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Multipartite Entanglement in Heisenberg Model∗
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Abstract The effects of anisotropy and magnetic field on multipartite entanglement of ground state in Heisenberg XY

model are investigated. The multipartite entanglement increases as a function of the inverse strength of the external field

when the degree of anisotropy is finite. There are two peaks when the degree of anisotropy is γ = ±1. When the degree

of anisotropy increases further, the multipartite entanglement will decrease and tend to a constant. The threshold of the

inverse strength of the external field for generating multipartite entanglement generally decreases with the increasing of

qubits.
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1 Introduction

The entanglement is an important resource in the fields

of quantum computation and quantum information.[1−3]

Due to its potential applications, the pairwise entangle-

ment of anisotropic Heisenberg model has been exten-

sively studied in recent years.[4,5] The entanglement of

thermal states was introduced. Its properties, includ-

ing threshold temperature, magnetic field dependence and

anisotropic effects, were studied. The entanglement prop-

erties of ground state are very important. Some proper-

ties of the ground state were studied.[6] The pairwise en-

tanglement in one-dimensional infinite-lattice anisotropic

XY model was introduced.[7] The bipartite entanglement

is well understood, while the multipartite entanglement

is still under intensive research. To understand the mul-

tipartite entanglement, the distributed entanglement has

been presented.[8] The residual entanglement is general-

ized to the multipartite entanglement.[9] The multipartite

entanglement in Ising model is also studied.[10]

In this paper, the multipartite entanglement of ground

state in a Heisenberg XY model with an external mag-

netic field is investigated. In Sec. 2, the basic measures

of the multipartite entanglement are presented. In Sec. 3,

the multipartite entanglement in Heisenberg XY model is

studied when an external magnetic field is presented. A

discussion concludes the paper.

2 Measures of Multipartite Entanglement

The anisotropic Heisenberg XY model of a one-

dimensional lattice with N sites in a transverse field can

be described by the Hamiltonian[10] of

H = −
N

∑

i=1

{λ

2
[(1+γ)σx

i σ
x
i+1 +(1−γ)σy

i σ
y
i+1]+σz

i

}

, (1)

where γ is the degree of anisotropy, λ is the inverse

strength of the external magnetic field, σβ
i (β = x, y, z)

are the Pauli matrices at qubit of i. The cyclic boundary

conditions of σβ
N+1 = σβ

1 (β = x, y, z) is assumed.

The quantity tangle τ [8] is introduced to measure the

tripartite entanglement of a pure state |ψ〉. For a tripar-

tite two-level system, the residual entanglement is referred

to as

τABC = C2
A(BC) − C2

AB − C2
AC , (2)

where CAB and CAC are the concurrence of the original

pure state ρABC with tracing over the qubits C and B, re-

spectively, CA(BC) is the concurrence of ρA(BC) with qubits

B and C regarded as a single object. It is shown that

the residual entanglement of a three-qubit state |ψ〉 =
∑

i,j,k aijk|ijk〉 can be obtained,[8]

τABC = 2
∣

∣

∣

∑

aijkai′j′manpk′an′p′k′εii′εjj′εkk′εmm′εnn′εpp′

∣

∣

∣
, (3)

where the sum is taken over all the indices, and εαβ =

−εβα = δαβ.

The residual entanglement can be generalized to the

multipartite entanglement.[9] The residual entanglement

τABCD···N of N -particle system ρABCD···N is defined as

τABC···N = min
{

τα|α = 1, 2, 3, . . . ,

[n/2]
∑

i=1

Ci
N

}

, (4)
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where τ corresponds to all possible foci, Ci
N = N/i(N − i)

and [N/2] is N/2 when N is even, [N/2] is (N−1)/2 when

N is odd. When the focus is A, the residual entanglement

is

τA(BC···N) = C2
A(BC···N) − C2

AB − C2
AC − · · · − C2

AN . (5)

If the focus is changed, one will obtain the other N − 1

equations. It is worth while noting that AB, ABC and

so on can be considered as foci. So there are
∑[N/2]

i=1 Ci
N

focus. The multipartite entanglement of the well-known

Greenberger–Horne–Zeilinger (GHZ) state

(1/
√

2)(|00 · · · 0〉 + |11 · · · 1〉)
and W state

(1/
√
N)(|0 · · · 01〉 + |0 · · · 10〉 + |1 · · · 00〉)

correspond to 1 and 0 respectively.

