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Neumann inhomogeneous boundary value problem
for the n + 1 complex Ginzburg–Landau equation
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Abstract

We study the following Neumann inhomogeneous boundary value problem for the complex Ginzburg–Landau equa-
tion on X � Rnðn 6 3Þ : ut ¼ ðaþ iaÞDu� ðbþ ibÞjuj2uða; b; t > 0Þ under initial condition u(x, 0) = h(x) for x 2 X and
Neumann boundary condition ou

on ¼ Kðx; tÞ on oX where h, K are given functions. Under suitable conditions, we prove
the existence of a global solution in H1.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is the continuation of an earlier one [1] where the following Dirichlet type inhomogeneous
boundary value problem for the complex Ginzburg–Landau equation is investigated:
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ut ¼ ðaþ iaÞDu� ðbþ ibÞjuj2u; t > 0; x 2 X; ð1:1Þ
uðx; 0Þ ¼ hðxÞ; x 2 X; ð1:2Þ
uðx; tÞ ¼ Qðx; tÞ; t > 0; x 2 oX: ð1:3Þ
For this problem, it was assumed that a, b > 0, X is an open bounded domain in Rn with C1 boundary and
h, Q are given smooth functions. Existence of a unique global solution in H1 has been proved under the con-
dition �1� ab

ab <
ffiffiffi
3
p
j aa�

b
b j, a 5 0. Further, this solution approaches to the solution of the corresponding NLS

limit under identical initial and boundary conditions as a, b! 0+.
003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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The 1D Ginzburg–Landau equation ut = (a + ia)Du � (b + ib)juj2u was originally proposed to describe
nonlinear amplitude evolution of wave perturbation with a basic pattern when a control parameter R lies
in the unstable region O(�) away from the critical value R� for which the system loses stability. Here � is a small
parameter. The Ginzburg–Landau equation was found for a general class of nonlinear evolution problems in
hydrodynamics and other applications of chemistry and physics. It was derived from the Navier–Stocks equa-
tions via multiple scaling methods in convection. This equation and its variations with additional nonlinear
terms have been extensively studied. For example, a mathematically rigorous proof of the validity of this equa-
tion was given for a general solution of one space variable and a quadratic nonlinearity. (For Refs., see [2–11].)
About the global existence for the Ginzburg–Landau equation: posed in a quarter-plane, see [12].

The objective of this paper is to prove global existence for the following Neumann type inhomogeneous
boundary value problem for the Ginzburg–Landau equation in 1 6 n 6 3 space dimensions:
ut ¼ ðaþ iaÞDu� ðbþ ibÞjuj2u; t > 0; x 2 X; ð1:4Þ

uðx; 0Þ ¼ hðxÞ; x 2 X; ð1:5Þ
ou
on
¼ Kðx; tÞ; t > 0; x 2 oX: ð1:6Þ
Let X be a bounded domain of Rnð1 6 n 6 3Þ, ~n is the outer normal vector of oX. For any T > 0, write
QT = X · (0,T]. The following definition and properties of W l;l=2

p ðQT Þ space can be found, for example, in [15].

Definition 1.1. Let l be a positive integer and 1 6 p <1.

If l is an even number, define
kuk
W l;l=2

p ðQT Þ
¼

X
06rþ2s6l

kDs
t D

r
xuk

p
LpðQT Þ

( )1
p

: ð1:7Þ
If l is an odd number, define
kuk
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p ðQT Þ
¼

X
06rþ2s6l

kDs
t D

r
xuk
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LpðQT Þ þ

X
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t D

r
xu

� �p

L
1
2
p;t

ðQT Þ
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p

: ð1:8Þ
One can verify that W l;l=2
p ðQT Þ is a Banach space according to the norm defined above. Since we are par-

ticularly interested in the situation p = 2, we denote Hl,l/2(QT) by W l;l=2
2 ðQT Þ.

By the trace theorem in [15], there is a function w(x, t) 2 H2,1(QT) such that ow
on ¼ K on oX · (0, T) for any

Kðx; tÞ 2 H
1
2;

1
4ðoX� ð0; T ÞÞ.

Now let v = u � w and rewrite (1.4)–(1.6) as
vt ¼ ðaþ iaÞDv� ðbþ ibÞjvþ wj2ðvþ wÞ þ ðaþ iaÞDw� wt

¼ ðaþ iaÞDv� ðbþ ibÞjvj2v� ðbþ ibÞGðv;wÞ þ f ðx; tÞ; ð1:9Þ
where
Gðv;wÞ ¼ 2jvj2wþ �vw2 þ v2 �wþ 2vjwj2 þ jwj2w; ð1:10Þ
f ðx; tÞ ¼ ðaþ iaÞDw� wt ð1:11Þ
and
vðx; 0Þ ¼ hðxÞ � wðx; 0Þ; x 2 X; ð1:12Þ

ov
on
¼ 0; t > 0; x 2 oX: ð1:13Þ
Clearly f(x, t) 2 L2(QT) based on (1.7). By the embedding theorem in [15], we know that
H2,1(QT) W C([0,T], H1(X)).
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Lemma 1.2. Let v be a smooth solution to the initial-boundary value problem for the Ginzburg–Landau Eqs. (1.9),

