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Abstract.

A mixed trigonometric polynomial system, which rather frequently occurs in applications, is
a polynomial system where the monomials contain a mixture of some variables and sine and
cosine functions applied to the other variables. Polynomial systems coming from the mixed
trigonometric polynomial systems have a special structure. Applying this structure, we have
presented a hybrid polynomial system solving method, which is more efficient than random
product homotopy method and polyhedral homotopy method in solving this class of systems.
In this paper, a symmetric homotopy is constructed and, combining homotopy method, de-
composition and elimination techniques, a more efficient hybrid method for solving this class
of polynomial systems is presented. Keeping the symmetric structure, only part of homotopy
paths have to be traced, and more important, the computation work can be reduced due to the
inconsistent subsystems, which need not to be solved at all. Exploiting the new hybrid method,
some problems from the literature and a challenging practical problem, which cannot be solved
by the existent polynomial system solving method, are solved. Numerical results show that our
method is more efficient than the polyhedral homotopy method or hybrid solving method, which
are the state-of-art sparse polynomial system solving methods for high dimensional and highly
sparse polynomial systems coming from mixed trigonometric polynomial systems.
Key words. polynomial system, mixed trigonometric polynomial system, homotopy method,
hybrid algorithm, symbolic-numeric computation.
AMS subject classifications. 65H10, 65H20, 68W30.

1 Introduction

A mixed trigonometric polynomial system (abbreviated by MTPS) is a polynomial system whose
monomial is mixed by some variables and sine and cosine functions applied to the other variables.
This class of systems occurs in many fields of science and engineering, such as neurophysiology
[22], kinematics [3, 22], PUMA robot[17, 18], and etc.. Formally, A MTPS can be shown as
follows:

F (y, θ) = (f1(y, θ), · · · , fn+m(y, θ))T = 0, (1)
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where y = (y1, · · · , yn), θ = (θ1, . . . , θm), and for 1 ≤ i ≤ n + m,

fi(y, θ) =
∑

α∈Si

biαyβ sinµ θ cosν θ + c1
i , (2)

where α = (β, µ, ν), Si ⊂ N n+2m (here, for convenience, we write the constant term of fi(y, θ)
explicitly, i.e., ∀ i, 0 /∈ Si) and





yβ = yβ1
1 · · · yβn

n ,

sinµ θ = sinµ1 θ1 · · · sinµm θm,

cosν θ = cosν1 θ1 · · · cosνm θm,

(3)

Example 1.1. This is a challenging practical problem we meet in signal processing of sonar
and radar, which is the original motivation of this research.





n∑
i=1

yi = c1
1,

n∑
i=1

y2
i = c1

2,

n∑
i=1

yi sin θi = c1
3,

n∑
i=1

yi cos θi = c1
4,

n∑
i=1

yi sin2 θi = c1
5,

n∑
i=1

yi sin θi cos θi = c1
6,

n∑
i=1

y2
i sin θi = c1

7,
n∑

i=1
y2

i cos θi = c1
8,

n∑
i=1

y2
i sin2 θi = c1

9,
n∑

i=1
y2

i sin θi cos θi = c1
10,

n∑
i=1

y2
i sin2 θi cos θi = c1

11,
n∑

i=1
y2

i sin θi cos2 θi = c1
12,

n∑
i=1

y2
i sin3 θi cos θi = c1

13,
n∑

i=1
y2

i sin4 θi = c1
14.

(4)

where, n = 2 to 7 (if n < 7, then only the first 2n equations are needed).
Substituting occurrences of yi, sin θj and cos θj with new variables xi, xn+j and xn+m+j and

adding quadratic equations of the form x2
n+j +x2

n+m+j−1 = 0, where i = 1, . . . , n, j = 1, . . . , m,
the MTPS F (y, θ) = 0 in (1), (2) and (3) can be transformed to the following polynomial system:

P (x) =




p1(x) + c1
1

· · ·
pn+m(x) + c1

n+m

x2
n+1 + x2

n+m+1 − 1
· · ·

x2
n+m + x2

n+2m − 1




= 0, (5)

where
pi(x) =

∑

α∈Si

biαxα. (6)

2

http://www.paper.edu.cn中国科技论文在线 



Example 1.2 (Example 1.1 continued).




n∑
i=1

xi = c1
1,

n∑
i=1

x2
i = c1

2,

n∑
i=1

xixn+i = c1
3,

n∑
i=1

xixn+m+i = c1
4,

n∑
i=1

xix
2
n+i = c1

5,
n∑

i=1
xixn+ixn+m+i = c1

6,

n∑
i=1

x2
i xn+i = c1

7,
n∑

i=1
x2

i xn+m+i = c1
8,

n∑
i=1

x2
i x

2
n+i = c1

9,
n∑

i=1
x2

i xn+ixn+m+i = c1
10,

n∑
i=1

x2
i x

2
n+ixn+m+i = c1

11,
n∑

i=1
x2

i xn+ix
2
n+m+i = c1

12,

n∑
i=1

x2
i x

3
n+ixn+m+i = c1

13,
n∑

i=1
x2

i x
4
n+i = c1

14,

x2
n+1 + x2

n+m+1 = 1, x2
n+2 + x2

n+m+2 = 1,

· · · · · ·
x2

n+m−1 + x2
n+2m−1 = 1, x2

n+m + x2
n+2m = 1.

