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More formally                    map2 2:  Fnf F→

1 2 2( , , ) n
nx x F x F⋅ ⋅ ⋅ ∈ → ∈

Preliminaries on Boolean functions

Boolean functions map n binary inputs   
to a single binary output
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Preliminaries on Boolean functions

It can be represented as a polynomial  in 
the ring  

2
i ix x=

This ring is simply a set of all polynomials
with binary coefficients  in n indeterminates
with property that

2 2
2 1 1 1[ , , ]/ , ,n n nF x x x x x x< − − >
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Algebraic Normal Form

A Boolean function can be formalized
further  by  defining 

1 2

2 2

1 2 1( ) , ( , , )n

n n

uu uu
u u n n

u F u F

f x a x a x x x u u u
∈ ∈

= = = ⋅⋅⋅∑ ∑

This also can be called the algebraic normal
form (ANF) of  f
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Algebraic degree

Algebraic degree of a Boolean function is 
defined as maximum length of terms in ANF
of  f

The algebraic degree should be large 
because of  Berlekamp-Massey and Ronjom-
Helleseth attacks (stream ciphers) and 
higher differential attack (block ciphers)
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Affine and linear functions

The set of all Boolean functions in n variables 
is denoted  by nB

0 1 1 2 2 2{ | ,0 }n n n iA a a x a x a x a F i n= + + + + ∈ ≤ ≤

Boolean Functions of degree at most one are
called affine 

An affine function with            is said to be  
linear, and all linear functions  are denoted
by  

0 0a =

nL
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The Walsh Transform

The Walsh transform of Boolean functions is 
defined by

2

( )( ) ( 1)
n

f x u x

x F

f u
∧

+ ⋅

∈

= −∑

( , ) ( ) { | ( ) ( )}H Hd f g w f g x f x g x= + = ≠
The Hamming  distance between two functions:
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Nonlinearity definition

The nonlinearity of a Boolean function is the 
minimum distance from f to all affine functions
i.e.

min ( , )
n

f Hg A
N d f g

∈
=

2

1 12 max ( )
2 n

n
f

a F
N f a

∧
−

∈
= −

The nonlinearity of a Boolean function f also       
can be represented  as: 
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The nonlinearity must be high to prevent the  
system from fast correlation attacks (stream 
ciphers) and linear attacks( block ciphers)
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The application
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The application 



2009-9-2713

Before the  introduction of algebraic attacks, 
balancedness, high algebraic degree and high
nonlinearity were  considered as roughly 
sufficient for the filter model of PRG
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Algebraic attacks principle( Shannon )

Find equations with the key bits as unknowns

Solve the system of these equations
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For stream ciphers (combining or filtering   
Boolean functions):

0 1( , , )Ns s −- denote by                     the initial state of the 
linear part of the PRG

'L
'

0 1 1( ( , , , ))i
i Ns f L L s s s −=

- there exists a linear automorphism L and
a linear mapping     :
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For stream ciphers we can have many 
equations, so we can gain an over-defined
system
One can linearize the system (or use 
Grőbner bases) to solve it
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Problem of algebraic attacks

However the number of  unknowns is too 
large
The common ways to solve this system are
mostly impossible
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Algebraic attacks

Courtois-Meier 2003:  if one can find
and       of low degree such that          , then
the equation                                               
implies the following low degree equation:

0g ≠
h fg h=

'
0 1 1( ( , , , ))i

i Ns f L L s s s −=

' '
0 1 0 1( ( , , )) ( ( , , ))i i

i N Ns g L L s s h L L s s− −=
Then the degree of the original nonlinear    
system and  the unknowns in the related 
linear system decrease
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Meier-Pasalic-C.C. EUROCRYPY  2004 :
A necessary and sufficient condition for 
existence             and        of low degree 
such that          :
there exist           of low degree such that  

or 

0g ≠ h
fg h=

0g ≠
0f g⋅ = (1 ) 0f g+ ⋅ =

Algebraic immunity
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Algebraic immunity

Given         , a nonzero function       is called 
an annihilator of     if . By we 
mean the set of annihilators of    

nf B∈ g
f 0f g⋅ = ( )AN f

f

The algebraic immunity of      , denoted by 
, where          is the minimum 

degree nonzero function  such that              
either  

f

( ) deg( )AI f g= ng B∈

0f g⋅ =
(1 ) 0f g+ ⋅ =
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It is easy to prove that and

If the AI of a Boolean function in n-variable 
equals          , we call it a maximum algebraic 
immunity (MAI) function.

