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We investigate the consequences of Birkhoff’s theorem in general relativity (GR) and in modified

Newtonian dynamics (MOND). We study, in particular, the system of a finite-mass test particle inside a

spherical shell. In both GR and MOND, we find nonvanishing acceleration for that test particle. The

direction of the acceleration is such that it pushes the test particle toward the center of the shell. In GR, the

acceleration is found analytically in the case of a small test mass with a small displacement from the

center of the shell. In MOND, the acceleration is found analytically in the limit of large test mass and

small displacement, and a comparison to numerical values is made. Numerical simulations are done for

more general cases with parameters that mimic the system of a galaxy in a cluster. In GR, the acceleration

is highly suppressed and physically insignificant. In MOND, on the contrary, the acceleration of the point

particle can be a significant fraction of the field just outside of the spherical shell.
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I. INTRODUCTION

Birkhoff’s theorem (BT) states that in general relativity
(GR) any spherically symmetric solution of the Einstein
field equations in vacuum must be stationary and asymp-
totically flat. As a consequence the metric exterior to a
spherically symmetric mass distribution must be a
Schwarzschild metric. One important corollary of the theo-
rem is that the metric inside a spherical shell (or inside the
innermost of a sequence of concentric such shells) is the
Minkowski metric.

Birkhoff’s theorem is the generalization from the
Newtonian theory to GR of Gauss’s law for gravity. As a
consequence of Gauss’s law, outside a spherically symmet-
ric mass distribution, the Newtonian gravitational field is
that of a point mass at the center of the distribution.
Meanwhile, the gravitational field anywhere inside any
spherical mass shell vanishes. In the context of the
inverse-square law of Newtonian gravity, these results are
easily understood. For example, at a point inside a spheri-
cal shell, the force on a test particle from any thin ring on
the shell is precisely balanced by the force due to a ring
subtending the same angle but directly opposite the first
ring, even if the test particle is not at the center. This is
because the decrease in the gravitational force due to one
ring being farther away from the test particle is precisely
balanced by the increase in area (and so mass) of that
farther-away ring.

One can think of Birkhoff’s theorem as describing the
motion of a zero-mass test particle in the presence of a
spherically symmetric mass distribution. A zero-mass test
particle does not spoil the spherical symmetry. However, in
realistic situations, the ‘‘test particles’’ probing a gravita-
tional field have a finite mass. Often, this mass is not small
at all, as in the case of a large galaxy inside a cluster.
Therefore, unless the test particle is at the center of the

distribution, its presence perturbs the system from spheri-
cal symmetry, spoiling the assumptions underlying BT.
This paper addresses the impact this violation of spherical
symmetry has both in GR and in theories that implement
the ideas of modified Newtonian dynamics (MOND).
MOND [1–3], the reader will recall, is an alternative to

dark matter in which the missing gravity problem of gal-
axies is solved by altering the gravitational force law,
rather than by introducing new unseen forms of matter.
In both GR and MOND, there are reasons to suspect that

the force on a test particle inside a spherical mass shell may
not actually vanish. General relativity is a metric theory.
Massive bodies change the geometry around them. A
massive test particle distorts the space around it and thus
a ‘‘spherical shell’’ ceases to be a spherical shell unless the
test particle is at its center. This distortion effect from the
test particle will appear in any modification of GR that
preserves its metric nature—such as DGP, TeVeS [4],
generalized Einstein aether (GEA), and fðRÞ.
In the case of MOND, which is not itself a metric theory

(although its covariant implementations, such as TeVeS
and GEA are), the inverse-square law which is crucial for
the vanishing acceleration of the test particle inside the
shell (or at least for our intuitive understanding of why it
vanishes) does not exist. MOND was proposed to explain
galactic rotation curves and therefore is characterized by a
gravitational field scaling as r�1 instead of r�2 at large
distances from a bounded mass distribution.
In what follows, we consider the mass distribution

shown in Fig. 1—a spherical shell of mass Ms plus an
interior off-center point mass Mk—of much lower mass.
We may consider this distribution to be a very simplified
version of, for example, a galaxy in a cluster, or a clump of
matter—star, globular cluster, clump of dark matter—in-
side a galaxy. For definiteness we will set the total mass of
the system to be typical of a gas-rich galaxy group,
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Mtotal ¼ 2:0� 1013M�, and take the radius of the shell to
be fixed at a typical cluster radius, R ¼ 0:64 Mpc. (For the
table of such a gas-rich cluster with MOND dynamical
mass, see [5]). We now proceed to investigate the accel-
eration of the point mass in both general relativity and
MOND.