(7)

Polynomial systems coming from MTPSs have a special structure: its lower part consists of
m equations of the form x2

n+i +x2
n+m+i−1, i = 1, . . . , m, which possesses an inherent symmetry:

the permutation of xn+i and xn+m+i and that of (xn+i, xn+m+i) and (xn+j , xn+m+j) and that of
(xn+i, xn+m+i) and (xn+m+j , xn+j) can not change the m equations except their orders. In this
paper, exploiting the special structure and the symmetry, a homotopy, which is a combination
of a special coefficient-parameter homotopy and the random product homotopy and keeps the
symmetry of its lower part, is constructed. Combining homotopy method, decomposition and
elimination techniques, an efficient method, named symmetric hybrid method, for solving this
class of polynomial systems is presented.

The paper is organized as follows. Introductions to homotopy methods and symmetric homo-
topy methods for solving polynomial systems are given in the rest of this section; The symmetric
hybrid method for solving polynomial systems coming from MTPSs is given in Section 2, and
also a theorem to ensure applying our symmetric homotopy can find all isolated solutions of the
target system is presented; The precise solving procedure and the advantage of our symmetric
hybrid method are described in Section 3; Numerical examples and applications are given in
Section 4.

1.1 Homotopy methods for solving polynomial systems

Homotopy method is an efficient numerical method for solving polynomial systems. The homo-
topy method is to define a polynomial system Q(x) = 0, known as the start system, and then
follow the curves in the variable t consisting of the solutions of

H(x, t) = (1− t)Q(x) + tP (x)
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to get the solutions of the target system P (x) = 0. If the start system Q(x) = 0 is chosen
correctly, the following three properties hold [7]:
Triviality: The solutions of H(x, 0) = 0 are known.
Smoothness: The solution set of H(x, t) = 0 for all 0 ≤ t < 1 consists of a finite number of
smooth paths, each parameterized by t ∈ [0, 1).
Accessibility: Every isolated solutions of H(x, 1) = 0 can be reached by some paths originating
at a solution of H(x, 0) = 0.

When these three properties hold, tracing numerically homotopy paths in the variable t from
0 to 1, we can find all isolated solutions of P (x) = 0.

Standard homotopies, which generate Bézout number of homotopy paths, are given in
[6, 19, 28, 31]. Theoretically, standard homotopy can be used to find all isolated solutions of any
polynomial system. However, the polynomial systems arising in practice are often deficient, that
is, its actual number of solutions is less than Bézout number. For deficient systems, standard
homotopies generate many extraneous paths that tend to infinity and hence make wasted com-
putation. So studies on homotopy methods for solving polynomial systems are now focused on
exploiting sparsity of the system, that is, constructing better homotopy such that the number
of homotopy paths to be traced is proportional to the actual number of isolated solutions of the
target system. Many homotopies for deficient polynomial systems have been constructed, the
list is hardly exhaustive, see discussions in [4, 7, 8, 9, 11, 12, 13, 14, 15, 18, 20, 21, 23, 26, 27, 30],
and the many references contained therein.

For its essential complexity, polynomial system solving problem is far from satisfactorily
resolved. Above mentioned homotopy methods still can not be applied to efficiently solve prac-
tical polynomial systems of moderate size. As an example, for polynomial systems in (7), when
n = 5, 6, 7, Bézout numbers are 331776, 16588800, 1194393600 and multi-homogeneous Bézout
numbers are 73728, 3736576, 270811136 respectively. It is unsuitable to solve this class of poly-
nomial systems by the standard homotopy methods, multi-homogeneous homotopy methods or
other random product homotopy methods. And the polyhedral homotopy methods are also
difficult to be applied because computation of the BKK-bound and the mixed subdivision needs
too long time. Further effort needs to be made to solve polynomial systems more efficiently by
exploiting their special structure.

1.2 Hybrid polynomial system solving method for MTPS

Polynomial systems coming from MTPSs have a special structure: the last m equations are



x2
n+1 + x2

n+m+1 − 1
· · ·

x2
n+m + x2

n+2m − 1


 = 0.

