A New Construction of Boolean Functions with Maximum Algebraic Immunity

National University of
Defense Technology
Deshuai Dong
2009-8-26

Outline

- Preliminaries on Boolean functions
- Algebraic attacks and Algebraic immunity
- The recent constructions of Boolean functions with MAI
- The main results of our paper

Preliminaries on Boolean functions

- Boolean functions map n binary inputs to a single binary output
- More formally $f: \mathrm{F}_{2}^{n} \rightarrow F_{2}$ map

$$
\left(x_{1}, \cdots, x_{n}\right) \in F_{2}^{n} \rightarrow x \in F_{2}
$$

Preliminaries on Boolean functions

- It can be represented as a polynomial in the ring

$$
F_{2}\left[x_{1}, \cdots, x_{n}\right] /<x_{1}^{2}-x_{1}, \cdots, x_{n}^{2}-x_{n}>
$$

- This ring is simply a set of all polynomials with binary coefficients in n indeterminates with property that $x_{i}^{2}=x_{i}$

Algebraic Normal Form

- A Boolean function can be formalized further by defining

$$
f(x)=\sum_{u \in F_{2}^{n}} a_{u} x^{u}=\sum_{u \in F_{2}^{n}} a_{u} x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}, u=\left(u_{1}, \cdots, u_{n}\right)
$$

- This also can be called the algebraic normal form (ANF) of f

Algebraic degree

- Algebraic degree of a Boolean function is defined as maximum length of terms in ANF of f
- The algebraic degree should be large because of Berlekamp-Massey and RonjomHelleseth attacks (stream ciphers) and higher differential attack (block ciphers)

Affine and linear functions

- The set of all Boolean functions in n variables is denoted by B_{n}
- Boolean Functions of degree at most one are called affine

$$
A_{n}=\left\{a_{0}+a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \mid a_{i} \in F_{2}, 0 \leq i \leq n\right\}
$$

- An affine function with $a_{0}=0$ is said to be linear, and all linear functions are denoted by L_{n}

The Walsh Transform

- The Walsh transform of Boolean functions is defined by

$$
\hat{f}(u)=\sum_{x \in F_{2}^{n}}(-1)^{f(x)+u \cdot x}
$$

- The Hamming distance between two functions:

$$
d_{H}(f, g)=w_{H}(f+g)=|\{x \mid f(x) \neq g(x)\}|
$$

Nonlinearity definition

- The nonlinearity of a Boolean function is the minimum distance from f to all affine functions i.e.

$$
N_{f}=\min _{g \in A_{n}} d_{H}(f, g)
$$

- The nonlinearity of a Boolean function f also can be represented as:

$$
N_{f}=2^{n-1}-\frac{1}{2} \max _{a \in F_{2}^{n}}|\hat{f}(a)|
$$

The nonlinearity must be high to prevent the system from fast correlation attacks (stream ciphers) and linear attacks(block ciphers)

The application

Combiner model :

The application

Filter model

- Before the introduction of algebraic attacks, balancedness, high algebraic degree and high nonlinearity were considered as roughly sufficient for the filter model of PRG

Outline

- Preliminaries on Boolean functions
- Algebraic attacks and Algebraic immunity

Algebraic attacks principle(Shannon)

- Find equations with the key bits as unknowns
- Solve the system of these equations
- For stream ciphers (combining or filtering Boolean functions):
- denote by $\left(s_{0}, \cdots, s_{N-1}\right)$ the initial state of the linear part of the PRG
- there exists a linear automorphism L and a linear mapping L^{\prime} :

$$
s_{i}=f\left(L^{\prime} \circ L^{i}\left(s_{0}, s_{1}, \cdots, s_{N-1}\right)\right)
$$

- For stream ciphers we can have many equations, so we can gain an over-defined system
- One can linearize the system (or use Gröbner bases) to solve it

Problem of algebraic attacks

- However the number of unknowns is too large
- The common ways to solve this system are mostly impossible

Algebraic attacks

- Courtois-Meier 2003: if one can find $g \neq 0$ and h of low degree such that $f g=h$, then the equation $s_{i}=f\left(L^{\prime} \circ L^{i}\left(s_{0}, s_{1}, \cdots, s_{N-1}\right)\right)$ implies the following low degree equation:

$$
s_{i} g\left(L^{\prime} \circ L^{i}\left(s_{0}, \cdots, s_{N-1}\right)\right)=h\left(L^{\prime} \circ L^{i}\left(s_{0}, \cdots, s_{N-1}\right)\right)
$$

- Then the degree of the original nonlinear system and the unknowns in the related linear system decrease

Algebraic immunity

- Meier-Pasalic-C.C. EUROCRYPY 2004 :

