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Abstract

In this Letter, a generalized new auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differ-
ential equations. With the aid of symbolic computation, we choose the combined KdV–mKdV equation and the (2 + 1)-dimensional asymmetric
Nizhnik–Novikov–Vesselov equations to illustrate the validity and advantages of the method. As a result, many new and more general exact
solutions are obtained.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that nonlinear complex physical phenomena are related to nonlinear partial differential equations (NLPDEs)
which are involved in many fields from physics to biology, chemistry, mechanics, etc. As mathematical models of the phenomena,
the investigation of exact solutions of NLPDEs will help one to understand these phenomena better. With the development of soliton
theory, various methods for obtaining exact solutions of NLPDEs have been presented, such as inverse scattering method [1], Hiro-
ta’s bilinear method [2], Bäcklund transformation [3], Painlevé expansion [4], tanh function method [5,6], sine–cosine method [7],
homogeneous balance method [8], homotopy perturbation method [9], variational method [10], asymptotic methods [11], non-
perturbative methods [12], exp-function method [13], Adomian Padé approximation [14], algebraic method [15,16], Jacobi elliptic
function expansion method [17], F -expansion method [18], auxiliary equation method [19–22], Weierstrass semi-rational expan-
sion method [23], unified rational expansion method [24] and so on. Recently, Sirendaoreji [25] proposed a new auxiliary equation
method by introducing a new first-order nonlinear ordinary differential equation with six-degree nonlinear term and its solutions to
construct exact traveling wave solutions of NLPDEs in a unified way. By using this method, Sirendaoreji [25] obtained many new
exact traveling wave solutions of four NLPDEs under the constraint c = 0.

The present Letter is motivated by the desire to generalize the work made in [25] by proposing a new and more general ansatz so
that it can be used to construct more general exact solutions which contain not only the results obtained by using the method in [25]
as special cases but also a series of new and more general exact solutions, in which the restrictions on ξ as merely a linear function
of x and t , coefficients as constants and c = 0 are removed. For illustration, we apply this method to the combined KdV–mKdV
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equation and the (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equations and successfully obtain many new and
more general exact solutions.

The rest of this Letter is organized as follows: in Section 2, we give the description of the generalized new auxiliary equa-
tion method; in Section 3, we apply this method to the combined KdV–mKdV equation and the (2 + 1)-dimensional asymmetric
Nizhnik–Novikov–Vesselov equations; in Section 4, some conclusions are given.

2. A generalized new auxiliary equation method

For a given NLPDE with independent variables x = (t, x1, x2, . . .) and dependent variable u:

(1)F(u,ut , ux1 , ux2 , . . . , ux1t , ux2t . . . , utt , ux1x1 , ux2x2 , . . .) = 0,

we seek its solutions in the new and more general form:

(2)u = a0 +
n∑

i=1

{
aiz

i(ξ) + biz
i−1(ξ)z′(ξ)

}
,

with z(ξ) satisfying the new auxiliary equation:

(3)z′2(ξ) =
(

dz

dξ

)2

= az2(ξ) + bz4(ξ) + cz6(ξ),

where a0 = a0(x), ai = ai(x), bi = bi(x) (i = 1,2, . . . , n) and ξ = ξ(x) are functions to be determined; a, b and c are real constants.
Eq. (3) has some special solutions which are listed in Table 1. To determine u explicitly, we take the following four steps.

Step 1. Determine the integer n. Substituting (2) along with (3) into Eq. (1) and balancing the highest order partial derivative
with the nonlinear terms in Eq. (1), we can obtain the value of n. For example, in the case of KdV equation:

(4)ut + 6uux + uxxx = 0,

we have n = 4.
Step 2. Derive the system of equations. Taking account of the value of n obtained in Step 2 and substituting (2) along with (3)

into Eq. (1) and collecting coefficients of zj (ξ)z′ l (ξ ) (l = 0,1; j = 0,1,2, . . .), then setting each coefficient to zero, we can derive
a set of over-determined partial differential equations for a0, ai , bi and ξ .

Step 3. Solve the system of equations. Solving the system of over-determined partial differential equations obtained in Step 2 by
use of Mathematica, we can obtain the explicit expressions for a0, ai , bi and ξ .