In [29], by exploiting this special structure, we proposed a hybrid polynomial system solving
method for MTPS. It hybridizes the homotopy method and some symbolic computation tech-
niques, such as variable substitution, variable elimination, and some reduction techniques. The
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homotopy we constructed is also hybrid, it combines linear product homotopy and coefficient
parameter homotopy or cheater’s homotopy. The hybrid method is more efficient than the multi-
homogeneous homotopy method or the polyhedral homotopy method, which is the state-of-art
sparse polynomial system solving method for high dimensional and highly sparse problems.

However, for the polynomial systems in (7) in the case that n = 7, when applying the
polyhedral homotopy method to solve the start system, there are 6705152 homotopy paths
have to be traced, and finding the subdivision is also time-consuming; when applying hybrid
homotopy method to solve the target system, there are 40320 homotopy paths need to be traced.
The computational amount is still very large.

Further discoveries of the structure of the transformed polynomial system have to be ex-
plored. Besides the above special structure, the last m equations of polynomial systems coming
from MTPSs have an inherent symmetric structure: permutations

xn+i ↔ xn+m+i,

(xn+i, xn+m+i) ↔ (xn+j , xn+m+j), (xn+i, xn+m+i) ↔ (xn+i, xn+m+i)

do not change the last m equations except their orders. For a symmetric polynomial system, its
solutions can be divided to some equivalent classes, and all solutions in a class can be generated in
some rules by any solution, named “representative solution”, in it. If a homotopy is constructed
to keep the symmetry of the target polynomial system, then only the representative solution path
in each equivalent class should be traced, and hence the computational work can be decreased
a lot.

1.3 Homotopy methods for symmetric polynomial systems

In many cases, polynomial systems arising in practical problems are symmetric, and some sym-
metric homotopy methods have been published.

Some symmetric homotopy methods have been published. In [16], Meravý provided a sign-
symmetric homotopy for solving polynomial systems which have a symmetric solution set and
gave conditions upon start systems in the general cases. However, this homotopy was constructed
according to the classic theorem of Bézout which is not suitable for the deficient polynomial
systems. In [10], Li and Sauer applied the random product homotopy to what they called a
self-symmetric polynomial system, which belongs to polynomial systems that suitable to apply
the random product homotopy to solve. In [24], for the polynomial systems with a (G,V,W )-
symmetric structure, Verschelde and Cools gave an algorithm to verify whether a given system
is (G,V,W )-symmetric and presented how to construct a (G,V,W )-symmetric homotopy. Ap-
plying this homotopy, only the generating solution paths have to be traced. In [25], symmetric
polyhedral homotopies were constructed to deal with (G,V,W )-symmetric polynomial systems.

The existent methods for symmetric polynomial systems are mainly focused on the specially
symmetric structure, for the generally symmetric structure, these methods are hard to be applied
or generalized. Symmetric homotopy methods mentioned above are all unsuitable to be applied
to solve polynomial systems with the specially symmetric structure mentioned in Section 1.2.
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2 Symmetric hybrid methods for solving polynomial systems

coming from MTPSs

Motivated by [29] and the existent symmetric homotopies, we present a symmetric homotopy
and hybrid polynomial system solving method to solve the MTPSs more efficiently.

2.1 Symmetric hybrid homotopy

To keep the symmetric structure of polynomial systems in (5) and (6), we construct the following
symmetric homotopy:

H(x, t) = γ(1− t)Q(x) + tP (x), (8)

where

Q(x) =




p1(x) + c0
1

· · ·
pn+m(x) + c0

n+m

(s1xn+1 + s2xn+m+1 + s0)(s2xn+1 + s1xn+m+1 + s0)
· · ·

(s1xn+m + s2xn+2m + s0)(s2xn+m + s1xn+2m + s0)




, (9)

and γ, c0
1, . . . , c

0
n+m, s0, s1, s2 are all random nonzero complex numbers.

The start system Q(x) = 0 can be decomposed into 2m subsystems

Qσ(x) =




p1(x) + c0
1

· · ·
pn+m(x) + c0

n+m

sσ1xn+1 + s3−σ1xn+m+1 + s0

· · ·
sσmxn+m + s3−σmxn+2m + s0




= 0, (10)

where σ ∈ Σ , {(σ1, . . . , σm)|σi ∈ {1, 2}}.
Remark 2.1. The last m equations of the start system (9) have the same symmetric struc-
ture as those of the target system. If the target system is symmetric, then in the process of
tracing homotopy paths, only the representative solution paths have to be traced, and thus the
computational work can be reduced.

Specially, we can fix some coefficients in the start system, such as

Q(x) =




p1(x) + c0
1

· · ·
pn+m(x) + c0

n+m

(xn+1 + xn+m+1i + s)(xn+1i + xn+m+1 + s)
· · ·

(xn+m + xn+2mi + s)(xn+mi + xn+2m + s)




, (11)
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where s must be a random complex number instead of a fixed complex number, otherwise the
homotopy will not satisfy accessibility.

