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Navigation with wireless sensor networks (WSNs) is the key to provide an effective path for the mobile node. Without any location
information, the path planning algorithm generates a big challenge. Many algorithms provided efficient paths based on tracking
sensor nodes which forms a competitive method. However, most previous works have overlooked the distance cost of the path.
In this paper, the problem is how to obtain a path with minimum distance cost and effectively organize the network to ensure
the availability of this path. We first present a distributed algorithm to construct a path planning infrastructure by uniting the
neighbors’ information of each sensor node into an improved connected dominating set. Then, a path planning algorithm is
proposed which could produce a path with its length at most c times the shortest Euclidean length from initial position to
destination. We prove that the distributed algorithm has low time and message complexity and c is no more than a constant.
Under different deployed environments, extensive simulations evaluate the effectiveness of our work. The results show that factor
c is within the upper bound proved in this paper and our distributed algorithm achieves a smaller infrastructure size.

1. Introduction

Recently, as a large number of sensor nodes are deployed
to monitor the environment and detect critical events [1–
4], navigation has received wide attention in applications
of WSNs. Usually, a mobile node is equipped with a device
that can communicate with sensor nodes. After a WSN has
been deployed in the monitoring area, relevant sensor nodes
will send in situ data to the control center when they detect
dangerous events happening in the area. Then, a part of
sensor nodes would guide several mobile nodes which equip
specific instruments to the destination and let them deal
with the emergency event, such as navigating fire-fighting
equipments automatically to exact areas to extinguish fire.
Hence, how to design an effective path for the mobile
node is a fundamental problem. The so-called navigation
refers to the art of getting from one place to another in an
efficient manner. Generally speaking, it could be described
by three questions: “Where am I?,” “Where am I going?” and
“How should I get there?” [5], which need the localization
methods, path planning algorithms and the moving control

technology, respectively. In WSNs, the navigation of mobile
node needs to communicate with sensor nodes to get the
target data and correct its direction. While sensor nodes
have finite energy and limited communication range and
construct the network topology by self-organization, an
efficient data routing infrastructure is necessary for updating
rescue instructions periodically so as to guide the mobile
node to its destination, for example, virtual backbone [6] and
collection tree [7].

Up to now, a part of proposed navigation algorithms in
WSNs rely on GPS and other modules to obtain locations
of mobile nodes in real time [8, 9], which require a high
hardware cost and energy consumption. In some particular
environments such as mines, underwater environment, and
underground tunnels, location information may not be able
to achieve, these scenarios would limit the application of
existing navigation algorithms using localization technique.
To solve these drawbacks for emergency escape, some
researchers [10] proposed artificial potential fields in which
sensor nodes act as signposts for the mobile node to follow.
Lately, some novel navigation algorithms for emergency
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rescue in WSNs have been presented [11, 12]. As most
of the above algorithms focus on providing safe paths in
dangerous environment, they have overlooked the distance
cost of paths. In [13], an idea of navigation overhead is
denoted as a ratio between the Euclidean length of moving
path and the shortest Euclidean length from initial position
to destination which indicates the distance cost of algorithm.

In this paper, we characterize the navigation problem
as a path planning problem. Firstly, based on the research
of connected dominating set, we propose an improved
distributed algorithm to construct a preliminary infrastruc-
ture for data routing. Then we construct a path planning
infrastructure by combining the built infrastructure with
neighbors’ information of each node. At last, we introduce
a path planning algorithm by tracking sensor nodes in the
network based on our path planning infrastructure. We show
that our infrastructure not only can serve as a backbone
to send in suit data, but also can update and modify the
path planning algorithm to ensure its availability. We also
prove that the path planning algorithm provides a path
which guarantees a constant distance cost compared with
the shortest one from initial position to destination in the
Euclidean plane.

The remainder of this paper is organized as follows.
Section 2 describes the related work. Section 3 introduces
some useful definitions and constructs the path planning
infrastructure in the network. Section 4 proposes an effective
path planning algorithm and analyses the performances of
the proposed algorithms. Section 5 shows simulation results.
Section 6 concludes this paper.

2. Related Work

A number of solutions have been proposed to solve the navi-
gation problem in WSNs. In [8], an intelligent control archi-
tecture for mobile node has been proposed with environment
sensing model. The architecture used clustering strategy by
applying shared memory in the network and created control
with a set of ultrasonic GPS modules. By using a triangular
method, the algorithm provided the global position of
mobile node in the environment. Therefore, the algorithm
could guide the mobile node moving to the target effectively
with a high precision, but it had a high cost and was difficult
to implement in the environment which cannot obtain
the location information of sensor nodes. Without using
triangular localization technique, a navigation strategy based
on planning reliable visual landmarks has been proposed
in [9]. The method modeled landmarks within a directed
graph and used the Markov decision process to compute the
navigation path. The disadvantage of this strategy was that
it needed to provide geographic information of surrounding
environment beforehand and equip the mobile node with
expensive detectors. To localize the mobile node quickly, it
also needed to plan extra artificial visual landmarks in the
environment. In [14], a protocol utilized the sensor network
infrastructure for navigation has been proposed. Without the
location information of network, the protocol constructed a
road map system to provide navigating routes of the mobile