II. GENERAL RELATIVITY

In Newtonian mechanics, a spherical shell is a well-
defined object. However, in GR, since particles change
the geometry around them, the simple definition of a
sphere as a set of points equidistant from some common
point (the center) is lost in the presence of a perturbing
mass. We define a spherical shell using parametrized post-
Newtonian (PPN) coordinates. We identify a point, the
center, such that the distance from the center in PPN
coordinates is the same for each point on the shell. We
call this distance R, the radius of the shell.

We can calculate the acceleration of the test particle in
GR from the Einstein-Infeld-Hoffman (EIH) equation [6]:
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Here ~ra ¼ ~xa � ~x and ~rab ¼ ~xa � ~xb. ~x is the spatial vari-
able in the PPN coordinate frame, and ~xa is the location of
object a. This equation describes the free fall of each point
in the system. In order to describe the acceleration of the
test particle in our system, we should remove from Eq. (2)
the terms that are associated with the acceleration of the
shell (which is much smaller than the acceleration of the
point particle). The acceleration is then

d2xk
dt2

¼ dvk

dt
’ �X

a�k

~rak
G2MaMk

r4ak

¼ �G2MkMs

4r2kR

�
ln

�
R� rk
Rþ rk

�
þ 2rkR

ðR2 � r2kÞ
�
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In obtaining the final result, we have replaced the sum by
an integral over the shell which we were able to perform.
Notice that there is a singularity as rk ! R. This singular-
ity is not real. It appears because PPN is not valid as rk is
very close to the shell.

Defining d ¼ rk=R, RSchs ¼ 2GMs, and gNs ¼ GMs

R2 ,

Eq. (2) can be written as
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where the last line is an expansion for small d.
The gravitational acceleration clearly does not vanish—

it points toward the center. A particle inside a spherical
shell is therefore attracted toward the center to restore
spherical symmetry, where the acceleration happily does
vanish. However, since Mk � Ms, the acceleration is very
small compared to, say, the Newtonian acceleration just
outside the shell, gNs. It is suppressed by both the ratio of
the test mass to the shell mass, and, more importantly, by
the ratio of the Schwarzschild radius RSchs of the shell to its
physical radius. This suppression factor is huge for typical
astrophysical systems 3:0� 10�6 for our choice of mass
and radius. This suppression factor makes the acceleration
physically insignificant in GR.

III. MOND

In 1984 Bekenstein and Milgrom introduced the
Lagrangian formulation of MOND [7]. The field equation
of MOND is derived from the Lagrangian

L ¼ �
Z

d3r

�
�c þ ð8�GÞ�1a20F

�ðrc Þ2
a20

��
; (4)

where c is the gravitational potential. F ðy2Þ, with y �
jrc j=a0, is an arbitrary universal function, that together
with a0, the characteristic scale of MOND, specifies the
theory. Varying L with respect to c yields a modified
Possion equation:

FIG. 1. Mass distribution: We consider a point particle inside a
large spherical shell. R denotes the radius of the shell, and rk
denotes the amount of displacement of the particle from the
center of the shell.
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r � ½�ðjrc j=a0Þrc � ¼ 4�G�ðxÞ; (5)

where �ðyÞ � F 0ðy2Þ. �ðyÞ must approach 1 as jyj � 1
and jyj as jyj � 1, in order that the field scale as 1

r2
near a

spherical mass distribution (the usual Newtonian result)
and as 1

r far from the mass distribution to explain flat galaxy

rotation curves.
One commonly used form of � is

�ðyÞ ¼ jyjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jyj2p : (6)

(However see [8] for a different form of the � function.)
The value of a0 is then given by a phenomenological fit.
Wewill adapt the value derived by Begeman et al. [9] in the
study of external galaxies with high quality rotation curves.

a0 ¼ 1:2� 10�10 m=s2: (7)

Again we consider the mass distribution in Fig. 1. The
center of the spherical shell is chosen to be the center of
coordinates. Because of the axial symmetry of the configu-
ration, we put the point particle on the z axis.

We assume that the radius of the shell is large enough
that the gravitational acceleration goes deep into the
MOND regime. For a bounded mass distribution of total
mass M, we define a transition radius

Rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a0

q
: (8)

Rt indicates a point at which the Newtonian field approxi-
mately equals a0, and this is about the point at which the
field switches from Newtonian 1=r2 to MOND’s 1=r.

Nonlinearity in the modified Possion equation negates
the superposition principle, and it makes an analytic cal-
culation of the field a nontrivial task. We present the
perturbative solution for the case Mk � Ms, and in more
general cases, we resort to numerical calculations.