2.2 Homotopy theorem and its proof

In order to find all the solutions of the target system through numerically tracing the solution
paths of the homotopy map, we need to prove there exists a smooth path connecting every
solution of the target system and one solution of the start system.

Theorem 1 P (x), Q(x) are respectively as the systems in (5), (6) and (9). There exists an
open dense full-measure subset U of (n + m + 4)-dimensional complex space Cn+m+4, such that
for all {c0

1, . . . , c
0
n+m, s0, s1, s2, γ} ∈ U with s2

1 6= s2
2,

1. solutions of Q(x) = 0 are isolated and regular,

2. the smoothness and accessibility properties hold for the homotopy map H(x, t) defined in
(8) and (9).

To ensure the process of path following can be started, we must show that from every solution
of the start system, a homotopy path can be generated, that is, the solutions of the start system
should be nonsingular.

Lemma 1 There exists an open dense full-measure subset W1 of Cn+m, such that for (c0
1, . . . , c

0
n+m) ∈

W1 and any nonzero complex numbers s0, s1 and s2 with s2
1 6= s2

2,

s1xn+i + s2xn+m+i + s0, s2xn+i + s1xn+m+i + s0

are not both zero at any zero point of Q(x) in (9).

Proof: Without loss of generality, we prove the result for i = m under the assumption that

s1xn+j + s2xn+m+j + s0, s2xn+j + s1xn+m+j + s0

(1 ≤ j ≤ m− 1) are not both zero at any zero point of Q(x).
Consider the following polynomial system

R(x) =




p1(x) + c0
1

. . .

pn+m(x) + c0
n+m

(s1xn+1 + s2xn+m+1 + s0)(s2xn+1 + s1xn+m+1 + s0)
· · ·

(s1xn+m−1 + s2xn+2m−1 + s0)(s2xn+m−1 + s1xn+2m−1 + s0)
s1xn+m + s2xn+2m + s0

s1xn+2m + s2xn+m + s0




.
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Let Z0 be the zero set of



(s1xn+1 + s2xn+m+1 + s0)(s2xn+1 + s1xn+m+1 + s0)
· · ·

(s1xn+m−1 + s2xn+2m−1 + s0)(s2xn+m−1 + s1xn+2m−1 + s0)
s1xn+m + s2xn+2m + s0

s1xn+2m + s2xn+m + s0




. (12)

The Jacobian of (12) with respect to xn+1, . . . , nn+2m is

A =




a1 0 am+1

. . . 0
. . .

am−1 0 a2m−1

0 · · · 0 s1 0 · · · 0 s2

0 · · · 0 s2 0 · · · 0 s1




,

where {
ai = s1(s2xn+i + s1xn+m+i + s0) + s2(s1xn+i + s2xn+m+i + s0),
am+i = s2(s2xn+i + s1xn+m+i + s0) + s1(s1xn+i + s2xn+m+i + s0),

(13)

for 1 ≤ i ≤ m− 1. Because s2
1 6= s2

2, and one polynomial of

s1xn+i + s2xn+m+i + s0, s2xn+i + s1xn+m+i + s0

is nonzero for any solution of Q(x) = 0, A is of full rank and hence Z0 is a nonsingular (n+m−1)-
dimensional variety. Applying Bertini’s theorem ([2]) n + m − 1 times, there exist n + m − 1
subsets M1, . . . , Mn+m−1 of C, such that for c0

i /∈ Mi, the solution set N to



p1(x) + c0
1

. . .

pn+m−1(x) + c0
n+m−1

(s1xn+1 + s2xn+m+1 + s0)(s2xn+1 + s1xn+m+1 + s0)
· · ·

(s1xn+m−1 + s2xn+2m−1 + s0)(s2xn+2m−1 + s1xn+m−1 + s0)
s1xn+m + s2xn+2m + s0

s2xn+2m + s1xn+m + s0




= 0

is a 0 dimensional set and the set Mn+m = {c0
n+m = −pn+m(x) : x ∈ N} is a finite set in C, and

for (c0
1, . . . , c

0
n+m) chosen from W1 = Cn+m \ (M1 × · · · × Mn+m), an open dense full-measure

subset of Cn+m, R(x) = 0 has no solution. Thus the lemma follows.