node which consist of a sequence of sensor nodes to avoid
the dangerous area. The mobile node tracked the target
sensor node by measuring the strength and direction of
wireless signals. When the dangerous areas have changed,
the algorithm updated the navigating routes to ensure the
safety of the mobile node. Without using any localization
mechanism or requiring location information, the study in
[10] also presented a distributed algorithm for dangerous
area avoidance. During the motion of the mobile node,
the algorithm combined the artificial potential field with
the destination information to navigate the mobile node
in real time. The dangerous area seemed to generate a
repulsive potential which would push the mobile node away
while the destination generated an attractive potential which
would pull the mobile node towards the destination. Each
sensor node calculated its potential value and tried to find
a navigation path of the least total potential value to make
mobile node bypass dangerous area. But the algorithm was
prone to produce a local pole which would make the mobile
node unable to reach the target. In [15], the algorithm set
each sensor node with a weight based on the hop distance to
the nearest safe region. Sensors were assigned smaller weight
if they were closer to the safe exit. Otherwise, sensors were
assigned greater weight. The mobile node chose the sensor
node with the smallest weight in its communication range
as its direction of movement to avoid the dangerous area.
In [11], a novel distributed navigation algorithm has been
proposed for individuals to escape from critical event region
in WSNs. With no goal or exit as guidance, the navigation
algorithm computed the convex hull of the event region by
topological methods to make individuals get out of the event
region. Because congestion may be caused by the individuals
rushing for the safe exits, the study in [12] proposed
an efficient navigation strategy by taking both pedestrian
congestion and rescue force flexibility into account. The
individuals navigation is treated as a network flows problem
in the graph which is modeled by the emergency regions.
In [13], a navigation algorithm using the metric calculated
from neighbor’s hop count has been proposed in WSNs. This
algorithm did not require predefined maps or GPS modules.
By interacting with neighboring sensor nodes, the mobile
node moved towards the target where the hop count becomes
smaller and finally reached the destination by periodically
measuring the value. But the mobile node has not considered
selecting a proper sensor node from its neighbors as a local
target which would decrease the deviation between current
direction and optimal moving direction and there was no
theoretic analysis for the distance cost. In [16], a novel
method which relied on the heat diffusion equation has
been proposed to finish the navigation process conveniently.
The method guided the mobile node by establishing a high
density of the information field.

In summary, although using a localization technique
had more precision, but the algorithms without requiring
locations could apply into more scenarios. And most of
them modeled a WSN as a graph and let a planning path
in the environment correspond to a directed vertex path
in the graph. While all of the above algorithms adopted
existing protocols for data routing, they have overlooked that
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an efficient routing infrastructure may not only send in suit
data quickly, but also update and modify the path planning
algorithm to achieve a guaranteed distance cost.

3. Network Model

In WSNs, we assume that sensor nodes are randomly
deployed in the Euclidean plane. Each sensor node u is
assigned a global unique identifier which denoted as idu.
For simplicity, let all sensor nodes have the same commu-
nication and sensing ranges which are referred to RC and
rs, respectively. The maximum communication range Rmax

can be obtained by adjusting the transmitting power. We
use an unweighted graph G � �V ,E� to model the WSN.
The vertex set V represents sensor nodes and the edge set
E represents communication links if any two vertices u and v
satisfy d�u, v� � Rmax, where d�u, v� is the Euclidean length
between u and v. Let n denote the number of vertices in V.
Without any confusion, we assume that the terminologies of
vertex and node are interchangeable. Furthermore, we can
use a UDG to abstract the original sensor network by scaling
each edge length with Rmax. That is, for any two vertices u
and v in UDG, an edge exists between u and v if the distance
d�u, v� � 1. In order to make a WSN monitor the whole area
entirely, we also assume that there are sensor nodes as many
as possible which would build a quite dense network.

In order to construct an efficient path planning infras-
tructure for routing data and providing an available path, we
introduce some useful definitions and properties.

Definition 1. Given a graph G and a subset VC � V , for any
vertex v � V � VC , if there is at least one adjacent vertex in
VC , then VC is referred to a dominating set (DS). If the vertex
induced graph G�VC� is connected, then VC is a connected
dominating set (CDS).

A CDS has been recommended to serve as a virtual
backbone for WSNs to dramatically reduce routing overhead.
In this paper, we focus on a special CDS proposed by Du
et al. in [19]. Because not only the CDS can provide a
guaranteed routing overhead for any pair of nodes which
will be shown in Lemma 3, but also we can implement it
to build an effective path planning infrastructure by uniting
neighbors’ information of each sensor node into CDS.

Definition 2. Given a graph G and a subgraph C � G, for
two distinct vertices u and v in V(G), let h(u,v) and hC(u,v)
denote the hop number of the shortest vertex path between
this vertex pair through G and C, respectively.

Lemma 3 (see [19]). Let G be a connected graph and C a
dominating set of G. Then, for a constant β � 5 and any pair
of distinct vertices u and v, hC�u, v� � 1 � β � �h�u, v� � 1�
if and only if for any pair of distinct vertices u and v with
h�u, v� � 2,hC�u, v� � 1 � β.

Clearly, for any two adjacent vertices u and v in UDG,
there is d�u, v� � h�u, v� for h�u, v� � 1. Furthermore, by
Lemma 3, if for any pair of vertices u and v with h�u, v� � 2,

hC�u, v� � β � 1. Then, for any pair of distinct vertices u and
v, we have hC�u, v� � β � h�u, v�, where β � 5 [19].

Although in [20], a better performance of β was
proposed, but it did not give any sufficient and necessary
condition. And it needed a centralized computation through
the sequence of a shortest vertex path between two corre-
sponding distinct vertices in the network. Here, we improve
the limitation of h�u, v� � 2 to obtain a simpler sufficient and
necessary condition which could be implemented just with
the help of 1-hop neighbors for each node.