(1.12) and (1.13). Then the following identities are available.
ot

Z
X
jvj2dx ¼ �2akrvk2

2 � 2bkvk4
4 � 2Reðbþ ibÞ

Z
X

G�vdxþ 2Re

Z
X

f�vdx; ð1:14Þ

ot

Z
X
jrvj2dx ¼ �2akDvk2

2 þ 2Reðb� ibÞ
Z

X
jvj2�vDvdx ð1:15Þ

þ 2Reðb� ibÞ
Z

X
GDvdxþ 2Re

Z
X

�f Dvdx
and
1

4a
ot

Z
X
jvj4dx ¼ Re 1þ i

a
a

� �Z
X

Dvjvj2�vdx� b
a
kvk6

6 �
1

a
Reðbþ ibÞ

Z
X
jvj2�vGdxþ 1

a
Re

Z
X
jvj2�vf dx: ð1:16Þ
We note that ov/on = 0 on oX. The proof is straight forward after integration by parts and substitution of
Eq. (1.9).
2. Global solution in H1

With the above identities (1.14)–(1.16) we are able to prove the following global existence theorem.

Theorem 2.1. If h 2 H1 \ L4(X), a > 0, b > 0, K 2 H
1
2;

1
4ðoX� ð0; T ÞÞ for any given T > 0, then 1.4,1.5,1.6 has an

unique solution in
u 2 ðCð½0; T �Þ;H 1Þ \ ðL2ð½0; T �Þ;H 2Þ; for some T � > 0;
and this solution is global (i.e., T* =1) provided that �1� ab
ab <

ffiffiffi
3
p
j aa�

b
b j.

In order to obtain the local existence of (1.4)–(1.6), we should homogenized the boundary condition by
v = u � w. Using the theory of [13,14], local existence is proved by verifying that both jvj2v and G(v,w) are
locally Lipshitz continuous from H1(X)! L2(X).

In fact, for any v1 and v2 in H1(X), we note that w 2 C([0,T], H1(X)). In addition, we note that
H1(X) W L6(X) for n 6 3 by Gagliardo–Nirenberg estimates [13]. Therefore,
kjv1j2v1 � jv2j2v2k 6 C kv1k2
H1 þ kv2k2

H1

� �
kv1 � v2kH1 : ð2:1Þ
Similarly, we see that
kGðv1;wÞ � Gðv2;wÞk 6 C kv1k2
H1 þ kv2k2

H1 þ kwk2
H1

� �
kv1 � v2kH1 : ð2:2Þ
Therefore, the local existence is obtained.
In order to prove the global existence, we work on estimates based on (1.14)–(1.16). By Young’s inequality,

we have
�2Reðbþ ibÞ
Z

X
G�vdx 6 c

Z
X
jvj3jwj þ jvj2jwj2 þ jvjjwj3
� �

dx 6 b
Z

X
jvj4dxþ C

Z
X
jwj4dx ð2:3Þ
and
2Re

Z
X

f�vdx 6 2kf k2 � kvk2 6 kf k
2
2 þ kvk

2
2: ð2:4Þ
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Now we substitute (2.3) and (2.4) into (1.16) to get
ot

Z
X
jvj2dx ¼ �2akrvk2

2 � bkvk4
4 þ C

Z
X
jwj4dxþ kf k2

2 þ kvk
2
2

6 �2akrvk2
2 þ C

Z
X
jwj4dxþ kf k2

2 þ kvk
2
2: ð2:5Þ
Since f 2 L2;w 2 Cð½0; T �;H 1ðXÞÞðX � Rn; n 6 3Þ, Gronwall’s inequality implies that the L2 norm of v is
bounded.

For H1 estimate, we need to define
EdðvðtÞÞ ¼
1

2b
krvk2

2 þ
d

4a
kvk4

4; ð2:6Þ
where d is a positive constant. Under the condition that �1� ab
ab <

ffiffiffi
3
p
j aa�

b
b j, based on similar approach as in

[11] (pp. 203–205), (1.15) and (1.16) imply that
d

dt
EdðvðtÞÞ 6 CEdðvðtÞÞ � l kDvk2

2 þ kvk
6
6

� �

þ C
Z

X
jGjjDvjdxþ

Z
X
jf jjDvjdxþ

Z
X
jGjjvj3 þ

Z
X
jf jjvj3dx

� �
; ð2:7Þ
for some l > 0. The following estimates are easily verified:
Z
X
jGjjDvjdx 6

l
2
kDvk2

2 þ
1

2l

Z
X
jGj2dx; ð2:8ÞZ

X
jGj2dx 6 �1

Z
X
jvj6dxþ C

Z
X
jwj6dx; ð2:9ÞZ

X
jf jjDvjdx 6

l
2
kDvk2

2 þ
1

2l

Z
X
jf j2dx; ð2:10ÞZ

X
jGjjvj3dx 6 �2

Z
X
jvj6dxþ 1

4�2

Z
X
jGj2dx; ð2:11ÞZ

X
jf jjvj3dx 6 �3

Z
X
jvj6 þ 1

4�3

Z
X
jf j2dx ð2:12Þ
for sufficiently small �1, �2, �3.
From these estimates along with (2.6) we obtain the following estimate
d

dt
EdðvðtÞÞ 6 CEdðvðtÞÞ þ C kf k2

2 þ kwk
6
6

� �
: ð2:13Þ
Here we treat C as a generic constant. Since f 2 L2(QT) and w 2 C([0,T], H1(X)) (which implies that w 2 L6 for
n 6 3). Gronwall’s inequality yields that
EdðvðtÞÞ 6 C: ð2:14Þ

This shows that v is a global solution. Consequently u is also a global solution and Theorem 2.1 is proved.
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