Neumann inhomogeneous boundary value problem for the $n+1$ complex Ginzburg-Landau equation

Hongjun Gao ${ }^{\mathrm{a}, 1}$, Charles $\mathrm{Bu}^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Department of Mathematics and Institute of Mathematics, Nanjing Normal University, Nanjing 210097, China
${ }^{\mathrm{b}}$ Department of Mathematics, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States

Abstract

We study the following Neumann inhomogeneous boundary value problem for the complex Ginzburg-Landau equation on $\Omega \subset \mathbb{R}^{n}(n \leqslant 3): u_{t}=(a+\mathrm{i} \alpha) \Delta u-(b+\mathrm{i} \beta)|u|^{2} u(a, b, t>0)$ under initial condition $u(x, 0)=h(x)$ for $x \in \Omega$ and Neumann boundary condition $\frac{\partial u}{\partial n}=K(x, t)$ on $\partial \Omega$ where h, K are given functions. Under suitable conditions, we prove the existence of a global solution in H^{1}. © 2006 Elsevier Inc. All rights reserved.

Keywords: Complex Ginzburg-Landau equation; Neumann inhomogeneous boundary value problem; Weak solution; Global existence

1. Introduction

This paper is the continuation of an earlier one [1] where the following Dirichlet type inhomogeneous boundary value problem for the complex Ginzburg-Landau equation is investigated:

$$
\begin{align*}
& u_{t}=(a+\mathrm{i} \alpha) \Delta u-(b+\mathrm{i} \beta)|u|^{2} u, \quad t>0, \quad x \in \Omega, \tag{1.1}\\
& u(x, 0)=h(x), \quad x \in \Omega, \tag{1.2}\\
& u(x, t)=Q(x, t), \quad t>0, \quad x \in \partial \Omega . \tag{1.3}
\end{align*}
$$

For this problem, it was assumed that $a, b>0, \Omega$ is an open bounded domain in \mathbb{R}^{n} with C^{∞} boundary and h, Q are given smooth functions. Existence of a unique global solution in H^{1} has been proved under the condition $-1-\frac{\alpha \beta}{a b}<\sqrt{3}\left|\frac{\alpha}{a}-\frac{\beta}{b}\right|, \alpha \neq 0$. Further, this solution approaches to the solution of the corresponding NLS limit under identical initial and boundary conditions as $a, b \rightarrow 0^{+}$.

[^0]The 1D Ginzburg-Landau equation $u_{t}=(a+i \alpha) \Delta u-(b+i \beta)|u|^{2} u$ was originally proposed to describe nonlinear amplitude evolution of wave perturbation with a basic pattern when a control parameter R lies in the unstable region $\mathrm{O}(\epsilon)$ away from the critical value R_{ϵ} for which the system loses stability. Here ϵ is a small parameter. The Ginzburg-Landau equation was found for a general class of nonlinear evolution problems in hydrodynamics and other applications of chemistry and physics. It was derived from the Navier-Stocks equations via multiple scaling methods in convection. This equation and its variations with additional nonlinear terms have been extensively studied. For example, a mathematically rigorous proof of the validity of this equation was given for a general solution of one space variable and a quadratic nonlinearity. (For Refs., see [2-11].) About the global existence for the Ginzburg-Landau equation: posed in a quarter-plane, see [12].

The objective of this paper is to prove global existence for the following Neumann type inhomogeneous boundary value problem for the Ginzburg-Landau equation in $1 \leqslant n \leqslant 3$ space dimensions:

$$
\begin{align*}
& u_{t}=(a+\mathrm{i} \alpha) \Delta u-(b+\mathrm{i} \beta)|u|^{2} u, \quad t>0, x \in \Omega, \tag{1.4}\\
& u(x, 0)=h(x), \quad x \in \Omega, \tag{1.5}\\
& \frac{\partial u}{\partial n}=K(x, t), \quad t>0, \quad x \in \partial \Omega . \tag{1.6}
\end{align*}
$$