Lemma 4. Let G be a connected graph. For a constant β � 5
and any pair of distinct vertices u and v,hC�u, v� � β � h�u, v�
if and only if for any pair of distinct vertices u and v with
h�u, v� � 1,hC�u, v� � β.

Proof. It is trivial to show the “only if” part. Next, we show
the “if” part. Consider a pair of distinct vertices u and v. Let
the shortest vertex path from u to v in G be u0u1u2�uk, where
u0 � u and uk � v. By the condition, we have hC�ui,ui�1� � β
for 0 � i � k � 1. Then, it implies that u and v are connected
by a path in C with at most β � k hops. Hence, we obtain
hC�u, v� � β � h�u, v�.

By Lemma 4, we can distributedly construct the back-
bone with guaranteed routing overhead which is a founda-
tion of our path planning infrastructure. Compared with the
algorithm in [19] which contained two BFSes to connect
any pair of vertices u and v in the DS with h�u, v� � 4, we
construct a DS in the first step. Then we connect u and v
in DS with hop distance h�u, v� � 2 and h�u, v� � 3 in the
second and third step, respectively. From appearance, our
algorithm is similar to that in [20]. However, the procedures
of algorithm are much different, which have optimized rules
of choosing connectors in each step. The detailed algorithm
is shown in Algorithm 1.

Procedure 1. Coloring2(G, C)
Input: A connected graph G and a black node set C.
Output: A node subset V2C with coloring grey.

(1) Each white node x with kx � 2 sends packet
(idx,CLx,Bx) to its neighbors, where idx,CLx and
Bx are the id, color and black neighbor set of x,
respectively.

(2) After black node u has received packets (idx,CLx,Bx)s
from its white neighbors, u saves the black nodes
in Bx of each packet into its 2-hop black neighbor
set Nb1(u). And u constructs a 2 dimension table
which saves its white neighbors’ id, color, the black
neighbors with id � idu and the corresponding
number of each white neighbor in each column.

(3) For each black node u, we assume that there are at
most t white neighbors. Note that t � δ and δ is the
maximum node degree. Then u colors the white node
xi grey which has the maximum value in the third
column of current 2-dimension table, deletes all the
common black neighbors between white nodes xi and



4 International Journal of Distributed Sensor Networks

Table 1: The white neighbor list of black node u.

The white
neighbors’
id

The white
neighbors’

color

The number of
black neighbors
with id � idu of

each white
neighbor

The black
neighbors with
id � idu of each
white neighbor

x1 white 2� 1 �n1,n2�� �n2�

x2 white� grey 3 �n1,n3,n4�

— — — —

xt white 2� 1 �n3,n5�� �n5�

xj ( j � i and 1 � j � t) and updates the numbers in the
third column for remaining white nodes in the table.

(4) For each black node u, repeat step �3� until all
numbers in the third column of the table are zero.

As shown in Table 1, we assume that x2 is the first
node which would be colored grey for black node u. Then,
u deletes the common nodes n1 and n3 in the fourth column
and updates the number of black neighbors with id � idu
of x1 and xt , respectively. The updated details are presented
behind symbol “� ”.

Procedure 2. Coloring3(G, C, V2C)
Input: A connected graph G, a black node set C and a

grey node set V2C .
Output: A node subset V3C with coloring red.

(1) Each grey node y and white node x send packet
(idy ,CLy ,By) and (idx,CLx,Bx) to its neighbors
respectively.

(2) When a grey node yj which is a neighbor of
y has received (idy ,CLy ,By), yj sends packet
CN � �idyj ,CLyj , idy ,CLy ,By�. When a grey
node yj which is a neighbor of white node
x has received (idx,CLx,Bx), yj sends CN ��idyj ,CLyj , idx,CLx,Bx�. When a white node x has
received (idy ,CLy ,By) from its grey neighbor y, x
sends CN � �idx,CLx, idy ,CLy ,By�.

(3) For each black node u in By , let Nb2(u) denote
the 3-hop black neighbor set of u. Initially,
Nb2�u� � Nb1�u�. When u has received�idyj ,CLyj , idy ,CLy ,By� or �idyj ,CLyj , idx,CLx,Bx�
from its grey neighbor yj , then Nb2�u� �

Nb2�u��By or Nb2�u��Bx, respectively.

(4) For each black node u in Bx, when u has received
(idx,CLx, idy ,CLy ,By) from its white neighbor x, u
saves the corresponding paths from u to By into
P�u,By�. For each black node w in By � Nb2�u�, u
chooses a path uxyw to connect with w. Then, color x
red and let Nb2�u� � Nb2�u��By .

(5) Each white node x sends (idx,CLx,Bx) again. When
a white node xi has received (idx,CLx,Bx) from
its neighbor x, xi sends (idxi ,CLxi , idx,CLx,Bx). For
each black node u in Bxi , when u has received
(idxi ,CLxi , idx,CLx,Bx), it saves the corresponding

paths from u to Bx into P�u,Bx� which saves all
vertices in the paths. For each black node w in Bx �

Nb2(u) with idw � idu, a path uxixw is chosen to
connect u with w. Then, color xi and x red and let
Nb2�u� � Nb2�u��Bx.

Lemma 5. The message complexity of Algorithm 1 is O�n2�
and the time complexity is O�nδ2�.