Step 4. Obtain exact solutions. By using the results obtained in the above steps, we can derive a series of fundamental solutions of
Eq. (1) depending on the solution z(ξ) of Eq. (3). Selecting appropriate zi(ξ) from Table 1 and substituting it into the fundamental
solutions, we can obtain exact solutions of Eq. (1).

Remark 1. By using the method in [25], we have n = 2 for Eq. (4). From (2.6) in [15], we get m = 4 which leads to c = 0 in
Eq. (3). By our method, however, we get m = 6 which removes the constraint c = 0.

Table 1
Solutions of Eq. (3) with � = b2 − 4ac, ε = ±1

No. zi (ξ) No. zi (ξ)

1 sech(
√

aξ)
( −ab

b2−ac(1+ε tanh(
√

aξ))2

)1/2
, a > 0 8 sec(

√−aξ)
( −a

b+2ε
√−ac tan(

√−aξ)

)1/2
, a < 0, c > 0

2 csch(
√

aξ)
(

ab

b2−ac(1+ε coth(
√

aξ))2

)1/2
, a > 0 9 csch(

√
aξ)

(
a

b+2ε
√

ac coth(
√

aξ)

)1/2
, a > 0, c > 0

3
(

2a

ε
√

� cosh(2
√

aξ)−b

)1/2
, a > 0, � > 0 10 csc(

√−aξ)
( −a

b+2ε
√−ac cot(

√−aξ)

)1/2
, a < 0, c > 0

4
(

2a

ε
√

� cos(2
√−aξ)−b

)1/2
, a < 0, � > 0 11

(− a
b
(1 + ε tanh(

√
aξ))

)1/2, a > 0, � = 0

5
(

2a

ε
√−� sinh(2

√
aξ)−b

)1/2
, a > 0, � < 0 12

(− a
b
(1 + ε coth(

√
aξ))

)1/2, a > 0, � = 0

6
(

2a

ε
√

� sin(2
√−aξ)−b

)1/2
, a < 0, � > 0 13 4

(
ae2ε

√
aξ

(e2ε
√

aξ −4b)2−64ac

)1/2
, a > 0

7 sech(
√

aξ)
( −a

b+2ε
√

ac tanh(
√

aξ)

)1/2
, a > 0, c > 0 14 4

(
aεe2ε

√
aξ

(1−64ace4ε
√

aξ )

)1/2
, a > 0, b = 0
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3. Applications of the method

In this section, we would like to apply our method to obtain new and more general exact solutions of two important NLPDEs.

Example 1. Consider the combined KdV–mKdV equation:

(5)ut + 6αuux + 6βu2ux + γ uxxx = 0,

where α, β and γ are constants. This equation is widely used in various physics and quantum fields such as solid-state physics,
plasma physics, fluid physics and quantum field theory. Lou and Chen [26] found solitary wave solutions and cnoidal wave solutions
of Eq. (5) by using a mapping approach. Zhao et al. [27] got soliton-like solutions of Eq. (5) by applying the extended tanh method.
Very recently, Zhao et al. [28] and Sirendaoreji [25] obtained traveling wave solutions by means of a new Riccati equation expansion
method and a new auxiliary equation method.

According to Step 1, we get n = 2 for u. In order to search for explicit solutions, we assume that Eq. (5) has the following formal
solution:

(6)u = a0 + a1z(ξ) + a2z
2(ξ) + b1z

′(ξ) + b2z(ξ)z′(ξ),

where a0 = a0(t), a1 = a1(t), a2 = a2(t), b1 = b1(t), b2 = b2(t), η = η(t), ξ = kx + η, k is a non-zero constant.
With the aid of Mathematica, substituting (6) along with Eq. (3) into Eq. (5) and setting each coefficient of zj (ξ)z′ l (ξ ) (l =

0,1; j = 1,2, . . .) to zero, we get a set of over-determined partial differential equations for a0, a1, a2, b1, b2 and η. Solving the
system of over-determined partial differential equations by use of Mathematica and choosing c0 as an arbitrary constant, we obtain
the following results:

Case 1.1.