IV. PERTURBATIVE CALCULATION

We first consider the mass of the particle inside the shell
to be much larger than the mass of the shell. In this case,
the density distribution of the spherical shell can be treated
as an aspherical perturbation on a spherical system—the
point mass—and a perturbative solution to the modified
Possion equation is possible. Let the density distribution of
the point particle and the spherical shell be �k and �shell,
respectively. Then the unperturbed field c 0 satisfies the
modified Poisson equation:

r � ½�ðjrc 0j=a0Þrc 0� ¼ 4�G�k: (9)

The exact solution for rc 0 can be found by applying
Gauss’s theorem. In terms of the quantity u ¼
GMk=a0j~r� ~rzj2,
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The expansion in small u is valid for j~r� ~rkj�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMk=a0

p
.

Knowing rc 0, one can find the first-order perturbation
equation for c 1 using

r � ½jrc 0j=a0ððrc 1 � ê0Þê0 þrc 1Þ� ¼ 4�G�shell;

(11)

where ê0 is a unit vector pointing in the direction of rc 0.
In the deep MOND regime where �ðjrc 0j=a0Þ 	
jrc 0j=a0, and in the limit R � rk, one can expand c 1

just inside and outside of the shell in powers of rkR . The first-

order aspherical contribution to the potential is
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The net force on the spherical shell due to c 0 and c 1 is
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ẑ: (13)

The net force on the shell points toward positive ẑ, having
the effect of restoring the spherical symmetry by moving
the shell so that it is centered on the point mass. The first
two terms result from c 0 and the last term comes from c 1.
We note that the first term, which is dominant over other
terms, is independent of the specific choice of the �
function. It is a consequence solely of the MOND condi-
tion: �ðyÞ ! y for y � 1.
The Lagrangian (4) from which the field equation (5) is

derived is invariant under spacetime translations and spa-
tial rotations. Energy momentum and angular momentum
conservation therefore hold for an isolated system in
MOND. In particular, Newton’s third law of action and
reaction is valid. Hence, the acceleration ak of the point
particle in the frame of the shell can be found from

Eq. (13). Writing Rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMk=a0

p
, d ¼ rk=R, and expand-

ing in a Taylor series,
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As expected, ak approaches zero as d ! 0. For d � 0, ak
points toward the center of the spherical shell. As the point
particle is displaced, the system reacts to restore the spheri-
cal symmetry. We see here that when the system as a whole
is not spherically symmetric, the acceleration on a test
particle in a spherical shell is nonvanishing.

The suppression of the acceleration compared to char-
acteristic accelerations in the system is much milder in
MOND than that in GR. In MOND, the scale of the
acceleration is a0, but suppressed by Rt=R, whereas in
general relativity, the scale is gN , but suppressed by
RSch=R. Since Rt � RSch in general and since a0 � gN
for a system deep in the MOND regime, the scale accel-
eration is much larger in MOND than in GR. For Mtotal ¼
2:0� 1013M� and RSch ¼ 2GMtotal, the ratio of accelera-
tions is approximately ða0 � RtÞ=ðgN � RSchÞ ¼
1:4� 106.

V. NUMERICAL CALCULATION

To find the acceleration of the point particle in a more
general case, we adapt the numerical scheme developed by
Milgrom [10]. In this scheme, the field U is defined by

~U ¼ �ðjrc j=a0Þrc : (15)

So long as � is monotonic, one can invert the relation in
Eq. (15) and write rc in terms of U. For the specific
choice of � given by Eq. (6),

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The field ~U, then, satisfies the set of differential equations
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The discretization and numerical calculation on the lattice

is done in terms of ~U. Because of the one-to-one corre-

spondence between rc and ~U, one can find rc from ~U.

An initial ansatz for ~Ui in the numerical solution is given
by solving

r � Ui ¼ 4�G�: (18)

The field ~Ui has the correct divergence, but not the correct
curl. The code iterates to make the curl vanish at each

vertex of the lattice. ~Ui also serves as the boundary condi-

tion for the numerical solution. Sincer � ð ~U� ~UiÞ ¼ 0, ~U

and ~Ui differ only by the curl field. It can be shown [7] that
the curl field for a bounded mass distribution vanishes at
least as fast as 	 1

r3
. Then, assuming that the physical size

of the lattice is large compared to the mass distribution,
U ! Ui on the boundary.

We implement Milgrom’s algorithm on a spherical lat-
tice. The point particle is placed at the center of the lattice,

and the center of the spherical shell is displaced from the
center of the lattice by �rk. The total number of angular
grid lines is denoted by L, and the total number radial grids
is fixed at L=5. To meet the boundary condition, the radius
of the outermost shell is set to be 100R.
In the case Mk � Ms, a comparison between the nu-

merical results and the perturbative solution is possible. We
make the comparison between the solutions with fixed
values of Ms=Mk ¼ 0:01 and Rk=R ¼ 0:25. Figure 2
shows that these agree to better than 1%. On the plot
shown, the percentage difference varies from 0.1% to
0.9%. The discrepancy between the values increases as
d ¼ rk=R approaches 1, where the perturbative expansion
becomes less reliable. Figure 3 shows how numerical
values depend on the number of lattice points. As expected,
the values approach the perturbative solution as L in-
creases. In the following study, we use the lattice size of
L ¼ 300 and L ¼ 600.
Figures 4 and 5 represent the results of the numerical