Proof. By Procedures 1, and 2 and step �3� of Algorithm 1,
each node needs to send constant messages to construct V2C

and V3C, respectively. The message complexity of step �1� in
Algorithm 1 is O�n2� [17]. Hence, the message complexity of
Algorithm 1 is O�n2� � O�n� � O�n� � O�n2�. In step �3�
of Algorithm 1, note that x has at most 5 black neighbors
[21]. Therefore, x needs O�δ� time to compute its black
neighbors’ information. And node u needs time O�δ2� to
compute Nb1(u) in step �2� of Procedure 1. In the step�3� of Procedure 1, the number of rows of a 2-dimension
table for node u is at most δ and the value in the fourth
column of each row is no more than 5. Thus, each node u
needs time O�δ2� to choose white nodes such that u connects
with Nb1(u) at the end of step �4�. Therefore, the time
complexity of Procedure 1 is n � O�δ2

� δ2� � O�nδ2�. In
steps �3, 4, and 5� of Procedure 2, node u needs time O�δ2�
for “union” operation to compute Nb2(u). Hence, the time
complexity of Procedure 2 is n �O�δ2

� δ2
� δ2� � O�nδ2�. In

summary, the time complexity of Algorithm 1 is n � O�δ� �
O�nδ2

� nδ2� � O�nδ2�.

After Algorithm 1, we have accomplished a preliminary
backbone. Then for each sensor node, it saves the angle
information of its neighbors by measuring the direction of
wireless signals [22].

Definition 6. Given two vertices u and v, let a(u,v) denote the
angle of v relative to u.

For each vertex u in G, let N(u) denote the neighbor set of
u within 1-hop. Then, let A�u� � �a�u, v� � v � N�u�� refer
to the relative angle set of u. Furthermore, by measuring the
strength of wireless signals [23], we can obtain the Euclidean
length between u and v, which denotes as d(u,v). Hence, we
have the following property.

Lemma 7. Given the destination D and two adjacent vertices u
and v, if there exist d�v,D� and a�v,D� of v, then d�u,D� and
a�u,D� of u can be computed.

Proof. First, as shown in Figure 1, let u and v choose the same
direction as the reference direction. It is trivial to show that
�uvD � π � a�v,D� � a�u, v� or π � a�v,D� � a�u, v�.

Then, based on the law of cosine, we have cos �uvD �

� cos�a�v,D� � a�u, v��.
Then,

d�u,D�
�

�
d�v,D�2

� d�u, v�2
� 2d�v,D� � d�u, v� � cos�uvD,

(1)
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Input: A connected graph G.
Output: A node subset VC .
(1) Adopt the algorithm in [17] to compute a dominating set C in graph G simultaneously.
(2) Color each node in C black and the others white.
(3) Each white node v computes the number of its black neighbors which is referred to kv .
(4) Call procedure Coloring2(G, C) to color a part of white nodes with kv � 2 grey.
(5) Call procedure Coloring3(G, C, V2C) to color a part of remaining white nodes red.
(6) Let VC � C�V2C �V3C.

Algorithm 1: Constructing the preliminary planning infrastructure (IRC).

D

d(v, D)

a(u, v)
d(u, v)

a(v, D)

d(u, v)

D

v
v

u
a(u, v)

a(v, D)

d(v, D)

u

Figure 1: Compute d�u,D� and a�u,D�.

a�u,D� � 	a�u, v� ��vuD, a�u, v� � a�v,D�
a�u, v� ��vuD, a�u, v� � a�v,D�. (2)

Therefore, we can obtain d�u,D� and a�u,D� for u.

By Lemma 7, for each vertex u in graph G, u computes
the angle set A(u) and unites it into the preliminary infras-
tructure which has been built by Algorithm 1. Eventually,
we have accomplished a path planning infrastructure. In
the following, we propose a path planning algorithm with
constant distance cost based on the infrastructure.

4. A Path Planning Algorithm

In [13], Lee et al. proposed the overhead of navigation
algorithm. Let S denote the initial position and D be the
destination. M(S,D) denotes the length of moving path and
d(S,D) denotes the Euclidean length from S to D. Hence, we
introduce a general definition.

Definition 8. Given a constant λ � 0, for any two positions
S and D, if a path planning algorithm makes M�S,D� � λ �
d�S,D�, then the algorithm guarantees a constant distance
cost.

Before proposing our path planning algorithm, the
destination data needs to be sent to sensor nodes by the
infrastructure.

4.1. Send Destination Data. After the whole area has been
monitored by a WSN, some sensor nodes would detect

critical events when they have happened in the environment.
Supposing that sensor node v has detected the event, then v
will confirm the event point D by special measuring modules
and transmit the packet (idv , d(v,D), a(v,D)) based on the
planning infrastructure. Later, when a sensor node u which
is a neighbor of v has received the packet, u could compute
d(u,D) and a(u,D) by Lemma 7. Therefore, the whole sensor
nodes can gain destination information by communicating
with its neighbors.

4.2. A Path Planning Algorithm in WSNs. After sensor nodes
in the network have obtained information of destination D,
the mobile node which denotes as M with enough energy
will move to D automatically using the information stored
in sensor nodes. Here, we assume that the communication
and sensing range of M are the same with those of sensor
node which are RC and rs, respectively. Then, we could release
M in any position of the environment. For the simplicity of
discussion, let M have the same location of a sensor node
u in the network. That is, M seems to be u and can obtain
a(M,D) which is a duplicate of a(u,D). Therefore, without
using localization, M can track its neighbors in the network
to arrive at D. In the following, we describe the tracking
process in detail.