(7)a0 =
−cα ± kbβ

√
− cγ

β

2cβ
, a1 = 0, a2 = ±2k

√
−cγ

β
,

(8)b1 = 0, b2 = 0, η = k(3cα2 + k2βγ (3b2 − 8ac))

2cβ
t + c0.

Case 1.2.

(9)a0 = − α

2β
, a1 = ±k

√
−bγ

β
, a2 = 0,

(10)b1 = 0, b2 = 0, η = k(3α2 − 2k2aβγ )

2β
t + c0, c = 0.

Substituting Case 1.1 along with z1(ξ) in Table 1 into (6), we obtain exact traveling wave solution of Eq. (5):

u =
−cα + kbβ

√
− cγ

β

2cβ
∓

2kab
√

− cγ
β

sech2(
√

aξ)

b2 − ac(1 + ε tanh(
√

aξ))2
,

where ξ = kx + k(3cα2+k2βγ (3b2−8ac))
2cβ

t + c0.
From (6), Cases 1.1–1.2 and Table 1, we can obtain other exact solutions of Eq. (5), here we omit them for simplicity. It is noted

that the special case ω = k(3α2−2k2aβγ )
2β

, c0 = 0 and k = 1 in Case 1.2 will recover (29) given in [25]. All the solutions obtained
from Case 1.1 cannot be obtained by the method in [25].

Example 2. Consider the (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equations:

(11)ut − uxxx + α(uv)x = 0,

(12)ux + βvy = 0,

where α and β are all nonzero constants. Jiao et al. [29] obtained new traveling wave solutions of Eqs. (11) and (12) by using an
extended method.

According to Step 1, we get n = 4 for u and v. We assume that Eqs. (11) and (12) have the following formal solutions:

(13)u = a0 + a1z(ξ) + a2z
2(ξ) + a3z

3(ξ) + a4z
4(ξ) + b1z

′(ξ) + b2z(ξ)z′(ξ) + b3z
2(ξ)z′(ξ) + b4z

3(ξ)z′(ξ),

(14)v = A0 + A1z(ξ) + A2z
2(ξ) + A3z

3(ξ) + A4z
4(ξ) + B1z

′(ξ) + B2z(ξ)z′(ξ) + B3z
2(ξ)z′(ξ) + B4z

3(ξ)z′(ξ),
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where a0 = a0(y, t), a1 = a1(y, t), a2 = a2(y, t), a3 = a3(y, t), a4 = a4(y, t), b1 = b1(y, t), b2 = b2(y, t), b3 = b3(y, t), b4 =
b4(y, t), A0 = A0(y, t), A1 = A1(y, t), A2 = A2(y, t), A3 = A3(y, t), A4 = A4(y, t), B1 = B1(y, t), B2 = B2(y, t), B3 = B3(y, t),
B4 = B4(y, t), η = η(y, t), ξ = kx + η, k is a nonzero constant.

With the aid of Mathematica, substituting (13) and (14) along with Eq. (3) into Eqs. (11) and (12), then setting each coefficient
of zj (ξ)z′ l (ξ ) (l = 0,1; j = 1,2, . . .) to zero, we get a set of over-determined partial differential equations for a0, a1, a2, a3, a4,
b1, b2, b3, b4, A0, A1, A2, A3, A4, B1, B2, B3, B4 and η. Solving the system of over-determined partial differential equations by
use of Mathematica, we obtain the following results:

Case 2.1.

(15)a0 = −β(4k2a + αC)f1(y)

kα
, a1 = 0, a2 = −6kbβf1(y)

α
, a3 = 0, a4 = −12kcβf1(y)

α
,

(16)

b1 = 0, b2 = ∓12kβ
√

cf1(y)

α
, b3 = 0, b4 = 0, A0 = −kαC + f ′

2(t)

kα
, A1 = 0, A2 = 6k2b

α
,

(17)

A3 = 0, A4 = 12k2c

α
, B1 = 0, B2 = ±12k2√c

α
, B3 = 0, B4 = 0, η =

∫
f1(y) dy + f2(t),

where f1(y) and f2(t) are arbitrary functions of y and t , respectively, C is an arbitrary constant, and f ′
2(t) = df2(t)/dt .