A necessary and sufficient condition for existence $g \neq 0$ and h of low degree such that $f g=h$: there exist $g \neq 0$ of low degree such that $f \cdot g=0$ Or $(1+f) \cdot g=0$

Algebraic immunity

- Given $f \in B_{n}$, a nonzero function g is called an annihilator of f if $f \cdot g=0$. By $\operatorname{AN}(f)$ we mean the set of annihilators of f
- The algebraic immunity of f, denoted by $A I(f)=\operatorname{deg}(g)$, where $g \in B_{n}$ is the minimum degree nonzero function such that $f \cdot g=0$ either $(1+f) \cdot g=0$

Algebraic immunity

- It is easy to prove that $\quad A I(f) \leq \operatorname{deg}(f)$ and AI $(f) \leq\lceil n / 2\rceil$
- If the Al of a Boolean function in n-variable equals $\lceil n / 2\rceil$, we call it a maximum algebraic immunity (MAI) function.
- In practical situation, $A I(f)$ should be greater than or equal to 7
- So we need $n \geq 13$

Algebraic immunity and nonlinearity

- Lobanov (IACR e-print archive) given a tight bound between nonlinearity and algebraic immunity:

$$
N_{f} \geq 2 \sum_{i=0}^{A I(f)-2}\binom{n-1}{i}
$$

- This tight bound does not guarantee that an maximum algebraic immunity implies a good enough nonlinearity

Design criteria

- High algebraic degree
- High nonlinearity
- Resiliency (for certain applications)
- High algebraic immunity

Outline

- Preliminaries on Boolean functions
- Algebraic attacks and Algebraic immunity
- The recent constructions of Boolean functions with MAI

Three Recent constructions

- Construction based support-inclusion
- Construction based basis-exchange technique
- Construction based finite field expression

Construction based support-inclusion

- Dalai, Basic theory in construction of MAI functions, 2005
- Lemma 1. Let f, f_{1}, f_{2} in B_{n}, and
(1) f_{1}, f_{2} both have no nonzero annihilators degree less than $\left\lceil\frac{n}{2}\right\rceil$;
(2) $\operatorname{Supp}(f) \supseteq \operatorname{Supp}\left(f_{1}\right) \operatorname{Supp}(f+1) \supseteq \operatorname{Supp}\left(f_{2}\right)$ Then $\operatorname{AI}(f)=\left\lceil\frac{n}{2}\right\rceil$

Construction based support-inclusion (Cont.)

- Theorem 1. Let f in B_{n}, if n is odd, let

$$
f(x)= \begin{cases}0, & w t(x)<\left\lceil\frac{n}{2}\right\rceil \\ 1, & w t(x) \geq\left\lceil\frac{n}{2}\right\rceil\end{cases}
$$

if n is even, let

$$
f(x)=\left\{\begin{array}{cc}
0, & w t(x)<\left\lceil\frac{n}{2}\right\rceil \\
1, & w t(x)>\left\lceil\frac{n}{2}\right\rceil \\
b \in\{0,1\}, & w t(x)=\left\lceil\frac{n}{2}\right\rceil
\end{array}\right.
$$

Construction based basis-exchange technique

- Longjiang Qu, Na Li, et al., On MAl functions: construction and a lower bound of the count, 2005.
- Idea of basis-exchange technique:

Construction based basis-exchange technique (Cont.)

- Lemma 2 Let U be an m-dimension vector space, $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ and $\beta_{1}, \beta_{2}, \cdots, \beta_{m}$ be two bases of U, then for any integer $1 \leq k \leq m$, for any k integers
$1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m$, there exist k integers
$1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq m$ such that

$$
\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right\} \cup\left\{\beta_{i_{1}}, \cdots, \beta_{j_{k}}\right\} \backslash\left\{\alpha_{i_{1}}, \cdots, \alpha_{i_{k}}\right\}
$$

and

$$
\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right\} \cup\left\{\alpha_{i_{1}}, \cdots, \alpha_{i_{k}}\right\} \backslash\left\{\beta_{i_{1}}, \cdots, \beta_{j_{k}}\right\}
$$

are two new bases of U.

Construction based finite field expression

- C. Carlet, K. Feng, An infinite class of balanced functions with optimal AI, good immunity to fast algebraic attacks, 2008.

Construction based finite field expression (Cont.)

Theorem 3 Let n be any integer such that $n \geqslant 2$ and α a primitive element of the field F_{2}^{n}. Let f be the Boolean function on F_{2}^{n} whose support is $\left\{0,1, \alpha, \alpha^{2}, \cdots, \alpha^{2^{n-1}-2}\right\}$. Then f has optimal algebraic immunity $\left[\frac{n}{2}\right]$.

