Γ2 : L(K) → L(H)
such that Θ = Γ1 ◦ Ψ and Ψ = Γ2 ◦ Θ. Hence, both Γ1 and Γ2 are completely positive, and so,
Ψn(Kn

u) = Ψn(Mn(V)) ∩ L(H(n))+. �

Theorem 3.2 Let V be a matrically normed space and u ∈ S1(V ). Then there exists a matrix order
structure on V turning it into an operator system with order unit u if and only if ncb(V, u) = 1 and K1

u

spans V.

Corollary 3.3 Let V be matricially normed space and u ∈ S1(V).

(a) Vu,s is an operator system whose cone is Qu(K1
u).

(b) If ncb(V;u) > 0, there exists an equivalent matrix norm on V under which Vs is an operator system
with order unit u.

(c) If ϕ : V → L(H) is a complete contraction such that ϕ(u) = idH , then ϕ factor through a “completely
positive map” from Vu to L(H).

One can also use the above ideal to give an abstract characterisation for “non-unital operator sys-
tems”. However, since this is not directly related to complete geometric unitary, we will do this in the
Appendix.
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3.2 Quotient by a complete M-ideal

In this subsection, we will show that the quotient of a unital operator space with a proper complete
M -ideal is also unital. As an application, the quotient of any operator system by a proper complete
M -ideal is again an operator system. Let us begin with the following lemma which may also be known.

Lemma 3.4 Let X and Y be two normed spaces. If (u, v) ∈ S1(X ⊕∞ Y ) with n(X ⊕∞ Y ; (u, v)) > 0,
then ‖u‖ = 1 = ‖v‖.

Proof: Suppose that ‖u‖ = 1 but ‖v‖ < 1. For any (f, g) ∈ S(X ⊕∞ Y ; (u, v)), we have ‖f‖ + ‖g‖ =
1 = f(u) + g(v). Hence g(v) = ‖g‖ and so, either ‖g‖ = 0 or ‖v‖ ≥ 1 (which is absurd). Consequently,
S(X ⊕∞ Y ; (u, v)) = S(X ;u) × {0}. Now, for any y ∈ S1(Y ) and (f, 0) ∈ S(X ⊕∞ Y ; (u, v)), we have
(f, 0)(0, y) = 0 and so, n(X ⊕∞ Y ; (u, v)) = 0 which is a contradiction. A similar contradiction occur if
‖v‖ = 1 but ‖u‖ < 1. �

If A is a unital operator algebra with identity 1A and I is a proper closed ideal of A, then it is
obvious that 1A /∈ I and the image of 1A in A/I is the identity. Interesting, this fact can be regarded as
a geometric statement and can be generalized to the following result.

Theorem 3.5 (a) Let V be an operator space and W ( V be a complete M -ideal. If v ∈ S1(V)
with ncb(V; v) > 0, then ‖Q(v)‖ = 1 and ncb(V; v) ≤ ncb(V/W;Q(v)) (where Q : V → V/W is the
canonical quotient map).

(b) Let V be an operator system and W is a proper complete M -ideal of V. Then V/W is also an
operator system.

Proof: (a) By Corollary 2.10(b), one can assume that W is a complete M -summand of V (since W⊥⊥

is a complete M -summand of V∗∗). Let P : V → V be the complete M -projection such that P (V) = W

and let Z = (I − P )(V). Then V ∼= Z ⊕∞ W as operator spaces and Q(x) 7→ (I − P )(x) is a complete
isometry from V/W to Z. Suppose that v = (u,w) with u ∈ Z and w ∈ W. Then by Corollary 2.12
and Lemma 3.4, we see that ‖u‖ = 1 = ‖w‖. Pick any f ∈ S1(Z

∗) with f(u) = 1 and define Ψ : Z → V

by Ψ(x) = (x, f(x)w). It is not hard to check that Ψ is a complete isometry (as ‖fn(x)w‖ ≤ ‖x‖ for any
x ∈Mn(Z)) such that Ψ(u) = (u,w). Now, ncb(V; (u,w)) ≤ ncb(Z;u) (by Proposition 2.7(b)).

(b) Let v be the order unit of V. Since the composition with the canonical quotient map Q : V → V/W
is a map from S(V/W;Q(v)) to S(V, v), we know that Q(K1

v) ⊆ K1
Q(v) and so, K1

Q(v) spans V/W. On

the other hand, part (a) tells us that ncb(V/W;Q(v)) = 1. Now, the result follows from Theorem 3.2.
�

Remark 3.6 One can also show that the image of a (strict) geometric unitary of a Banach space in the
quotient by a proper M -ideal is also a (strict) geometric unitary.

A Appendix: non-unital operator systems

We begin this appendix with the following probably well-known result.
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Lemma A.1 Let H be a Hilbert space and T ∈ L(Hn). Then T ≥ 0 if and only if (P ⊗ 1)T (P ⊗ 1) ≥ 0
for any finite dimensional projection P ∈ L(H).

Proof: We only need to show the sufficiency. Let B be an orthonormal basis for H and H0 := span B.
Suppose that F(B) is the collection of all finite subsets of B and PF is the projection onto span F
(F ∈ F(B)). Then (PF ⊗ 1)T (PF ⊗ 1) ≥ 0 for any F ∈ F(B) will imply that 〈η, T η〉 ≥ 0 for any η ∈ Hn

0 ,
and so, T ≥ 0. �

Let V be a matrically normed space and Mn(V)+ be a cone in Mn(V) (n ∈ N). For every n ∈ N,
we set

S
+
n (V) := {ϕ ∈ CB(V,Mn) : ‖ϕ‖cb ≤ 1;ϕm(Mm(V)+) ⊆ (Mmn)+;m ∈ N},

γ+
k (x) := sup

{

‖ϕk(x)‖ : ϕ ∈ S
+
n (V);n ∈ N

}

(k ∈ N;x ∈Mk(V)),

n+
cb(V) := inf

{

γ+
k (x) : x ∈ S1(Mk(V)); k ∈ N

}

as well as
Kn := {v ∈Mn(V ) : ϕn(v) ∈ (Mnk)+; k ∈ N;ϕ ∈ S

+
k (V)}.

It is easy to check that S+
n (V) is compact under the point-norm topology andMn(V)+ ⊆ Kn (n ∈ N).

Theorem A.2 Suppose that V and Mn(V)+ be as in the above. Then there exist a Hilbert space H
and a complete isometry Φ : V → L(H) with Φ(Mn(V)+) = Φ(Mn(V)) ∩ L(Hn)+ (n ∈ N) if and only
if n+

cb(V) = 1 and Mn(V)+ = Kn for any n ∈ N.

Proof: ⇒). n+
cb(V) = 1 because of Lemma 2.8 and Mn(V)+ = Kn follows from Lemma A.1.

⇐). Let A :=
⊕∞

k=1 C(S+
k (V),Mk) and define Θ : V → A by Θ(v) = (Θ(k)(v)) where Θ(k)(v)(ϕ) = ϕ(v)

(ϕ ∈ V ). As in the argument for Theorem 2.9, Θ is a complete isometry (because n+
cb(V) = 1). Moreover,

it is easy to see that Θn(Kn) = Θn(Mn(V)) ∩Mn(A)+ (n ∈ N). �

This gives an abstract characterization of “possibly non-self-adjoint and non-unital operator system”
as follows:

Suppose that V is a matrically normed space and Mn(V)+ is a cone in Mn(V) for any
n ∈ N. Then (V,Mn(V)+) is called an abstract (not necessarily unital) operator system if
n+

cb(V) = 1 and Mn(V)+ = Kn for any n ∈ N.
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