Case 2.2.

(18)a0 = −β(4k2a + αC)f1(y)

kα
, a1 = 0, a2 = −12kbβf1(y)

α
, a3 = 0, a4 = −24kcβf1(y)

α
,

(19)b1 = 0, b2 = 0, b3 = 0, b4 = 0, A0 = −kαC + f ′
2(t)

kα
, A1 = 0, A2 = 12k2b

α
, A3 = 0,

(20)A4 = 24k2c

α
, B1 = 0, B2 = 0, B3 = 0, B4 = 0, η =

∫
f1(y) dy + f2(t), c = b2

4a
,

where f1(y) and f2(t) are arbitrary functions of y and t , respectively, C is an arbitrary constant, and f ′
2(t) = df2(t)/dt .

Case 2.3.

(21)a0 = −β(k2a + αC)f1(y)

kα
, a1 = 0, a2 = −3kbβf1(y)

α
, a3 = 0, a4 = 0,

(22)b1 = ∓3kβ
√

bf1(y)

α
, b2 = 0, b3 = 0, b4 = 0, A0 = −kαC + f ′

2(t)

kα
, A1 = 0, A2 = 3k2b

α
,

(23)

A3 = 0, A4 = 0, B1 = ±3k2
√

b

α
, B2 = 0, B3 = 0, B4 = 0, η =

∫
f1(y) dy + f2(t), c = 0,

where f1(y) and f2(t) are arbitrary functions of y and t , respectively, C is an arbitrary constant, and f ′
2(t) = df2(t)/dt .

Substituting Case 2.1 along with z2(ξ) in Table 1 into (13) and (14), we obtain exact nontraveling wave solutions of Eqs. (11)
and (12):

u = −β(4k2a + αC)f1(y)

kα
− 6kab2βf1(y) csch2(

√
aξ)

α(b2 − ac(1 + ε coth(
√

aξ))2)
− 12ka2b2cβf1(y) csch4(

√
aξ)

α[b2 − ac(1 + ε coth(
√

aξ))2]2

∓ 6kab
√

acβf1(y) csch4(
√

aξ)[(2ac − b2) sinh(2
√

aξ) + 2acε cosh(2
√

aξ)]
α[b2 − ac(1 + ε coth(

√
aξ))2]2

,

v = −kαC + f ′
2(t))

kα
+ 6k2ab2 csch2(

√
aξ)

α(b2 − ac(1 + ε coth(
√

aξ))2)
+ 12k2a2b2c csch4(

√
aξ)

α[b2 − ac(1 + ε coth(
√

aξ))2]2

± 6k2ab
√

ac csch4(
√

aξ)[(2ac − b2) sinh(2
√

aξ) + 2acε cosh(2
√

aξ)]
α[b2 − ac(1 + ε coth(

√
aξ))2]2

,

where ξ = kx + ∫
f1(y) dy + f2(t).

From (13) and (14), Cases 2.1–2.3 and Table 1, we can obtain other exact solutions of Eqs. (11) and (12), here we also omit
them for simplicity. The Cases 2.1 and 2.2 cannot be obtained by the method in [25]. All the solutions obtained from Cases 2.1–2.3
are new and have not been reported yet.
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Remark 2. All the results reported in this Letter have been checked with Mathematica. By using our method, we can obtain many
new and more general exact solutions of the other NLPDEs in [25] including all the solutions given there as special cases. It shows
that our method is more powerful than the method in [25] in constructing exact solutions of NLPDEs.

4. Conclusion

In short, we have presented a generalized new auxiliary equation method to construct more general exact solutions of NLPDEs.
With the help of Mathematica, the method provides a powerful mathematical tool to obtain more general exact solutions of a
great many NLPDEs in mathematical physics. Compared with the method in [25], our method is more powerful. It can be used
to construct more general exact solutions which contain not only the results obtained by using the method in [25] as special cases
but also a series of new and more general exact solutions. In order to illustrate the validity and advantages of our method, we have
applied it to the combined KdV–mKdV equation and the (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equations.
As a result, many new and more general exact solutions have been obtained. To our knowledge, these solutions have not been
reported. It may be important to explain some physical phenomena.
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