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a b s t r a c t

A new stability criterion for fixed-point state-space digital filters using two’s complement arithmetic is
presented. The effectiveness of the results obtained is shown by using a numerical example.
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1. Introduction

The system under consideration is given by
x(r + 1) = f (y(r))

= [f1(y1(r)) · · · fn(yn(r))]T, (1)
where

y(r) = [y1(r) · · · yn(r)]T = Ax(r), (2)
x(r) is an n-vector state, A = [aij] ∈ Rn×n, and A satisfies the
following conditions:
ki > 1, i = 1, . . . ,m, (3)
ki ≤ 1, i = m + 1, . . . , n, (4)
where ki =

∑n
j=1 |aij|, and m is an integer between 1 and n. The

nonlinearities characterized by
fi(yi(r)) = yi(r), if − 1 ≤ yi(r) ≤ 1
−1 ≤ fi(yi(r)) ≤ 1, if |yi(r)| > 1


, i = 1, . . . , n, (5)

are under consideration.
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In recent years, digital filters have beenwidely studied bymany
authors. Stability for digital filters using saturation arithmetic has
drawn considerable attention (Ebert, Mazo, & Taylor, 1969; Hu &
Lin, 2001; Johnson & Sandberg, 1995; Kar & Singh, 2004, 2005; Liu
& Michel, 1992; Ooba, 2003, 2010; Singh, 1985, 1990, 2006, 2007,
2008a,b, 2011). It iswell known that the hardware implementation
of the saturation arithmetic adder is more expensive than that
of two’s complement arithmetic adder (Sandberg, 1979). So, it
is worth investigating the stability of digital filters using two’s
complement arithmetic. In the literature, the stability problem of
this class of digital filters has been studied (Kar, 2010;Mills, Mullis,
& Roberts, 1978; Shen & Yuan, 2010; Shen, Yuan, & Wang, 2011;
Singh, 1986, 1990, 2010a,b; Vaidyanathan & Liu, 1987). Now, we
will recall some previously presented stability criteria.

The well-knownMills–Mullis–Roberts criterion takes the form

D − ATDA > 0, (6)

where D is a positive diagonal matrix.
The stability criterion (Vaidyanathan & Liu, 1987) takes the

form

D − ATDA ≥ 0, (7)

where D is a positive diagonal matrix and ρ(A) < 1 is satisfied.
By using the results (Shen & Yuan, 2010), the stability criterion

proposed by Singh (2010a) may be written as follows:

P̃ − ATP̃A > 0, (8)
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where

P̃ =


D̃ 0m×(n−m)

0(n−m)×m Q̃


,

D̃ ∈ Rm×m is a positive-definite diagonal matrix, and Q̃ ∈

R(n−m)×(n−m) is a positive-definite symmetric matrix.
Recently, a new stability criterion has been proposed (Shen

et al., 2011), by estimating the region which the system trajectory
will enter and remain in.

However, for system (1)–(5), the criteria (Shen et al., 2011;
Singh, 2010a) are equivalent to the Mills–Mullis–Roberts criterion
when m = n. Hence, the main purpose of this note is to present a
new stability criterion, which may be less conservative than these
previous results when m = n. Without loss of generality, we
assume thatm is an integer, with 1 ≤ m ≤ n.

2. Preliminaries

In view of (1) and (5), one has

|xi(r)| ≤ 1, i = 1, . . . , n. (9)

Note that even if the system trajectory lies out of the region (9)
initially, (1) and (5) ensure that the trajectory will enter region (9)
and will not leave this region once it enters it. Then, we assume
that the system trajectory lies in region (9) initially.

In the following, for real symmetric matrices X and Y , the
notation X > Y means that the matrix X − Y is positive definite.

Lemma 1. For a given system (1)–(5), it holds that

[diyi(r) + αi][yi(r) − fi(yi(r))] ≥ 0, i = 1, . . . , n, (10)

where di, i = 1, . . . , n, are positive constants, and αi are arbitrary
constants satisfying −di ≤ αi ≤ di, i = 1, . . . , n.

Proof. If yi(r) = 0, then we can obtain that (10) holds. Hence, we
only need to consider the case when yi(r) ≠ 0. It follows that

[diyi(r) + αi][yi(r) − fi(yi(r))]

= diy2i (r)[1 + βi(r)][1 − γi(r)], i = 1, . . . , n, (11)

where βi(r) = αi/[diyi(r)] and γi(r) = fi(yi(r))/yi(r).
When |yi(r)| ≤ 1, it can be obtained by (5) that fi(yi(r)) = yi(r)

and γi(r) = 1. Thus, we have [diyi(r) + αi][yi(r) − fi(yi(r))] = 0.
When |yi(r)| > 1, it follows from (5) that |βi(r)| < 1 and |γi(r)|

< 1. Then, we can get that diy2i (r)[1 + βi(r)][1 − γi(r)] > 0. This
completes the proof of Lemma 1. �

3. Main results

Theorem 1. The null solution of system (1)–(5) is globally asymp-
totically stable, if there are a positive-definite symmetric matrix P =

[pij] ∈ Rn×n, a diagonal matrix L = diag[l1, . . . , ln] ∈ Rn×n, and two
matrices M = [mij],N = [nij] ∈ Rn×n such that

Π1 + Π2 < 0 (12)

and

li ≥

n−
j=1

|mji| +

n−
j=1

|nji|, i = 1, . . . ,m (13)

hold, where

Π1 =

[
−P 0n×n

0n×n P

]

and

Π2 =


2ATLA + MA + ATMT ATNT

− M − ATL

NA − MT
− LA −N − NT


.

