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1. Introduction

Recently, Gupta [3] introduced g-Durrmeyer type operators D,q and D, 4. These operators are defined respectively as
follows:

Definition 1. Let f € C[0,1], 0 < g < 1 and 0 < x < 1, g-Durrmeyer operators D, 4(f; x) are defined by

n 1
Duglf:0 = In-+ 1> *pulg:) | F(OPulasatidst, 1)
k=0
where p,,(q;X) = {HX"HL’(’)‘" (1 — g°x) are g-Bernstein basis functions.

Definition 2. Let f € C[0,1], 0 < g < 1 and 0 < x < 1, the operator D, 4(f; x) is defined by
1 (o] ]
Duq(f;x) = qzkzopmk(q;xm‘k /0 f(Op(q: qt)dgt, (2)

where p_,(q;x) = #ﬁkwﬂloﬂ - q°X).

When q =1, D,4(f;x) reduces to the well-known Durrmeyer operators D, (f;x) ( cf. [1]),
n -1
Duffix) = (n+1) > pu®) | F(0pult)
k=0

We recall some important polynomials and operator which are closely related to the operators D4 and D, 4. Let B, 4(f; X),
(n=1, 2,...) be the g-Bernstein polynomials of a function f € C[0, 1]. These polynomials have been studied by a lot of authors,
see [2,4,7-14]. In the case 0 < q < 1, a sequence {B,,(f;x)} generates a positive linear operator B, 4 on C[0, 1]. For a function
f € ([0, 1], the operator B, is defined by
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B o) {zm— @ pslasx) if xe(0.1), .

f(1) if x=1.

Operator (3) is called the limit g-Bernstein operator, whose nature is similar to that of operator D, 4. This operator was intro-
duced for the first time in [4], and studied in detail in [6].
Forf=¢, j=0,1,..., operators D, and D, 4 can be written with the help of the g-Beta function (cf. [5]) as follows:

an tj chkpnk q; X
where

an:[n+1]{n}8q(i+k+l,n—k+l)

k

and

:x q tj Z Cﬁokpock q;X

where
Cook :L-LBU+I<+ 1,00).
1-4 (1-q),
Using these formulae we obtain by plain calculations:
Decg(1;%) =1, Dyg(t;%) =14q(x 1), 4)
Dag(t5%) = (1= 9*(1+ ) +q(1 +2q)(1 = @)x+ ¢*(1 - Q)x + ¢'%, (5)

for all x € [0, 1].
2. Results

For approximation properties of the operators D, 4(f;x) and D 4(f; x) Gupta [3] presented the following results.

Theorem A ([3, Theorem 3]). Let 0 < q < 1, then for each f € C[0, 1] the sequence {Dy4(f;x)} converges to D (f; x) uniformly
on [0, 1]. Furthermore,

IDng(f) = Do g (Il < Cqar(f, q"). (6)

Theorem B ([3, Theorem 4]). Let 0 < q < 1 be fixed and let f € C[0,1]. Then D, 4(f;x) = f(x) for all x € [0, 1] if and only if f is
linear.

Theorem C ([3, Theorem 5]). For any f € C[0,1], {D4(f;x)} converges to f uniformly on [0, 1] as q — 1—.

These Theorems are important for the research of g-Durrmeyer type operators. However, there are some inaccuracies in
Theorems B and C. In fact, from (4), we may observe that the operator D, 4(f;x) does not reproduce the linear functions.
Hence, the class of continuous functions satisfying the approximation process lim;,_...Dnq(f;X) = f(x), for x € [0,1] is not
the one given in Theorem B. Then, what class of continuous functions will exactly satisfy approximation process
limy,_...Dngq(f;X) = f(x) for x € [0,1]? Undoubtedly, this is an important problem. In this note we will solve this problem by
giving the following theorem and corollary.

Theorem 1. Let 0 < g < 1 be fixed and f € C[0, 1], then Dy 4(f;x) = f(x) for all x € [0, 1] if and only if f is constant.
To establish Theorem 1 we need to prove the following Lemma 1.

Lemma 1. Let L be a positive linear operator on C[0, 1] which reproduces constant functions. If L(t;x) > x for all x € [0,1), then
L(f) = f if and only if f is a constant function.

Proof. Since L reproduces constant functions, it is sufficient to prove that fis constant if L(f) = f. Let g(x) = f(x) — f(1). Then
g(1) =0 and Lg = g. We will show that g = 0. Assume that g0. Without loss of generalization we may assume that there
exits an xo € [0,1) such that g(xo) > 0. Then, it must exist a negative number o, such that > a(xo — 1) — g(x0). Now let
h(x) = o(x — 1) — g(x). h(x) is continuous on [0,1] and h(1) > h(xo). Let m be the minimum of h(x) on [0,1], then there exists

a ¢ €0,1) such that h(&) = o(& — 1) — g(¢) = m. Thus for all x € [0, 1]

oc<x—%> —gx)=>m :d<é—%> -8,
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that is

&) <a(x—<) +8(&). (7)
Since L is a positive linear operator on ([0, 1], it follows from (5) that

L(g(x); &) < aL((x = &); €) + 8(&) = a(L(x; &) — &) +&(9). 8)

Note that L(g(x); ¢) = g(&) and L(x; ¢) > ¢, inequality (8) derives o > 0, which leads to a contradiction. Hence g = 0. Lemma 1
is proved. O

Remark 1. The condition “If L(t;x) > x for all x € [0,1)” in Lemma 1 can be replaced by the condition “If L(t;x) > x for all
x € (0,1]”. The proof is similar, we omit the details here.

Remark 2. Lemma 1 supplies a sufficient condition for constant function to be the only fixed points of a positive linear oper-
ator on CJ[0, 1]. Earlier, a result of similar type has been presented by Wang in [13, Theorem 9]. He proved that if a positive
linear operator L on C[0, 1] leaves invariant linear functions and satisfies L(t?;x) > x? for x € (0, 1), then Lf = f if and only if fis
a linear function.

From (4) we have
Dyg(t;x) =14+q(x—-1)>%x, x€l0,1).

Theorem 1 follows by this inequality and Lemma 1.
From Theorems 1 and A we obtain

Corollary 1. For fixed q € (0,1) and f € C[0,1], the sequence {D4(f;x)} does not approximate f(x) unless f is constant function.
This is completely in contrast to the classical Durremeyer operators, by which {D,(f;x)} approximates f(x) for any f € C[0, 1].

Remark 3. Since the positive linear operator D 4(f; x) does not reproduce linear functions, the proof of Theorem C in article
[3] needs to be corrected. It should add the condition D 4(t;X) =1 + q(x — 1) — x in the proof, and then use Korovkin the-
orem to derive the result.
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