Note that N�M� � �v � d�M, v� � RC� denotes the
neighbors of M and A�M� � �a�M, v� � v � N�M�� refers
to the relative angle set. Define θ � �vMD as the include
angle of a�M, v� and a�M,D� for each v in N(M). Then, let
M choose a neighbor u to make θ � �uMD minimum as its
temporary target within range RC. It is trivial to show that
if θ approximates zero, then a�M,u� is the same as a(M,D)
which is the optimal direction of movement. In order to
restrict the deviation of a�M,D� and a�M,u� by an upper
bound, Algorithm 2 claims that the temporary optimal target
u should be chosen in the sector a�M,D� � α
2 �α � 2π
3�
within range RC . For a randomly deployed WSN with a high
density of sensor nodes, we prove that there is at least one
sensor node in the chosen sector with high probability which
will guarantee a constant distance cost.

For an extreme situation where there is no sensor node
in a�M,D� � α
2 �α � 2π
3� within range RC , Algorithm 2
designs a substituted moving path by computing virtual
positions in the environment. Note that the network has
been modeled as a UDG. If M finds that there is no node
for current selection, then M computes a virtual sensor
node u� on the direction a(M,D) with d(M,u�� � 1.
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//Next(M) saves the temporary targets for M to track.
Input: A mobile node M, an initial position S and a destination D.
Output: A path consists of sensor nodes from S to D.
(1) Place mobile node M at the position S.
(2) Next(M) = NULL
(3) while M has not arrived at destination D
(4) do M updates a(M,D) and chooses an optimal temporary target in a�M,D� � α�2�α � 2π�3� within range

RC from N(M)�Next(M)
(5) if there is no condidate then
(6) M computes a virtual sensor node u�

(7) Call Algorithm 1 to update the planning infrastructure
(8) Call Procedure 3 to find a substituted path to bypass u�

(9) end if
(10) Add w into Next(M) and let M move to w
(11) end while

Algorithm 2: A path planning algorithm for mobile node (MSNA).

By Lemma 4, update Algorithm 1 to make the new path
planning infrastructure regard virtual u� as a dominate by
setting all the sensor nodes which monitor the position of u�

be dominators in the network as dense as possible. Compared
with M, u� is much closer to D. For simplicity, we assume
there exists at least one candidate sensor node w in the
sector a�M,D� � α
2 �α � 2π
3� within range RC for u�.
Then, M can find a feasible solution from M to w in the
new infrastructure using shortest vertex path algorithm [18].
Obviously, M cannot communicate with w for d�M,w� � 1.
Eventually, the algorithm also satisfies a constant distance
cost which will be proven in the following.

The detailed algorithm is shown in Algorithm 2.

Procedure 3. Finding a substituted path
Input: Next(M), M and u�.
Output: A temporary target w and a feasible vertex path

from M to w.

(1) Compute a(u�, D) and choose an optimal temporary
target in a(u�, D) � α/2 (α � 2π
3) within range RC

from N(u�)�Next(M).

(2) Find a shortest vertex path P(M,w) in the path
planning infrastructure by the algorithm in [18].

To evaluate the performance of Algorithm 2, we assume
that sensor nodes have been randomly deployed in a unit
square. Then, we give the probability of nodes in each grid
of a partition of this square using Chernoff ’s bound.

Lemma 9. Given a randomly deployed node set V and a
partition of unit square �0, 1�2 into grids with side length l,
where

�
logn
�c � n� � l � 1, then there exist constant c and

δ � �0, 1�, such that each grid contains at least δ � logn
c nodes
with high probability, where n � �V �.
Proof. Partition �0, 1�2 into cn /log n grids of equal size where
c � 1. Given a fixed small grid Qj , where 1 � j � cn/log n,
if node i falls into grid Qj , then Xi � 1, otherwise Xi � 0.
Here Xi is a random variable. According to the observation,

all random variables Xis, where 1 � i � n, are independent
and the probability P �Xi � 1� � log n /cn. Let � �n

i�1 Xi, then

E�X� � E� n

�
i�1

Xi � n

�
i�1

E�Xi� � n � logn

cn
�

logn

c
. (3)

Applying the Chernoff ’s bound, we have

P�X � δ �
logn

c
� � e���1�δ�2�2c� logn. (4)

So, for all grids in unit square, we denote the number of
nodes in Qj� �Qj� � �Qj�� as X�, and the probability of
X�

� δ � logn/c is P(δ), then we get

P�δ� � cn

logn
� e���1�δ�2�2c� logn

� e���1�δ�2�2c� logn�ln�cn� logn�

� e���1�δ�2�2c� logn�log�cn� logn�.

(5)

Using c � 0.2 and δ � 0.1, we obtain

P�0.1� � cn

logn
� e���1�δ�2�2c� logn

� e���1�δ�2�2c� logn�log�cn� log n�

� e�2 log n�logn�log c�loglog n
�

1

n
.

(6)

Then, based on Lemma 9, we introduce the probability of
sensor nodes existing in the sector a�M,D��α/2 �α � 2π
3�
within range RC.

Theorem 10. Given a random node set V and the commu-
nicating range RC of sensor node, if n � R2

C � 8 � logn, then
there exist constant c and δ � �0, 1�, such that each sector with
angle α of the mobile node has δ � log n/c neighbors with high
probability, where n � �V �.
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vk

vk−1 vk+1vk 

Figure 2: A vertex path from vk�1 to vk�1.