Let Ω be a bounded domain of $\mathbb{R}^{n}(1 \leqslant n \leqslant 3)$, \vec{n} is the outer normal vector of $\partial \Omega$. For any $T>0$, write $Q_{T}=\Omega \times(0, T]$. The following definition and properties of $W_{p}^{l, l / 2}\left(Q_{T}\right)$ space can be found, for example, in [15].
Definition 1.1. Let l be a positive integer and $1 \leqslant p<\infty$.
If l is an even number, define

$$
\begin{equation*}
\|u\|_{W_{p}^{l / / 2}\left(Q_{T}\right)}=\left\{\sum_{0 \leqslant r+2 s \leqslant l}\left\|D_{t}^{s} D_{x}^{r} u\right\|_{L^{p}\left(Q_{T}\right)}^{p}\right\}^{\frac{1}{p}} . \tag{1.7}
\end{equation*}
$$

If l is an odd number, define

$$
\begin{equation*}
\|u\|_{W_{p}^{l / / 2}\left(Q_{T}\right)}=\left\{\sum_{0 \leqslant r+2 s \leqslant l}\left\|D_{t}^{s} D_{x}^{r} u\right\|_{L^{p}\left(Q_{T}\right)}^{p}+\sum_{0 \leqslant r+2 s \leqslant l-1}\left[D_{t}^{s} D_{x}^{r} u\right]_{L_{p, t}^{\frac{1}{p}}}^{p}\left(Q_{T}\right)\right\}^{\frac{1}{p}} . \tag{1.8}
\end{equation*}
$$

One can verify that $W_{p}^{l, l / 2}\left(Q_{T}\right)$ is a Banach space according to the norm defined above. Since we are particularly interested in the situation $p=2$, we denote $H^{p, / / 2}\left(Q_{T}\right)$ by $W_{2}^{l, l / 2}\left(Q_{T}\right)$.

By the trace theorem in [15], there is a function $w(x, t) \in H^{2,1}\left(Q_{T}\right)$ such that $\frac{\partial w}{\partial n}=K$ on $\partial \Omega \times(0, T)$ for any $K(x, t) \in H^{\frac{1}{2} \frac{1}{4}}(\partial \Omega \times(0, T))$.

Now let $v=u-w$ and rewrite (1.4)-(1.6) as

$$
\begin{align*}
v_{t} & =(a+\mathrm{i} \alpha) \Delta v-(b+\mathrm{i} \beta)|v+w|^{2}(v+w)+(a+\mathrm{i} \alpha) \Delta w-w_{t} \\
& =(a+\mathrm{i} \alpha) \Delta v-(b+\mathrm{i} \beta)|v|^{2} v-(b+\mathrm{i} \beta) G(v, w)+f(x, t), \tag{1.9}
\end{align*}
$$

where

$$
\begin{align*}
& G(v, w)=2|v|^{2} w+\bar{v} w^{2}+v^{2} \bar{w}+2 v|w|^{2}+|w|^{2} w, \tag{1.10}\\
& f(x, t)=(a+\mathrm{i} \alpha) \Delta w-w_{t} \tag{1.11}
\end{align*}
$$

and

$$
\begin{align*}
& v(x, 0)=h(x)-w(x, 0), \quad x \in \Omega, \tag{1.12}\\
& \frac{\partial v}{\partial n}=0, \quad t>0, x \in \partial \Omega . \tag{1.13}
\end{align*}
$$

Clearly $f(x, t) \in L^{2}\left(Q_{T}\right)$ based on (1.7). By the embedding theorem in [15], we know that $H^{2,1}\left(Q_{T}\right) \hookrightarrow C\left([0, T], H^{1}(\Omega)\right)$.