Lemma 2 There exists an open dense full-measure subset W2 of Cn+m, such that for (c0
1, . . . , c

0
n+m) ∈

W2 and any nonzero complex numbers s0, s1, s2 with s2
1 6= s2

2, the solution set of Q(x) = 0 in (9)
consists of isolated nonsingular points.
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Proof: Let Y be the solution set to



(s1xn+1 + s2xn+m+1 + s0)(s2xn+1 + s1xn+m+1 + s0)
· · ·

(s1xn+m + s2xn+2m + s0)(s2xn+m + s1xn+2m + s0)


 = 0. (14)

The Jacobian of (14) with respect to xn+1, . . . , xn+2m is

B =




a1 am+1

. . . . . .
am a2m


 ,

where ai’s are as in (13) for i = 1, · · · ,m.
By Lemma 1, there exists a full-measure subset W1 of Cn+m such that for (c0

1, . . . , c
0
n+m) ∈ W1

and any nonzero complex numbers s0, s1, s2 with s2
1 6= s2

2, only one equation of

s1xn+k + s2xn+m+k + s0 = 0, s2xn+k + s1xn+m+k + s0 = 0

holds for any solution of Q(x) = 0, thus rankCB = m and Y is a nonsingular (n+m)-dimensional
variety.

After repeatedly utilizing Bertini’s Theorem n + m times, there exists a full-measure subset
W2 ⊂ W1 of Cn+m such that for (c0

1, . . . , c
0
n+m) ∈ W2 and any nonzero complex numbers s0, s1, s2

with s2
1 6= s2

2, all solutions to Q(x) = 0 are isolated and nonsingular.

Lemma 3 ([1]) If F0, . . . , Fn are homogeneous polynomials in x0, . . . , xn of degrees d0, . . . , dn,
then F0 = · · · = Fn = 0 has a nontrivial solution if and only if Res(F0, . . . , Fn) = 0, here,
Res(F0, . . . , Fn) is the resultant of F0, . . . , Fn, a homogeneous polynomial in all possible coeffi-
cients of Fi (i = 0, . . . , n).

Proof of Theorem 1: Proof: (1). Rewrite H(x, t) = 0 as H(x, τ) = Q(x) + τP (x) = 0,

where τ =
t

γ(1− t)
, and let H̃(x̃, τ) = Q̃(x̃) + τP̃ (x̃) be the homogenization of H(x, τ), where

Q̃(x̃) and P̃ (x̃) are the homogenization of Q(x) and P (x).

Denote

(
∂H̃(x̃, τ)

∂x̃

)
by H̃ ′(x̃, τ). If the solutions to H̃(x̃, τ) = 0 are singular, then the

following system
(

det(H̃ ′(x̃, τ))
H̃(x̃, τ)

)
= 0 (15)

has nontrivial solutions, thus by Lemma 3, the resultant Res(H̃, det(H̃ ′)), denoted by r(τ),
of H̃, det(H̃ ′) equals 0. Since solutions to Q(x) = 0 are regular, r(0) 6= 0 and r(τ) is not
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identically zero, the solution set S1 to r(τ) = 0 is finite, and the complementary set S2 of

{γ ∈ C :
t

γ(1− t)
∈ S1} is an open dense full-measure subset of C. For γ ∈ S2, r(τ) 6= 0, and

thus (15) has no solutions, that is, there exists an open dense full-measure subset U1 of Cn+m+1

such that the solutions to H(x, t) = 0 are nonsingular for (c0
1, . . . , c

0
n+m, s0, s1, s2, γ) ∈ U1 with

s2
1 6= s2

2.
(2) Refer to [29] for the proof of accessibility.

3 The solution procedure

Applying the symmetric homotopy (8) and (9), and combining the homotopy method with sym-
bolic method, such as decomposition and variable substitution and some reduction techniques,
we present our symmetric hybrid method as follows:
Algorithm 3.1 (Symmetric Hybrid Method for MTPS):

Step 1: Construct the symmetric hybrid homotopy as in (8) and (9).

Step 2: Decompose the start system in (9) into 2m subsystems Qσ(x) = 0 as (10).

Step 3: By variable substitution

xn+m+i = li(xn+i) , − sσi

s3−σi

xn+i − s0

s3−σi

(16)

for i = 1, . . . , m, Qσ(x) = 0 can be transformed to a new simpler system Q̂σ(x̂) = 0 with
less variables and equations:

Q̂σ(x̂) =




q1(x̂) + c0
1

· · ·
qn+m(x̂) + c0

n+m


 ,

where x̂ = (x1, . . . , xn+m) and for all 1 ≤ i ≤ n + m,

qi(x̂) =
∑

α∈Si

biα(x1, . . . , xn+m, l1(xn+1), . . . , lm(xn+m))α.

Hence solving Q(x) = 0 is equivalent to solving 2m systems Q̂σ(x̂) = 0 of dimension n+m.

Step 4: Reduce subsystems. Applying some symbolic reduction techniques to reduce the
subsystems so that they will have less upper bounds of solution number, and even assert
some of them have no solutions indeed.