Proof. Construct the Lyapunov function

V (x(r)) = xT(r)Px(r), (14)

and let1V (x(r)) = V (x(r+1))−V (x(r)). Then, for system (1)–(5),
it follows that

1V (x(r)) = ζ T(r)Π1ζ (r), (15)

where ζ (r) = [xT(r), xT(r + 1)]T.
In the following, we will show that ζ T(r)Π2ζ (r) ≥ 0 holds.
It follows that

ζ T(r)Π2ζ (r) = 2yT(r)Ly(r) + 2xT(r)My(r) + 2f (y(r))Ny(r)

− 2yT(r)Lf (y(r)) − 2xT(r)Mf (y(r))

− 2f T(y(r))Nf (y(r)). (16)

Then, we can write the above equation as follows:

ζ T(r)Π2ζ (r) = 2
n−

i=1

[liyi(r) + xT(r)Mi

+ f T(y(r))Ni][yi(r) − fi(yi(r))], (17)

where Mi and Ni denote the ith column of matrices M and N ,
respectively.

Owing to (4), (5) and (9), we have

[liyi(r) + xT(r)Mi + f T(y(r))Ni][yi(r) − fi(yi(r))] = 0,
i = m + 1, . . . , n. (18)

It can be obtained by (5), (9) and (13) that

|xT(r)Mi + f T(y(r))Ni| ≤ li, i = 1, . . . ,m. (19)

By using Lemma 1, we have

[liyi(r) + xT(r)Mi + f T(y(r))Ni][yi(r) − fi(yi(r))] ≥ 0,
i = 1, . . . ,m. (20)

Thus, it can be obtained that ζ T(r)Π2ζ (r) ≥ 0 holds, by (17),
(18) and (20). Then, we can get that

1V (x(r)) ≤ ζ T(r)(Π1 + Π2)ζ (r). (21)

It follows from (12) and (21) that

1V (x(r)) < 0 ∀xT(r)x(r) ≠ 0. (22)

This completes the proof of Theorem 1. �

4. Comparative evaluation and numerical example

It is worth comparing the present approach with previously
presented criteria.

First, consider the Mills–Mullis–Roberts criterion. Assume that,
for system (1)–(5), there is a positive-definite diagonal matrix D
such that (6) holds. Then, there can be ensured the existence of
ϵ > 0 satisfying

D − ATDA + ϵATA > 0. (23)

Thus, we can obtain there exist L = D+ϵIn,M = 0n×n,N = D+ϵIn
and P = 2D such that (12) and (13) hold, where In denotes the n×n
identity matrix.
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Next, consider Singh’s criterion. Assume that, for system (1)–
(5), there are a positive-definite diagonal matrix D̃ and a positive-
definite symmetric matrix Q̃ such that (8) holds. Then, there can
be ensured the existence of ϵ > 0 satisfying

P̃ − ATP̃A + ϵATA > 0, (24)

where P̃ is defined as that in (8). Thus, we can obtain there is a
solution to (12) and (13), i.e., P = 2P̃ , N = P̃ + ϵIn,M = ATM̃ ,

L =

[
D̃ + ϵIm 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

]
,

and

M̃ =


0m×m 0m×(n−m)

0(n−m)×m Q̃ + ϵI(n−m)


.

In the following, we will use a numerical example to show the
effectiveness of our results.

Consider the third-order system (1)–(5) with

A =

−0.02 −0.73 −0.35
−0.07 −0.85 0.17
0.21 −0.71 0.18

 .

For this example, we can obtain that m = n and the criteria
(Shen & Yuan, 2010; Shen et al., 2011; Singh, 2010a) are equivalent
to theMills–Mullis–Roberts criterion. It can be verified that each of
the stability criteria of (6)–(7) fails in this example.

Now, we will use the results of this note to analyze the stability
of this example. For this example, there is a solution to (12) and
(13), i.e., L = diag[71.884, 133.582, 53.929],

P =

15.249 9.314 5.358
9.314 256.555 −10.192
5.358 −10.192 50.288

 ,

M =

−1.105 0.02 −0.154
31.358 1.64 19.128
0.765 −0.36 −0.448

 ,

N =

17.096 −0.042 −0.069
5.084 130.899 −3.981

−0.003 −0.236 29.534

 .

So, the method proposed by this note can ensure its stability.
It can be seen that for this example the results of this paper are

less conservative than these criteria presented previously.

5. Conclusion

A new stability criterion for global asymptotic stability of fixed-
point state-space digital filters using two’s complement arithmetic
is presented in this note. The effectiveness of the obtained results
is verified by using a numerical example.
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