( ) deg( )AI f f≤

( ) / 2AI f n≤ ⎡ ⎤⎢ ⎥

In practical situation,          should be greater
than or equal to 7
So we need          

( )AI f

13n ≥

/ 2n

Algebraic immunity

⎡ ⎤⎢ ⎥
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Lobanov (IACR e-print archive) given a tight
bound between nonlinearity and algebraic 
immunity: ( ) 2

0

1
2

AI f

f
i

n
N

i

−

=

−⎛ ⎞
≥ ⎜ ⎟

⎝ ⎠
∑

Algebraic immunity and nonlinearity

This tight bound does not guarantee that an
maximum algebraic immunity implies a 
good enough nonlinearity   
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Design criteria

High algebraic degree
High nonlinearity
Resiliency ( for certain applications)
High algebraic immunity 
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Three Recent constructions 

Construction based support-inclusion 

Construction based basis-exchange technique

Construction based finite field expression
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Construction based support-inclusion

Dalai, Basic theory in construction of MAI 
functions, 2005
Lemma 1. Let f, f1, f2 in Bn , and
(1) f1, f2 both have no nonzero annihilators 
degree less than      ;
(2)                                                  Then   

2
n⎡ ⎤
⎢ ⎥⎢ ⎥

1 2( ) ( ), ( 1) ( )Supp f Supp f Supp f Supp f⊇ + ⊇

( )
2
nAI f ⎡ ⎤= ⎢ ⎥⎢ ⎥
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Construction based support-inclusion 
(Cont.)

Theorem 1. Let f in Bn , if n is odd, let

0, ( )
2

( )
1, ( )

2

nwt x
f x

nwt x

⎧ ⎡ ⎤<⎪ ⎢ ⎥⎪ ⎢ ⎥= ⎨
⎡ ⎤⎪ ≥ ⎢ ⎥⎪ ⎢ ⎥⎩

( )
2
nAI f ⎡ ⎤= ⎢ ⎥⎢ ⎥

if n is even, let
0, ( )

2

( ) 1, ( )
2

{0,1}, ( )
2

nwt x

nf x wt x

nb wt x

⎧ ⎡ ⎤<⎪ ⎢ ⎥⎢ ⎥⎪
⎪ ⎡ ⎤= >⎨ ⎢ ⎥⎢ ⎥⎪
⎪ ⎡ ⎤∈ =⎪ ⎢ ⎥⎢ ⎥⎩Then
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Construction based basis-exchange 
technique

Longjiang Qu, Na Li, et al., On MAI functions: 
construction and a lower bound of the count, 
2005.
Idea of basis-exchange technique:
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Construction based basis-exchange 
technique (Cont.)

Lemma 2 Let U be an m-dimension vector space,
and                       be two bases of U, 

then for any integer               , for any k integers  
1 ,   there exist  k  integers   

such that 

and

are two new bases of U.

1 2, , , mα α α 1 2, , , mβ β β
1 k m≤ ≤

1 21 ki i i m≤ < < < ≤

1 21 kj j j m≤ < < < ≤

1 11 2{ , , , } { , , { , , }\}
k km j j i iα α α β β α α∪

1 11 2{ , , , } { , , { , , }\}
k km i i j jβ β β α α β β∪
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Construction based finite field 
expression

C. Carlet, K. Feng, An infinite class of 
balanced functions with optimal AI, good 
immunity to fast algebraic attacks, 2008.
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Construction based finite field 
expression (Cont.)

Theorem 3  Let n be any integer such that 
n≥ 2 and      a primitive element of the 
field     . Let f be the Boolean function on       
whose support is                           . Then  f
has optimal  algebraic  immunity     .

α
2
nF 2

nF
12 2 2{0,1, , , , }

n

α α α
− −

2
n⎡ ⎤
⎢ ⎥⎢ ⎥



2009-9-2733

Outline

Preliminaries on Boolean functions
Algebraic attacks and Algebraic immunity
The recent constructions of Boolean
functions with MAI
The main results of our paper



2009-9-2734

Main idea

We will use a specific order on elements of
. More precisely an element  

are associated to the integer          .
2
nF 1( , , )nX x x=

1

1
2

n
i

i
i

x −

=
∑

We index from     to      the elements in   
of  weight               arranged in increasing 
order .