Lemma 1.2. Let v be a smooth solution to the initial-boundary value problem for the Ginzburg-Landau Eqs. (1.9), (1.12) and (1.13). Then the following identities are available.

$$
\begin{align*}
\partial_{t} \int_{\Omega}|v|^{2} \mathrm{~d} x= & -2 a\|\nabla v\|_{2}^{2}-2 b\|v\|_{4}^{4}-2 \operatorname{Re}(b+\mathrm{i} \beta) \int_{\Omega} G \bar{v} \mathrm{~d} x+2 \operatorname{Re} \int_{\Omega} f \bar{v} \mathrm{~d} x, \tag{1.14}\\
\partial_{t} \int_{\Omega}|\nabla v|^{2} \mathrm{~d} x= & -2 a\|\Delta v\|_{2}^{2}+2 \operatorname{Re}(b-\mathrm{i} \beta) \int_{\Omega}|v|^{2} \bar{v} \Delta v \mathrm{~d} x \tag{1.15}\\
& +2 \operatorname{Re}(b-\mathrm{i} \beta) \int_{\Omega} \bar{G} \Delta v \mathrm{~d} x+2 \operatorname{Re} \int_{\Omega} \bar{f} \Delta v \mathrm{~d} x
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{4 a} \partial_{t} \int_{\Omega}|v|^{4} \mathrm{~d} x=\operatorname{Re}\left(1+\mathrm{i} \frac{\alpha}{a}\right) \int_{\Omega} \Delta v|v|^{2} \bar{v} \mathrm{~d} x-\frac{b}{a}\|v\|_{6}^{6}-\frac{1}{a} \operatorname{Re}(b+\mathrm{i} \beta) \int_{\Omega}|v|^{2} \bar{v} G \mathrm{~d} x+\frac{1}{a} \operatorname{Re} \int_{\Omega}|v|^{2} \bar{v} f \mathrm{~d} x . \tag{1.16}
\end{equation*}
$$

We note that $\partial v / \partial n=0$ on $\partial \Omega$. The proof is straight forward after integration by parts and substitution of Eq. (1.9).

2. Global solution in $\boldsymbol{H}^{\mathbf{1}}$

With the above identities (1.14)-(1.16) we are able to prove the following global existence theorem.
Theorem 2.1. If $h \in H^{1} \cap L^{4}(\Omega), a>0, b>0, K \in H^{\frac{11}{24}}(\partial \Omega \times(0, T))$ for any given $T>0$, then $1.4,1.5,1.6$ has an unique solution in

$$
u \in\left(C ([0 , T ^ { * }) , H ^ { 1 }) \cap \left(L^{2}\left(\left[0, T^{*}\right), H^{2}\right), \quad \text { for some } T^{*}>0\right.\right.
$$

and this solution is global (i.e., $T^{*}=\infty$) provided that $-1-\frac{\alpha \beta}{a b}<\sqrt{3}\left|\frac{\alpha}{a}-\frac{\beta}{b}\right|$.
In order to obtain the local existence of (1.4)-(1.6), we should homogenized the boundary condition by $v=u-w$. Using the theory of $[13,14]$, local existence is proved by verifying that both $|v|^{2} v$ and $G(v, w)$ are locally Lipshitz continuous from $H^{1}(\Omega) \rightarrow L^{2}(\Omega)$.

In fact, for any v_{1} and v_{2} in $H^{1}(\Omega)$, we note that $w \in C\left([0, T], H^{1}(\Omega)\right)$. In addition, we note that $H^{1}(\Omega) \hookrightarrow L^{6}(\Omega)$ for $n \leqslant 3$ by Gagliardo-Nirenberg estimates [13]. Therefore,

$$
\begin{equation*}
\left\|\left|v_{1}\right|^{2} v_{1}-\left|v_{2}\right|^{2} v_{2}\right\| \leqslant C\left(\left\|v_{1}\right\|_{H^{1}}^{2}+\left\|v_{2}\right\|_{H^{1}}^{2}\right)\left\|v_{1}-v_{2}\right\|_{H^{1}} \tag{2.1}
\end{equation*}
$$

Similarly, we see that

$$
\begin{equation*}
\left\|G\left(v_{1}, w\right)-G\left(v_{2}, w\right)\right\| \leqslant C\left(\left\|v_{1}\right\|_{H^{1}}^{2}+\left\|v_{2}\right\|_{H^{1}}^{2}+\|w\|_{H^{1}}^{2}\right)\left\|v_{1}-v_{2}\right\|_{H^{1}} . \tag{2.2}
\end{equation*}
$$