Step 5: Solve the reduced subsystems by some existent homotopy method. If the target
system, and hence the start system, is symmetric, it is not necessarily to solve all the
reduced subsystems. Only the subsystems with representative solutions should be solved.
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Step 6: Expand the solutions of all subsystems by (16) to get all solutions to Q(x) = 0. These
solutions serve as the start points of the homotopy in (8).

Step 7: Trace homotopy paths. Applying predict-correct method to follow solution paths of
(8) to get all isolated solutions of the target system P (x) = 0.

Similar to the hybrid method in [29], the start system can be decomposed to some subsystems
in n + m variables, so it also possesses the advantage of the hybrid method in [29], which can
be stated briefly as follows:

• Tracing homotopy paths in (n + m)-dimensional space will be considerably faster than
that in (n + 2m)-dimensional space;

• Finding the best multi-homogeneous structure or the mixed subdivision of the reduced
subsystems of dimension n+m is much easier than that of the target system of dimension
n + 2m.

• Sometimes the subsystems Qσ(x̂) can be considerably reduced in Bézout number even
when the target system P (x) = 0 can hardly be reduced.

On the other hand, due to the application of the symmetry, the symmetric hybrid method
has two additional advantages as following:

• In Step 5, if the reduced subsystems are symmetric, exploiting homotopy methods for
symmetric polynomial systems, only the representative paths should be traced, and hence
decreases the computational work a lot. In Step 7, the same advantage holds if the target
system is symmetric.

• The symmetric hybrid method can keep the sparse structure of the target system better
than the hybrid method in [29] due to the symmetry of the last m equations in the start
system. The subsystems can be considerably reduced in multi-Bézout number and mixed
volume even when the target system can hardly be reduced. More important, at the
extreme case, we can find that part of the reduced subsystems Q̂σ(x̂) = 0 need not be
solved because some equations in them are obviously inconsistent. We name this class
of subsystems “inconsistent system” and other subsystems “consistent system”. Thus the
computational work can be reduced a lot, as stated in the following example.

Example 3.1 (Example 1.2 continued). Consider the transformed polynomial system in (7)
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for n = 3. We construct the start system as that in the hybrid method in [29]:

Q(x) =




x1 + x2 + x3 − c0
1

x2
1 + x2

2 + x2
3 − c0

2

x1x4 + x2x5 + x3x6 − c0
3

x1x7 + x2x8 + x3x9 − c0
4

x1x
2
4 + x2x

2
5 + x3x

2
6 − c0

5

x1x4x7 + x2x5x8 + x3x6x9 − c0
6

(a1
11x4 + a1

12x7 + a1
10)(a

2
11x4 + a2

12x7 + a2
10)

(a1
21x5 + a1

22x8 + a1
20)(a

2
21x5 + a2

22x8 + a2
20)

(a1
31x6 + a1

32x9 + a1
30)(a

2
31x6 + a2

32x9 + a2
30)




= 0.

Q(x) = 0 can be decomposed into 8 subsystems. For σ = (σ1, σ2, σ3), where σi ∈ {1, 2},
eliminating x7, x8, x9 and by some simple symbolic computation, Qσ(x) = 0 is equivalently
transformed to system of form

Q̂σ(x̂) =




x1 + x2 + x3 − c0
1

x2
1 + x2

2 + x2
3 − c0

2

x1x4 + x2x5 + x3x6 − c0
3

b1
1x2x5 + b1

2x3x6 + b1
3x1 + b1

4x2 + b1
5x3 + b1

6

x1x
2
4 + x2x

2
5 + x3x

2
6 − c0

5

b2
1x2x

2
5 + b2

2x3x
2
6 + b2

3x1x4 + b2
4x2x5 + b2

5x3x6 + b2
6




= 0,

whose mixed volume is 12.
We construct the start system as that in the symmetric hybrid method:

Qs(x) =




x1 + x2 + x3 − c0
1

x2
1 + x2

2 + x2
3 − c0

2

x1x4 + x2x5 + x3x6 − c0
3

x1x7 + x2x8 + x3x9 − c0
4

x1x
2
4 + x2x

2
5 + x3x

2
6 − c0

5

x1x4x7 + x2x5x8 + x3x6x9 − c0
6

(x4 + x7i + s)(x4i + x7 + s)
(x5 + x8i + s)(x5i + x8 + s)
(x6 + x9i + s)(x6i + x9 + s)




= 0.