Proof. By Lemma 9, when the mobile node M is in a grid Qj ,

adjust the communication range such that RC � 2
�

2 � l �
2
�

2 �
�

logn
n. Then, we get that the mobile node that can
communicate with at least 8 neighbors in its adjacent grids.
While the mobile node separates the communicating disk
into sectors with angle α, the area of each sector is SC � 4αl2.
Note that if 0.25 � α � 2π
3, then SC � l2. Denote the
probability of each sector contains at least δ � log n/c nodes
as P�δ�, and then we have

P�δ� � 1 � e���1�δ�2�2c� logn�log�cn� logn�. (7)

By setting c � 0.2, δ � 0.1, and denoting the probability
which has at least logn/2 neighbors in a sector as Pr , we
obtain Pr � 1 � 1
n.

In order to analyze the distance cost of path by
Algorithm 2, we propose a lemma when there is no extreme
case happening.

Lemma 11. Let v0v1�vk�1 be the path of mobile node M in
Algorithm 2 without any extreme case, where v0 � S is the
initial position and vk�1 � D is the destination. Then

M�S,D� � 1

1 � 2 sin�α
4 � � d�S,D� for α �
2π

3
. (8)

Proof. Note that d(u,v) is the Euclidean length from u to
v and abbreviates to uv. Based on the choosing rule in
Algorithm 2, we know vk�1vk � vk�1vk�1. Set a dot v�k on
dotted line vk�1vk�1 satisfying vk�1v

�

k = vk�1vk, as shown
in Figure 2. Then we have vkvk�1 � vkv

�

k � v�kvk�1 by
triangle inequality. Obviously, for any vi (1 � i � k),
there is θi � �viMD � α
2, where α � 2π
3. Then,
vkv

�

k = 2sin��vkvk�1v
�

k/2��vk�1vk � 2sin(α/4��vk�1vk. Because
v�kvk�1 � vk�1vk�1 � vk�1v

�

k, we have vk�1vk � vk�1v
�

k �

vk�1vk�1 � v�kvk�1 � vk�1vk�1 � vkv
�

k � vkvk�1 � vk�1vk�1 �

2sin(α/4� � vk�1vk � vkvk�1. Hence, vk�1vk�1 � vkvk�1 � �1-
2sin(α/4))vk�1vk.

Furthermore,

M�S,D� � k

�
i�0

d�vi, vi�1� � 1

1 � 2 sin�α
4�
�

k

�
i�0

�vivk�1 � vi�1vk�1�
�

1

1 � 2sin�α
4�v0vk�1
.

(9)

Without loss of generality, we assume that there
exists only one extreme case during planning a path in
Algorithm 2.

Theorem 12. Let v0v1�vk�1 be the path of mobile node M in
Algorithm 2 with an extreme case, where v0 � S is the initial
position and vk�1 � D is the destination. Then

M�S,D� � 10

1 � 2 sin�α
4� � d�S,D� for α � 2π
3. (10)

Proof. We assume that the extreme case happens at vj . That
is, vj�1 is chosen by call Procedure 3 with d(vj , vj�1� � 1.
Let u denote the virtual node. Then, by the path planning
infrastructure and Lemma 4, we have that the shortest vertex
path h��vj , vj�1� from vj to vj�1 satisfing h�(vj , vj�1� �

5�h�vj ,u� � h�u, vj�1)). Because for any two adjacent sensor
nodes u1 and u2 in the network which has been modeled as
a UDG, we obtain d(u1,u2� � h�u1,u2). Hence, the length of
moving path from vj to vj�1 which is denoted as d�(vj , vj�1)
satisfies d��vj , vj�1� � h��vj , vj�1�. By the triangle inequality,
there is d�vj ,u� � d�u, vj�1� � d�vj , vj�1� � 1. Then,
h�vj ,u� � h�u, vj�1� � 2 � 2d�vj , vj�1�. Furthermore,
d��vj , vj�1� � 10d�vj , vj�1�. Therefore, by Lemma 11,

M�S,D� �
10

1 � 2sin�α
4� � d�S,D�. (11)

Note that each vi is a realistic sensor node. The virtual
node is used for updating the path planning infrastructure
for an extreme situation under a very low probability. If there
are several extreme cases, the proof of Theorem 12 could be
extended easily with the same constant ratio.

5. Simulation Results

As mentioned previously, many studies have shown novel
algorithms for the infrastructures. In this section, firstly
we use VC++6.0 to conduct simulations to compare the
performance of algorithm IRC with those of GOC and ICDS
in [19, 20], respectively. The area of simulation is a virtual
square S1 of 100 � 100, and nodes are randomly distributed
in S1. The number of nodes denoted by N is increased by
10 from 10 to 100 and the maximum transmission range
RC is assigned 20, 25, 30, and 35. For distinct nodes u and
v, if and only if the Euclidean distance d�u, v� � RC , u
and v could communicate with each other. For the same
settings under different transmission ranges, we randomly
create 100 connected graphs for each N and accordingly
construct the infrastructure for each connected graph. And
for each infrastructure, we compute its size and diameter.

Figure 3 shows the infrastructure sizes of algorithm
IRC, GOC, and ICDS under the different RCs. In this
figure, since more nodes are needed in a bigger network
for guaranteed overhead, all the sizes of infrastructures
produced by algorithm IRC, GOC, and ICDS increase when
the number of nodes increases. For the network with a
small amount of nodes, these infrastructure sizes are almost
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Figure 3: Infrastructure sizes.

equal. While nodes increase, algorithm IRC presents a better
performance for different RCs.