3 Multipartite Entanglement

The generalized residual entanglement can be used to

calculate the entanglement of an anisotropic Heisenberg

XY model when there is an external magnetic field.

3.1 Three and Four Qubits

The ground state of the anisotropic Heisenberg XY

model can be obtained by

|g〉 = Nc

[(

2 − λ+
√

λ2 − 4λ+ 4 + 3λ2γ2
)

|000〉
+ γλ|110〉 + γλ|011〉 + γλ|101〉

]

, (6)

where Nc is a normalization constant. The multipartite

entanglement τ of ground state in three qubits can be eas-

ily obtained by Eqs. (3) and (4). It is plotted as a function

of the magnetic field λ and the degree of anisotropy γ in

Fig. 1.

Fig. 1 The multipartite entanglement of ground state in
three qubits is plotted as functions of the magnetic fields
λ and degree of anisotropy γ.

It is shown that the multipartite entanglement of three

qubits is symmetric about γ = 0. There is no multipar-

tite entanglement of ground state in the isotropy Heisen-

berg XY model (γ = 0). It is found that there are two

peaks located at γ = ±1. The peak value will reach

1.0 with the increase of λ. The ground state can be

described by |g〉 = (1/2)(|000〉 + |110〉 + |011〉 + |101〉).
When |γ| < 1, the entanglement increases as a function

of |γ|. After τ reaches the peak at |γ| = 1, the entangle-

ment decreases and finally saturates to a constant value of

about 0.77. The eigenvalues and eigenstates of isotropic

Heisenberg XY model in an external magnetic field can

be exactly solved by symmetric[11] or the Jordan–Wigner

transformation.[12] For the eigenstates of three qubits,

there is no entanglement in two states of |000〉 and |111〉.
The other six states are just like W states. It means that

all the states have no multipartite entanglement in the

three-qubit isotropic Heisenberg XY model.

Fig. 2 The multipartite entanglement of ground state in
four qubits is plotted as functions of the magnetic fields
λ and degree of anisotropy γ.

The multipartite entanglement τ of the ground state

in four qubits of an anisotropic Heisenberg model is plot-

ted as a function of the magnetic field λ and the degree of

anisotropy γ in Fig. 2. Similar result as that in Fig. 1 is

obtained. The saturation value of τ is about 0.414 when

|γ| is very large. When γ = 0 and λ > 2.414, the mul-

tipartite entanglement still exists with a value of about

0.414. For four qubits isotropic XY model, it can also

be exactly solved by symmetric[11] or the Jordan–Wigner

transformation.[12] The eigenvalues of the ground states

can be given by

E0 = −4 , E1 = −2λ− 2 , E2 = −2
√

2λ , (7)

and the corresponding eigenstates are

|ψ0〉 = |0000〉 ,

|ψ1〉 =
1

2
(|1110〉 + |1101〉 + |1011〉 + |0111〉) ,

|ψ2〉 =

√
2

4
(|0011〉 + |0110〉 + |1100〉 + |1001〉)

+
1

2
(|0101〉 + |1010〉) . (8)
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When the inverse strength of the external field λ is small,

the ground state is |ψ0〉. There is no entanglement. When

λ increases, the ground state changes to |ψ1〉. It is just

the W state. There is no multipartite entanglement either.

However, if λ increases further, the ground state changes

to |ψ2〉. The multipartite entanglement exists.

3.2 General Case of N Qubits

The Hilbert space of N qubits in a one-dimensional

Heisenberg chain is 2N -dimensional and the correspond-

ing Hamiltonian HN has 2N eigenvectors and eigenvalues.