Qs(x) = 0 can be decomposed into 8 subsystems. For σ = (1, 2, 2), eliminating x7, x8, x9

and by some simple symbolic computation, e.g., polynomial addition and variable substitution,
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Qσ(x) = 0 is equivalently transformed to

Q̂s
σ(x̂) =




x1 + x2 + x3 − c0
1

x2
1 + x2

2 + x2
3 − c0

2

2x1x4 + (s− si)x1 + sc0
1i + c0

4i− c0
3

2x2x5 + 2x3x6 + (s− si)(x2 + x3)− sc0
1 − c0

4i− c0
3

2x1x
2
4 + (s− si)x1x4 + c0

3si + c0
6i− c0

5

2x2x
2
5 + 2x3x

2
6 + (s− si)(x2x5 + x3x6)− sc0

3 − c0
6i− c0

5




= 0.

whose mixed volume is 8.
For σ = (1, 1, 1), eliminating x7, x8, x9, and by some simple symbolic computation, (??) is

equivalently transformed to

Q̂s
σ(x̂) =




x1 + x2 + x3 − c0
1

x2
1 + x2

2 + x2
3 − c0

2

x1x4 + x2x5 + x3x6 − c0
3

c0
3i + sic0

1 − c0
4

x1x
2
4 + x2x

2
5 + x3x

2
6 − c0

5

c0
5i + sic0

3 − c0
6




= 0.

For the generic choice of c0
1, c

0
3, c

0
4, c

0
5, c

0
6, s,

c0
3i + sic0

1 − c0
4 6= 0, c0

5i + sic0
3 − c0

6 6= 0.

Thus the subsystem is “inconsistent system” and need not be solved.

4 Numerical experiments and applications

In this section, symmetric hybrid method and hybrid method are respectively applied to solve
several deficient polynomial systems coming from MTPSs which appeared in the literature [3, 22]
and the practical problem in (7) for n = 3, 4, 5, 6, 7.

The elapsed time for solving start system were obtained by HOM4PS2 [5] running on a ma-
chine with Windows XP Professional operation system, Intel(R) Core(TM)2 2.0GHz processor
and 1.99GB of memory.

Throughout the remainder of this section, it will be convenient to use the following notations.

1. “BN”, “MBN” and “MV” respectively denote the Bézout number, multi-homogeneous
Bézout number and mixed volume of the target system.

2. “SN” denotes the total solution number of the target systems, and “RSN” dnotes the
representative solution number of the target system.
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3. “Hybrid-PH” is the elapsed time by hybrid method. “T1” is the elapsed time for solving
the start system by polyhedral homotopy method, and “T2” is the elapsed time for tracing
homotopy paths from t = 0 to t = 1, and “T”, the sum of “T1” and “T2”, is the total
time for solving the target system, and “Hybrid-SPH” is the elapsed time by symmetric
hybrid method.

4. “NT” is the total number of subsystems, and “NC” is the number of consistent subsystems.

Example 4.1 (d1 system in [3, 22]). For the target polynomial system, we construct the
start system Q(x) = 0 as (11). Q(x) = 0 can be decomposed into 26 6-dimensional polynomial
subsystems Qσ(x) = 0. For σ2 = σ3 = σ4 = 1,

Qσ(x) =




3x2 + 2x3 + x4 − c0
1

3x1x8 + 2x1x9 + x1x10 − c0
2

3x7x8 + 2x7x9 + x7x10 − c0
3

x2x5 + x3x5 + x4x5 − c0
4

x7x8x5 + x7x9x5 + x7x10x5 + x1x11 − c0
5

−x2x11x6 − x3x11x6 − x4x11x6 + x8x12 + x9x12 + x10x12 − c0
6

x1iσ1+3 + x7i3σ1+2 + s

x8 + x2i + s

x9 + x3i + s

x10 + x4i + s

x5iσ5+3 + x11i3σ5+2 + s

x6iσ6+3 + x12i3σ6+2 + s




. (17)

where c0
1, c

0
2, c

0
3, c

0
4, c

0
5, c

0
6, s are random nonzero complex numbers and σi ∈ {1, 2}.

The eighth to tenth equations are equivalent to

xk+6 = −xki− s, k = 2, 3, 4, (18)

and by variable substitution (18), the second equation and the third equation in Qσ(x) = 0 are
transformed to

{
−x1(3x2 + 2x3 + x4)i− 6sx1 = c0

2,

−x7(3x2 + 2x3 + x4)i− 6sx7 = c0
3.

Because 3x2 + 2x3 + x4 = c0
1, x1, x7 should satisfy





−c0
1x1i− 6sx1 − c0

2 = 0,

−c0
1x7i− 6sx7 − c0

3 = 0,

x1iσ1+3 + x7i3σ1+2 + s = 0,

(19)

and the system (19) is inconsistent due to the randomization of c0
1, c

0
2, c

0
3. Through the simple

analysis, we can find Qσ(x) = 0 has no solutions for all σ ∈ {(σ1, . . . , σ6)|σ2 = σ3 = σ4}. Thus
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the actual number of the subsystems need to be solved is 26− 2 · 23 = 48, and hence the number

of subsystems have to be solved is
3
4

times of the number of the total subsystems decomposed
from the start system.