Figure 4 shows the diameters of graph G and infrastruc-
tures produced by algorithm IRC and GOC. When RC is
small, the difference of diameters between two infrastruc-
tures and graph G is small. But as RC increases, the difference
goes larger what keeps pace with that of the infrastructure
size in Figure 3. However, for different RCs, the difference
of diameter between algorithm IRC and GOC is very small
which implicits that there may exist several redundant nodes
in the infrastructure which produced by GOC.

Then, based on the infrastructure which has been
constructed, we use VC++6.0 and Matlab 7.0 to evaluate
algorithm MSNA. To compare with the distance cost of

Table 2: Simulation parameters.

Parameters Value

The monitoring area S2 1100 � 900 m2

Communication range RC 150 m

Sensing range rs 15 m

The number of deployed sensor nodes 99, 114, 100, 150

Identifiers 1 � N

algorithm ANHC in [13], we set the environment and
network parameters to be the same with those in [13].
Table 2 shows the detailed parameters which will be used. We
provide four different ways for sensor nodes deployment: �1�
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Figure 4: Diameters.

99 nodes are deployed in S2 uniformly, the interval of each
node is 100 m; �2� 114 nodes are deployed in S2 with a hole
in the center; �3� 100 nodes are randomly deployed in S2; �4�
150 nodes are randomly deployed in S2.

In Figure 5, four different planning paths are presented
under corresponding deployed ways. By tracking the realistic
sensor nodes in the network, all the paths can be defined
as directed vertex paths in the graph which is modeled by
a WSN. In each figure, we use the symbol “�” and “	” to
stand for the initial position and destination of a planning
path, respectively. The dots which are encircled by “
” are
represented as the sensor nodes tracked by mobile node.
A dashed circle denotes the transmitting range of wireless
signal. In Figure 5(a), at the beginning, the mobile node

chooses the optimal sensor nodes from its neighbors as the
temporary target. Without using a localization technique, the
mobile node tracks the temporary targets which could be
computed by algorithm MSNA in the uniform network. In
Figure 5(b), for the given initial position, although there is a
hole in the center of S2, the mobile node has not encountered
any extreme cases during selecting temporary target. So, the
path consists of a node set alongside the border of hole.
In Figure 5(c), an extreme case has happened in algorithm
MSNA. The two square symbols “�” show the virtual nodes
which were computed in algorithm MSNA with being closer
to the destination in the path planning infrastructure. In
Figure 5(d), the network is quite dense such that there is no
extreme case for the mobile node. For the locations of sensor
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Figure 5: Trajectories of the mobile node by MSNA.

nodes in the path, we find that they almost distributed along
the straight line from start to destination.

In [13], the algorithm ANHC using average hop-count
of neighbors is the first one concerning the cost of a
navigating path without localization. In the initial phase,
each sensor node sets up its hop count value to the
destination. Then, every sensor node computes the value
anhc by communicating with its neighbors. It implicated
that sensor nodes which are closer to the destination would
have smaller anhc compared with the ones which are far
away from the destination. The mobile node computes its
anhc at its present location. By judging the variation of value
anhc, the mobile node revises its direction. The disadvantage
of this algorithm is that although the decreasing of anhc
shows that the mobile node is moving to the destination,
it cannot indicate the deviation between current direction
and the optimal direction which may lead to a high cost.
In algorithm MSNA, at current position, the mobile node
chooses the optimal temporary target which makes the
deviation between direction of movement and the optimal
direction be minimum. But there also exists the disadvantage
in MSNA because we cannot guarantee there must have
candidates in the sector a�M,D� � α
2 (α � 2π
3) within
RC for mobile node M.

In the following, we randomly set the initial posi-
tion S and the destination D with 200 m � d�S,D� �
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Figure 6: The path cost for a uniform deployed network.

1000 m. Through employing a lot of randomly deployed
networks, the average costs of paths have been presented
in Figure 6 for the predefined shortest Euclidean distance.
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Figure 7: The average path cost for four different deployed ways.

It shows that nav overheadANHC � nav overheadMSNA

for the first deployed way. And under the second way,
nav overheadANHC � nav overheadMSNA is almost true for
different predefined situations.

Figure 7 shows that the average costs of paths under four
different deployed ways of the network. We randomly set the
initial position S and the destination D in the environment.
Through a lot of simulations, we find that the cost of
algorithm MSNA is smaller than the algorithm ANHC for
each deployed way.

6. Conclusion

In this paper, by characterizing the navigation problem as a
path planning problem, we first present a distributed algo-
rithm to construct a path planning infrastructure by uniting
the neighbors’ information of each sensor node into a CDS.
Then, we propose a path planning algorithm to generate
an effective path in the network even under an extreme
case. We prove that the distributed algorithm has low time
and message complexity and the path planning algorithm
guarantees a constant distance cost. Simulation results show
that the algorithms produce a smaller infrastructure size and
a distance cost. Due to frequent node and link failure, which
are inherent in WSNs, to construct a robust a path planning
algorithm is our further work.

Acknowledgment

This work is supported by the National Natural Science
Foundation of China under Grants no. 61070169, 61170021
and 61201212, The Natural Science Foundation of Jiangsu
Province under Grant no. BK2011376, The Specialized
Research Foundation for the Doctoral Program of Higher
Education of China no. 20103201110018, The Application
Foundation Research of Suzhou of China No. SYG201118,
SYG201240, SYG201239 and sponsored by the Qing Lan
Project.