calculations. The mass dependence of the acceleration of
the point particle is plotted in Fig. 4, and the position
dependence is plotted in Fig. 5. We see clearly that there
is nonvanishing acceleration directed toward the center of
the spherical shell. In Fig. 4, we see that the acceleration
vanishes in both the Mk ! 0 limit and as Ms ! 0. This is
expected since these are two limits in which spherical
symmetry is recovered. For the four curves plotted in
Fig. 4, the peak value occurs around Mk=Mtotal 	 0:15.
We note one curious feature from Fig. 4. The astronom-

ically interesting region in Fig. 4 is whereMk=Ms � 1. In

FIG. 2 (color online). This figure plots the acceleration on the
point particle as a function of d ¼ rk=R. They all point toward
the center of the spherical shell. The numerical solutions and the
corresponding perturbation solution are shown.

DE-CHANG DAI, REIJIRO MATSUO, AND GLENN STARKMAN PHYSICAL REVIEW D 81, 024041 (2010)

024041-4



this regime, the acceleration of the point particle is a very
sharp function of its mass. This implies that galaxies with
slight mass differences might experience quite different
acceleration in theorist that implement the MOND limit.

The distance dependence of the acceleration is shown in
Fig. 5. Again, the acceleration of the particle vanishes
when the particle is near the center (d ! 0), and increases
monotonically outward.
Unlike for GR, in MOND the acceleration of the point

particle is a significant fraction of gN . Especially when the
particle is close to the shell, the acceleration can be larger
than gN .

VI. CONCLUDING REMARKS AND
IMPLICATIONS

In both general relativity andMOND, the acceleration of
a massive test particle inside a spherical mass shell van-
ishes only when the particle is at the center of the shell.
When the particle is displaced from the center, the particle
experiences a force toward the center of the shell, the
direction in which spherical symmetry would be restored.
The magnitude of the acceleration in GR is not physically
significant in most (or probably all) astrophysical situ-
ations of interest, since it is suppressed by the ration of
the Schwarzschild radius of the shell to the size of the shell.
In MOND, on the contrary, the acceleration of the point

particle is a significant fraction of the surface gravity just
outside the shell. This is despite the fact that MOND has a
Birkhoff or Gauss-like theorem which implies that the
potential inside an isolated spherical mass shell is constant.
However, this theorem operates in the absence of the usual
explanation for Gauss’s law in Newtonian gravity or clas-
sical electrostatics—the balance between the r2 growth of
surface areas and the r�2 force law. Thus, when the very

FIG. 3. This figure shows the dependence of the numerical
solution on the number of lattice sites. The value of d is fixed at
d ¼ 0:02. The dotted line indicates the value from the perturba-
tion solution.

FIG. 5 (color online). This figure shows the acceleration on the
point particle as a function of position for fixed particle-mass to
total-mass ratio. Results are plotted for two different mass ratios.
The acceleration points toward the center of the shell.
Simulations are performed on the lattice with L ¼ 600.

FIG. 4 (color online). This figure shows the acceleration of the
point particle as a logarithmic function ofMk=Mtotal for particles
at a variety of positions. The acceleration points toward the
center of the shell. The numerical results are for L ¼ 300.
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particular conditions of Birkhoff’s theorem are broken
even a little, the graviational force reemerges at consider-
able strength. The characteristic MOND field for the values
of parameters used in this paper is approximatelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMtotala0

p
=R ¼ 0:24a0. From Figs. 4 and 5, we can see

that the acceleration inside the spherical shell can be
significant at this scale.

In MOND, in general, the applicability of Birkhoff’s
theorem is very limited, and in computations one needs to
consider not only the local mass distribution but also the
background mass distribution.

Finally, we note the implication of our work on the
galaxy dynamics. The effects of the background-induced
acceleration on internal dynamics of the galaxy have been
studied before [11,12]. They showed that the escape speed
in the solar neighborhood will be consistent if the Milky
Way is embedded to a constant external field of 	0:01a0.
(See also [13] for the external field effects on the solar

system). In their subsequent work, Wu et al. [14] showed
that an external field less than 0:03a0 is needed in order for
the large Magellanic cloud, with its high proper velocity, to
be bound to the MilkyWay. Interestingly, the effects shown
in this paper are typically of order 	0:01a0, in agreement
with the value expected in the papers mentioned above.
However, assumingMk=Mtotal ¼ 0:01 and rk=R ¼ 0:7, the
upper bound of 0:03a0 can be saturated.
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