Results are given in Table 4.1a and Table 4.1b.

Table 4.1a: Sizes of Example 4.1.
n m BN MBN MV SN RSN NT NC

0 6 4608 320 192 48 48 64 48

Table 4.1b: Elapsed time for Example 4.1.
Hybrid-PH Hybrid-SPH

T1 T2 T T1 T2 T

2.125 1.536 3.661 1.501 1.536 3.037

Example 4.2 (Polynomial system in (7) for n = 3). The solving procedure can see Example
3.1, and results are listed in Table 4.2a and Table 4.2b.

Table 4.2a: Sizes of Example 4.2.
n m BN MBN MV SN RSN NT NC

3 3 576 192 96 24 4 8 2

Table 4.2b: Elapsed time for Example 4.2.
Hybrid-PH Hybrid-SPH

T1 T2 T T1 T2 T

0.750 0.375 1.125 0.031 0.063 0.094

Example 4.3 (Polynomial system in (7) for n = 4).

Table 4.3a: Sizes of Example 4.3.
n m BN MBN MV SN RSN NT NC

4 4 10368 2464 992 192 8 16 1

Table 4.3b: Elapsed time for Example 4.3.
Hybrid-PH Hybrid-SPH

T1 T2 T T1 T2 T

9.750 3.774 13.524 0.266 0.472 0.738

Example 4.4 (Polynomial system in (7) for n = 5).

Table 4.4a: Sizes of Example 4.4.
n m BN MBN MV SN RSN NT NC

5 5 331776 73728 14592 960 8 32 2
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Table 4.4b: Elapsed time for Example 4.4.
Hybrid-PH Hybrid-SPH

T1 T2 T T1 T2 T

253.042 118.080 371.122 6.156 0.984 7.140

Example 4.5 (Polynomial system in (7) for n = 6).

Table 4.5a: Sizes of Example 4.5.
n m BN MBN MV SN RSN NT NC

6 6 16588800 3736576 301568 5760 8 64 1

Table 4.5b: Elapsed time for Example 4.5.
Hybrid-PH Hybrid-SPH

T1 T2 T T1 T2 T

1.018e+004 3.059e+003 1.324e+004 116.734 4.248 120.982

Example 4.6 (Polynomial system in (7) for n = 7).

Table 4.6a: Sizes of Example 4.6.
n m BN MBN MV SN RSN NT NC

7 7 1194393600 270811136 6705152 40320 8 128 2

Table 4.6b: Elapsed time for Example 4.6.
Hybrid-PH Hybrid-SPH

T1 T2 T T1 T2 T

>50 hours / >50 hours 3036.375 19.456 3.056e+003

Remark 4.1. In the procedure of solving polynomial systems, some symbolic computation,
e.g., decomposition, variable substitution and reduction should be proceeded, as stated in Step
2, Step 3, and Step 4 in Algorithm 3.1. The elapsed time for these operations are much less than
that of solving the start system and the target system, so we omit these time and only record
the elapsed time for solving start system and target system.
Remark 4.2. In [29], we can see that the hybrid method is more efficient than multi-homogeneous
homotopy method and polyhedral homotopy method, so in this paper we only compare the
elapsed time by symmetric hybrid method and hybrid method.
Remark 4.3. In Example 4.2 to Example 4.6, as showed in Example 3.1, on the one hand, the
subsystems can be considerably reduced in mixed volume, on the other hand, some subsystems
are inconsistent systems and need not be solved, and moreover, due to the symmetry, only one
or two consistent systems need to be solved, the computational work are reduced a lot.
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5 Conclusion

Mixed trigonometric polynomial systems rather frequently occur in many applications, such as
kinematics, mechanical system design and signal processing. A mixed trigonometric polynomial
system is a polynomial system whose monomial is a mixture of some variables and sine or cosine
functions applied to other variables. Through a simple variable substitution and adding m

quadratic equations of the form x2 + y2 − 1 = 0, a mixed trigonometric polynomial system can
be naturally transformed to a polynomial system. The appended m quadratic equations are
inherently symmetric.

In this paper, to keep the symmetry of the m appended equations and further the (partial)
symmetry of the target system, a symmetric hybrid homotopy and hybrid polynomial system
solving method are presented. The main work of our new algorithm is focused on solving
the start system, due to the special product structure of the last m polynomials, this work is
equivalent to find all isolated solutions of some subsystems of lower dimension. On the other
hand, by simple symbolic computation techniques, some subsystems can be reduced in Bézout
number or mixed volume, and furthermore, due to the symmetry, only partial subsystems need
to be solved, and in the process of path following, only the representative solution paths should
be followed. Numerical results show our new algorithm performs really well and is more efficient
than the hybrid method, and also the random product homotopy method or the polyhedral
homotopy method.
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