References

[1] F. M. Al-Turjman, H. S. Hassanein, and M. A. Ibnkahla, “Con-
nectivity optimization for wireless sensor networks applied to
forest monitoring,” in Proceedings of the IEEE International
Conference on Communications (ICC ’09), pp. 1–6, June 2009.

[2] O. A. Postolache, J. M. Dias Pereira, and P. M. B. Silva
Girão, “Smart sensors network for air quality monitoring
applications,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 58, no. 9, pp. 3253–3262, 2009.

[3] C. W. Chen and Y. Wang, “Chain-type wireless sensor network
for monitoring long range infrastructures: architecture and
protocols,” International Journal of Distributed Sensor Net-
works, vol. 4, no. 4, pp. 287–314, 2008.

[4] K. Casey, A. Lim, and G. Dozier, “A sensor network archi-
tecture for Tsunami detection and response,” International
Journal of Distributed Sensor Networks, vol. 4, no. 1, pp. 28–
43, 2008.

[5] J. Borenstein and H. R. Everett, Navigating Mobile Robots:
Sensors and Techniques, John Wiley & Sons, New York, NY,
USA, 1992.

[6] P. Sinha, R. Sivakumar, and V. Bharghavan, “Enhancing ad hoc
routing with dynamic virtual infrastructures,” in Proceedings
of the 20th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM ’01), pp. 1763–1772,
April 2001.

[7] R. Fonseca, O. Gnawali, K. Jamieson, D. Moss, and P. Levis,
“Collection tree protocol,” in Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems (SenSys
’09), pp. 1–14, usa, November 2009.

[8] T. K. Moon and T. Y. Kuc, “An integrated intelligent control
architecture for mobile robot navigation within sensor net-
work environment,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS ’04),
pp. 565–570, October 2004.

[9] A. J. Briggs, C. Detweiler, D. Scharstein, and A. Vandenberg-
Rodes, “Expected shortest paths for landmark-based robot
navigation,” International Journal of Robotics Research, vol. 23,
no. 7-8, pp. 717–728, 2004.

[10] Q. Li, M. De Rosa, and D. Rus, “Distributed Algorithms for
Guiding Navigation across a Sensor Network,” in Proceedings
of the 9th Annual International Conference on Mobile Comput-
ing and Networking (MobiCom ’03), pp. 313–325, September
2003.

[11] T. Jiang, Y. Yi, Q. Zhang, and K. Zhang, “Novel navigation
algorithm for wireless sensor networks without information
of locations,” in Proceedings of the Global Communications
Conference (GLOBECOM ’11), pp. 1–6, 2011.

[12] S. Li, A. Zhan, X. Wu, P. Yang, and G. Chen, “Efficient
emergency rescue navigation with wireless sensor networks,”
Journal of Information Science and Engineering, vol. 27, no. 1,
pp. 51–64, 2011.

[13] W. Y. Lee, K. Hur, and D. S. Eom, “Navigation of mobile
node in wireless sensor networks without localization,” in
Proceedings of the IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI ’08), pp. 1–
7, August 2008.

[14] M. Li, Y. Liu, J. Wang, and Z. Yang, “Sensor network
navigation without locations,” in Proceedings of the 28th IEEE
Conference on Computer Communications (INFOCOM ’09),
pp. 2419–2427, April 2009.

[15] Y. C. Tseng, M. S. Pan, and Y. Y. Tsai, “Wireless sensor networks
for emergency navigation,” Computer, vol. 39, no. 7, pp. 55–62,
2006.



12 International Journal of Distributed Sensor Networks

[16] W. Wei and Y. Qi, “Information potential fields navigation in
wireless Ad-Hoc sensor networks,” Sensors, vol. 11, no. 5, pp.
4794–4807, 2011.

[17] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating
sets and neighbor elimination-based broadcasting algorithms
in wireless networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 1, pp. 14–25, 2002.

[18] J. W. Suurballe and R. E. Tarjan, “A quick method for finding
shortest pairs of disjoint paths,” Networks, vol. 14, no. 2, pp.
325–336, 1984.

[19] H. Du, Q. Ye, W. Wu et al., “Constant approximation
for virtual backbone construction with Guaranteed Routing
Cost in wireless sensor networks,” in Proceedings of the
IEEE International Conference on Computer Communications
(INFOCOM ’11), pp. 1737–1744, April 2011.

[20] Y. Wang and X. Y. Li, “Geometric spanners for wireless ad
hoc networks,” in Proceedings of the 22nd IEEE International
Conference on Distributed Systems (ICDCS ’02), pp. 171–178,
July 2002.

[21] P. J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed
construction of connected dominating set in wireless ad hoc
networks,” Mobile Networks and Applications, vol. 9, no. 2, pp.
141–149, 2004.

[22] D. Niculescu and B. Nath, “Ad hoc positioning system (APS)
using AOA,” in Proceedings of the 22nd Annual Joint Conference
on the IEEE Computer and Communications Societies (INFO-
COM ’03), pp. 1734–1743, April 2003.

[23] L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin, “Locating tiny
sensors in time and space: a case study,” in Proceedings of the
International Conference on Computer Design (ICCD ’02) VLSI
in Copmuters and Processors, pp. 214–219, September 2002.