0Y kY 2
nF

/ 2 1n≤ −⎡ ⎤⎢ ⎥

2
nF

This identification allows us to compare 
elements in     .
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Two lemmas

Lemma 2 [ A.Canteaut WCC2005]: 

Let n be odd, and         be balanced. Then 
if and only if f does not have a

nonzero annihilator of  degree                 .

nf B∈

( ) / 2AI f n= ⎡ ⎤⎢ ⎥

/ 2 1n≤ −⎡ ⎤⎢ ⎥
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Two lemmas

Lemma 3[ M.C. Liu Chinacrypt 2008]:

Let n be even,          , and its weight equals
. Then                   if and only if f does

not have a nonzero annihilator of  degree 

nf B∈
/2 1

0

n

i

n
i

−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ( ) / 2AI f n= ⎡ ⎤⎢ ⎥

/ 2 1n≤ −⎡ ⎤⎢ ⎥
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Main idea 

Lemma  4: Given a monomial                 of 
degree d, then it is 1 on                         if and
only if                         which means 
.  Moreover, this function is equal to zero on the
interval         , and is equal to 1 on the interval 

where      is the first point in      greater 
than      of weight 

1 2
1 2

nyy y
nx x x

1 2( , , ) n
nX x x F= ∈

1( , , )nY y y X= ⊂supp( ) supp( )Y X⊆

[0,  Y)
'[Y,  Y ) 'Y 2

nF
Y d≤
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Algorithm 1

Step 1: From i=0 to k-1, choose element       in
;

iX

Step 2: if  i=k, choose       such that           ;kX k kY X⊂

Step 3: Construct           such that                      ;nf B∈ 0
supp( ) { }k

ii
f X

=
=∪

Step 4: Output f, then                 .( ) / 2AI f n= ⎡ ⎤⎢ ⎥

1[ ,  )i iY Y +



2009-9-2739

It is obvious that when  n is even the 
constructed functions are not balanced
So we give another algorithm for n is 
even so that the constructed functions 
are also balanced
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Algorithm 2

Step 1: From i=0 to k-1, choose element       in
and                    ;

iX

( ) / 2iwt X n≤

Step 2: if i=k, choose       such that            and
;

kX k kY X⊂

( ) / 2kwt X n≤

Step 3:  From i=k+1 to           , choose  any 
and                    ;

12 1n− −
1

0

{ }
i

i j
j

X X
−

=

∉∪ ( ) / 2iwt X n≤

Step 4: Construct         such that                        ;nf B∈
12 1

0
supp( ) { }

n

ii
f X

=
=∪

− −

Step 5: Output f, then .( ) / 2AI f n=

1[ ,  )i iY Y +
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The enumeration

Theorem 3: Let                , then the number of
n-variable Boolean functions with MAI in 
Algorithm 1 is 

/ 2 1c n= −⎡ ⎤⎢ ⎥

( )min{ , 1} ( 2 ) 1

3 max{1, 3

2 2
c n d n dn t d c tn c

d t c d

− + −+ − − −−

= = + −
∏ ∏
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The enumeration

Different from Algorithm 1, the accurate 
number of constructed functions in Algorithm
2 is hard to calculate.

We just give a bound of this case during 
Theorem 4, and we will not introduce it here.
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The algebraic degree

Based on Theorem 5, we can modify the two
algorithms so that the degree of the 
constructed n-variable function is n-1.
Lastly, we give an example.



2009-9-2744

An example (n=5)

By using Algorithm 1, we choose           = 
{(00000), (10000), (01000), (11000), (00100),
(10100), (11100), (00010), (10010), (11010),
(11110), (00001), (10001), (11001), (11101),
(00011)}

15

0

{ }i
i

X
=
∪

The AI of the constructed function is 3, and   
its degree is 4.
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Conclusions

We give a new simple  method to construct 
Boolean functions with maximum algebraic 
immunity.
However, whether the constructed functions 
against FAA and have good nonlinearity need 
to be further studied.
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Thank you!
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