Therefore, the local existence is obtained.
In order to prove the global existence, we work on estimates based on (1.14)-(1.16). By Young's inequality, we have

$$
\begin{equation*}
-2 \operatorname{Re}(b+\mathrm{i} \beta) \int_{\Omega} G \bar{v} \mathrm{~d} x \leqslant c \int_{\Omega}\left(|v|^{3}|w|+|v|^{2}|w|^{2}+|v||w|^{3}\right) \mathrm{d} x \leqslant b \int_{\Omega}|v|^{4} \mathrm{~d} x+C \int_{\Omega}|w|^{4} \mathrm{~d} x \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \operatorname{Re} \int_{\Omega} f \bar{v} \mathrm{~d} x \leqslant 2\|f\|_{2} \cdot\|v\|_{2} \leqslant\|f\|_{2}^{2}+\|v\|_{2}^{2} \tag{2.4}
\end{equation*}
$$

Now we substitute (2.3) and (2.4) into (1.16) to get

$$
\begin{align*}
\partial_{t} \int_{\Omega}|v|^{2} \mathrm{~d} x & =-2 a\|\nabla v\|_{2}^{2}-b\|v\|_{4}^{4}+C \int_{\Omega}|w|^{4} \mathrm{~d} x+\|f\|_{2}^{2}+\|v\|_{2}^{2} \\
& \leqslant-2 a\|\nabla v\|_{2}^{2}+C \int_{\Omega}|w|^{4} \mathrm{~d} x+\|f\|_{2}^{2}+\|v\|_{2}^{2} \tag{2.5}
\end{align*}
$$

Since $f \in L^{2}, w \in C\left([0, T], H^{1}(\Omega)\right)\left(\Omega \subset \mathbb{R}^{n}, n \leqslant 3\right)$, Gronwall's inequality implies that the L^{2} norm of v is bounded.

For H^{1} estimate, we need to define

$$
\begin{equation*}
E_{\delta}(v(t))=\frac{1}{2 b}\|\nabla v\|_{2}^{2}+\frac{\delta}{4 a}\|v\|_{4}^{4} \tag{2.6}
\end{equation*}
$$

where δ is a positive constant. Under the condition that $-1-\frac{\alpha \beta}{a b}<\sqrt{3}\left|\frac{\alpha}{a}-\frac{\beta}{b}\right|$, based on similar approach as in [11] (pp. 203-205), (1.15) and (1.16) imply that

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} E_{\delta}(v(t)) \leqslant & C E_{\delta}(v(t))-\mu\left(\|\Delta v\|_{2}^{2}+\|v\|_{6}^{6}\right) \\
& +C\left(\int_{\Omega}\left|G\left\|\Delta v\left|\mathrm{~d} x+\int_{\Omega}\right| f| | \Delta v\left|\mathrm{~d} x+\int_{\Omega}\right| G\right\| v\right|^{3}+\int_{\Omega}|f||v|^{3} \mathrm{~d} x\right) \tag{2.7}
\end{align*}
$$

for some $\mu>0$. The following estimates are easily verified:

$$
\begin{align*}
& \int_{\Omega}|G||\Delta v| \mathrm{d} x \leqslant \frac{\mu}{2}\|\Delta v\|_{2}^{2}+\frac{1}{2 \mu} \int_{\Omega}|G|^{2} \mathrm{~d} x, \tag{2.8}\\
& \int_{\Omega}|G|^{2} \mathrm{~d} x \leqslant \epsilon_{1} \int_{\Omega}|v|^{6} \mathrm{~d} x+C \int_{\Omega}|w|^{6} \mathrm{~d} x, \tag{2.9}\\
& \int_{\Omega}|f||\Delta v| \mathrm{d} x \leqslant \frac{\mu}{2}\|\Delta v\|_{2}^{2}+\frac{1}{2 \mu} \int_{\Omega}|f|^{2} \mathrm{~d} x, \tag{2.10}\\
& \int_{\Omega}|G||v|^{3} \mathrm{~d} x \leqslant \epsilon_{2} \int_{\Omega}|v|^{6} \mathrm{~d} x+\frac{1}{4 \epsilon_{2}} \int_{\Omega}|G|^{2} \mathrm{~d} x, \tag{2.11}\\
& \int_{\Omega}|f||v|^{3} \mathrm{~d} x \leqslant \epsilon_{3} \int_{\Omega}|v|^{6}+\frac{1}{4 \epsilon_{3}} \int_{\Omega}|f|^{2} \mathrm{~d} x \tag{2.12}
\end{align*}
$$

for sufficiently small $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$.
From these estimates along with (2.6) we obtain the following estimate

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} E_{\delta}(v(t)) \leqslant C E_{\delta}(v(t))+C\left(\|f\|_{2}^{2}+\|w\|_{6}^{6}\right) . \tag{2.13}
\end{equation*}
$$

Here we treat C as a generic constant. Since $f \in L^{2}\left(Q_{T}\right)$ and $w \in C\left([0, T], H^{1}(\Omega)\right.$) (which implies that $w \in L^{6}$ for $n \leqslant 3$). Gronwall's inequality yields that

$$
\begin{equation*}
E_{\delta}(v(t)) \leqslant C \tag{2.14}
\end{equation*}
$$

This shows that v is a global solution. Consequently u is also a global solution and Theorem 2.1 is proved.

References

[1] H. Gao, C. Bu, Dirichlet inhomogeneous boundary value problem for the $n+1$ Ginzburg-Landau equation, J. Differen. Equat. 198 (2004) 176-195.
[2] A. van Harten, On the validity of the Ginzburg-Landau equation, J. Nonlinear Sci. 1 (1991) 397-422.
[3] J. Ghidaglia, R. Heron, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physica D 28 (1987) 282-304.
[4] C.R. Doering, J.D. Gibbon, D. Holm, B. Nicolaenko, Low-dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity 1 (1988) 279-309.
[5] M.V. Bartucelli, P. Constantin, C.R. Doering, J.D. Gibbon, M. Gisselfalt, On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Physica D 44 (1990) 412-444.
[6] C. Doering, J.D. Gibbon, C.D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D 71 (1994) 285-318.
[7] A. Mielke, G. Schneider, Attractors for modulation equation on unbounded domains, existence and comparison, Nonlinearity 8 (1995) 743-768.
[8] M.V. Bartucelli, J.D. Gibbon, M. Oliver, Length scales in solutions of the complex Ginzburg-Landau equation, Physica D 89 (1996) 267-286.
[9] C.D. Levermore, M. Oliver, The complex Ginzburg-Landau equation as a model problem, Dynamical System and Probabilistic Methods for Nonlinear Waves. Lectures in Appl. Math. 31 (1996) 141-189.
[10] J. Ginibre, G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, I, Physica D 95 (1996) 191-228.
[11] A. Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity 10 (1997) 199-222.
[12] C. Bu, The Ginzburg-Landau equation: posed in a quarter-plane, J. Math. Anal. Appl. 176 (1993) 493-520.
[13] A. Pazy, Semigroup of Linear Operators and Applications to PDE, Springer, New York, 1983.
[14] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
[15] J.L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problem and Applications, Springer-Verlag, 1972.

[^0]: * Corresponding author.

 E-mail address: cbu@wellesley.edu (C. Bu).
 ${ }^{1}$ Supported by a grant of NSF of China 10571087, SRFDP No. 20050319001, a Jiangsu Province NSF Grant BK2006523, Natural Science Foundation of Jiangsu Education Commission No. 05KJB110063 and the Teaching and Research Award Program for Outstanding Young Teachers in Nanjing Normal University (2005-2008).
 ${ }^{2}$ Supported by the Brachman-Hoffman Small Grant and a Wellesley College faculty research award.