Outline

- Preliminaries on Boolean functions
- Algebraic attacks and Algebraic immunity
- The recent constructions of Boolean functions with MAI
- The main results of our paper

Main idea

- We will use a specific order on elements of F_{2}^{n}. More precisely an element $\quad X=\left(x_{1}, \cdots, x_{n}\right)$ are associated to the integer $\sum_{i=1}^{n} x_{i} 2^{i-1}$.
- This identification allows us to compare elements in F_{2}^{n}.
- We index from Y_{0} to Y_{k} the elements in $F_{2}{ }^{n}$ of weight $\leq\lceil n / 2\rceil-1$ arranged in increasing order .

Two lemmas

Lemma 2 [A.Canteaut WCC2005]:

Let n be odd, and $f \in B_{n}$ be balanced. Then $\operatorname{AI}(f)=\lceil n / 2\rceil$ if and only if f does not have a nonzero annihilator of degree $\leq\lceil n / 2\rceil-1$.

Two lemmas

Lemma 3[M.C. Liu Chinacrypt 2008]:

Let n be even, $f \in B_{n}$, and its weight equals $\sum_{i=0}^{n / 2-1}\binom{n}{i}$. Then $A I(f)=\lceil n / 2\rceil$ if and only if f does not have a nonzero annihilator of degree
$\leq\lceil n / 2\rceil-1$

Main idea

Lemma 4: Given a monomial $x_{1}^{y_{1}} x_{2}^{y_{2}} \cdots x_{n}^{y_{n}}$ of degree d, then it is 1 on $X=\left(x_{1}, \cdots, x_{n}\right) \in F_{2}^{n}$ if and only if $\operatorname{supp}(Y) \subseteq \operatorname{supp}(X)$ which means $Y=\left(y_{1}, \cdots, y_{n}\right) \subset X$. Moreover, this function is equal to zero on the interval [$0, \mathrm{Y}$), and is equal to 1 on the interval [$\mathrm{Y}, \mathrm{Y}^{\prime}$) where Y^{\prime} is the first point in F_{2}^{n} greater than Y of weight $\leq d$

Algorithm 1

Step 1: From $i=0$ to k-1, choose element X_{i} in $\left[Y_{i}, Y_{i+1}\right)$;
Step 2: if $i=k$, choose X_{k} such that $Y_{k} \subset X_{k}$;
Step 3: Construct $f \in B_{n}$ such that $\operatorname{supp}(f)=\bigcup_{i=0}^{k}\left\{X_{i}\right\}$;
Step 4: Output f, then $\operatorname{AI}(f)=\lceil n / 2\rceil$.

- It is obvious that when n is even the constructed functions are not balanced
- So we give another algorithm for n is even so that the constructed functions are also balanced

Algorithm 2

Step 1: From $i=0$ to k-1, choose element x_{i} in $\left[Y_{i}, Y_{i+1}\right)$ and $w t\left(X_{i}\right) \leq n / 2$;
Step 2: if $i=k$, choose X_{k} such that $Y_{k} \subset X_{k}$ and $w t\left(X_{k}\right) \leq n / 2$;
Step 3: From $i=k+1$ to $2^{n-1}-1$, choose any $X_{i} \notin \bigcup_{i=0}^{i-1}\left\{X_{j}\right\}$ and $w t\left(X_{i}\right) \leq n / 2$;
Step 4: Construct $f \in B_{n}$ such that $\operatorname{supp}(f)=\bigcup_{i=0}^{2 n-1-1}\left\{X_{i}\right\}$; Step 5: Output f, then $\operatorname{AI}(f)=n / 2$.

The enumeration

Theorem 3: Let $c=\lceil n / 2\rceil-1$, then the number of n-variable Boolean functions with MAI in
Algorithm 1 is

$$
2^{n-c} \prod_{d=3}^{n} \prod_{t=\max \{1, c+3-d}^{\min \{c, n-d+1\}} 2^{(t+d-2-c)\binom{n-d}{t-1}}
$$

The enumeration

- Different from Algorithm 1, the accurate number of constructed functions in Algorithm 2 is hard to calculate.
- We just give a bound of this case during Theorem 4, and we will not introduce it here.

The algebraic degree

- Based on Theorem 5, we can modify the two algorithms so that the degree of the constructed n-variable function is $n-1$.
- Lastly, we give an example.

An example ($n=5$)

- By using Algorithm 1, we choose $\bigcup_{\ell=0}^{15}\left\{x_{i}\right\}=$ \{(00000), (10000), (01000), (11000), (00100), (10100), (11100), (00010), (10010), (11010), (11110), (00001), (10001), (11001), (11101), (00011)\}
- The Al of the constructed function is 3 , and its degree is 4 .

Conclusions

- We give a new simple method to construct Boolean functions with maximum algebraic immunity.
- However, whether the constructed functions against FAA and have good nonlinearity need to be further studied.

Thank you!