When λ approaches zero, the ground state of the

anisotropic Heisenberg XY model in a one-dimensional

lattice withN sites in a transverse field becomes a product

of spins pointing in the z-direction,

|g〉 = |00 · · · 00〉 . (9)

When γ = 1 the model will be reduced to Ising model.

When λ approaches infinity, the ground state becomes a

GHZ state and is given by[13]

|g〉 = Nc

∑

{i,j,...}even

|{i, j, . . .}〉 , (10)

where Nc is a normalization constant, {i, j, . . .}even means

that the even state is selected for summing up all the foci.

For general case of N qubits, the multipartite en-

tanglement τ is quite similar to that shown in Figs. 1

and 2. There are also two peaks located at the degree

of anisotropy equal to γ = ±1. When the degree of

anisotropy increases further, the multipartite entangle-

ment will saturate to a constant value. Although the three

and four qubits are simple, they share many features of

the general case of a chain with arbitrary number of N

qubits.

The limiting cases of γ = 0 and γ → ∞ need to be

investigated when N is very large. When the degree of

anisotropy γ = 0 and the inverse strength of the external

field λ→ ∞, the Hamiltonian HN has the following form

H1 = −CI

N
∑

i=1

[

σx
i σ

x
i+1 + σy

i σ
y
i+1

]

. (11)

When the degree of anisotropy γ → ∞, the Hamiltonian

HN has the following form,

H2 = −CI

N
∑

i=1

[

σx
i σ

x
i+1 − σy

i σ
y
i+1

]

. (12)

The ground state is degenerate. The magnetic field

can eliminate the degeneracy and the perturbation theory

can be used. When N is even, it is easy to find

[H1, H2] = 0 . (13)

The result cannot be extended to odd qubits. So it is not

strange that the multipartite entanglement for the cases

of even and odd number of qubits are different.

For an isotropic Heisenberg model with γ = 0, the mul-

tipartite entanglement exists for finite values of λ when

the number of qubits increases. The threshold of λ that

the multipartite entanglement exists is shown in Table 1

when the number of qubits is varied. Small value of λ can

induce multipartite entanglement if the number of qubits

increases. When the inverse strength of the external field

λ→ ∞, the multipartite entanglement will be stable. The

stable value is shown in Table 2. Meanwhile, the sta-

ble value when γ → ∞ is also shown. It is found that

the stable values are different for odd and even qubits re-

spectively when the number of qubits increases. For even

number of qubits, the value of γ = 0, λ → ∞ equals the

value of γ → ∞. While for odd qubits, these values are

different.

Table 1 The threshold of the inverse strength of the external
field when there exists multipartite entanglement of the ground
state for N qubits when γ = 0.

N 3 4 5 6 7 8

λ ∞ 2.42 1.62 1.37 1.25 1.18

Table 2 The multipartite entanglement of ground state of N

qubits when γ → ∞ and γ = 0, λ → ∞.

N 3 5 7 4 6 8

γ → ∞ 0.7698 0.7740 0.7725 0.414 0.5463 0.5272

γ = 0, λ → ∞ 0 0.5683 0.6245 0.414 0.5463 0.5272

4 Discussion

In the paper, the multipartite entanglement of the

ground state in an anisotropic Heisenberg model of three

and four qubits is investigated. The effects of anisotropy

and magnetic field are discussed. Some properties can be

extended to the general case of N qubits. The multipar-

tite entanglement is an increasing function of the inverse

strength of the external field when the degree of anisotropy

is not equal to zero. It is found that there are two peaks lo-

cated at γ = ±1. When γ = 1, the model reduces to Ising

model. When the degree of anisotropy increases further,

the multipartite entanglement will saturate to a constant

value. It is found that the constant value for the multi-

partite entanglement generally decreases with the increase

of qubits. When the inverse strength of the external field

approaches infinity, it is found that the value of γ = 0,

λ → ∞ equals the value of γ → ∞ for even number of

qubits. For odd qubits, these values are different.
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