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Sparse Feature Fidelity for Perceptual
Image Quality Assessment

Hua-Wen Chang, Hua Yang, Yong Gan, and Ming-Hui Wang

Abstract— The prediction of an image quality metric (IQM)
should be consistent with subjective human evaluation. As the
human visual system (HVS) is critical to visual perception,
modeling of the HVS is regarded as the most suitable way
to achieve perceptual quality predictions. Sparse coding that is
equivalent to independent component analysis (ICA) can provide
a very good description of the receptive fields of simple cells in
the primary visual cortex, which is the most important part of
the HVS. With this inspiration, a quality metric called sparse
feature fidelity (SFF) is proposed for full-reference image quality
assessment (IQA) on the basis of transformation of images into
sparse representations in the primary visual cortex. The proposed
method is based on the sparse features that are acquired by a
feature detector, which is trained on samples of natural images
by an ICA algorithm. In addition, two strategies are designed
to simulate the properties of the visual perception: 1) visual
attention and 2) visual threshold. The computation of SFF has
two stages: training and fidelity computation, in addition, the
fidelity computation consists of two components: feature similar-
ity and luminance correlation. The feature similarity measures
the structure differences between the two images, whereas the
luminance correlation evaluates brightness distortions. SFF also
reflects the chromatic properties of the HVS, and it is very
effective for color IQA. The experimental results on five image
databases show that SFF has a better performance in matching
subjective ratings compared with the leading IQMs.

Index Terms— Image quality assessment, full-reference, sparse
coding, independent component analysis.

I. INTRODUCTION

IMAGE quality assessment (IQA) is essential to image
applications and imaging services. The increasing demand

for image processing technologies has pushed the need for

Manuscript received July 11, 2012; revised January 24, 2013 and May 8,
2013; accepted May 21, 2013. Date of publication June 6, 2013; date of
current version August 30, 2013. This work was supported in part by the
NSF in China under Grant 61071162. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Hsueh-
Ming Hang.

H.-W. Chang and Y. Gan are with the College of Computer and Com-
munication Engineering, Zhengzhou University of Light Industry, Zhengzhou
450002, China (e-mail: changhuawen@gmail.com; ganyong@zzuli.edu.cn).

H. Yang is with the College of Computer Science, Sichuan University,
Chengdu 610064, China, and also with the School of Computer
Science, China West Normal University, Nanchong 637002, China (e-mail:
hyang.yh@gmail.com).

M.-H. Wang is with the College of Computer Science, Sichuan University,
Chengdu 610064, China (e-mail: wangminghui@scu.edu.cn).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material contains the
experimental results on five image databases. It includes a .mat file and a
subdirectory containing scatter plots. The total size of this material is 3.5 MB.
Contact changhuawen@gmail.com for further questions about this work.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2013.2266579

accurate image quality metrics (IQMs) to the forefront. There-
fore, a great deal of interest and research has been devoted
to the design and development of models for IQA. Over the
past two decades, image and video quality assessment methods
have been extensively studied, and many criteria have been
proposed [1]–[6].

IQA methods fall into two categories: subjective assessment
by humans and objective assessment by algorithms designed
to mimic human observers. Subjective assessment can provide
accurate results for any given evaluation, but it is a costly
and time-consuming process. Therefore, there has been an
increasing need to develop objective IQMs that can predict
image quality automatically. According to the availability of a
reference image, IQMs can be classified into three types: full
reference (FR) metrics, reduced reference (RR) metrics, and
no reference (NR) metrics [5]. This paper addresses the topic
of FR IQA, where a “distortion-free” image is assumed to be
known as the reference image.

As images will ultimately be viewed by human beings, it is
desirable to have IQMs that can predict the perceived visual
quality as measured with human subjects. Perceptual quality
metrics aim to emulate the integral mechanisms of the human
visual system (HVS) to correlate well with visual perception
of quality. To this end, many researchers have developed
sophisticated IQA models to achieve perceptual consistency in
quality prediction by modeling physiological response proper-
ties of the HVS. Among all these methods, structural similarity
(SSIM) index [5] is quite attractive owing to its simplicity and
excellent performance relative to old methods such as the peak
signal-to-noise ratio (PSNR). It is based on the hypothesis that
the HVS is highly adapted for extracting structural information
in images. There are also several similar structural information
based IQMs, including universal image quality index (UQI)
[7], complex wavelet structural similarity (CW-SSIM) index
[8], content-partitioned structural similarity index [9], and
information content weighted SSIM (IW-SSIM) [10]. Besides
the structural approaches, there are some interesting IQMs
based on other properties of the HVS. The research in [11]
presented a two stage metric called visual signal-to-noise
ratio (VSNR). It first determines whether the distortions are
visible by a visual threshold, and then quantifies the visible
distortions that are beyond the threshold in the second stage.
A recent research in [12] reconfirmed the importance of
divisive normalization masking models for IQA. Visual infor-
mation fidelity (VIF) [13] is an alternative approach to IQA,
which is based on natural scene statistics. It is also a leading
IQM in terms of correlation with human perception [14].
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A recent study suggested that gradient information is crucial
for visual perception and can be used for IQA [15].

An ideal image quality method should be able to simulate
the properties of visual perception [16], [17]. As an important
part of the HVS, the visual cortex is responsible for most
of our conscious perception of the visual world [18], [19],
so an ideal visual model for perceptual quality assessment
should be closely related to the neural response properties of
the visual cortex. Sparse coding [20], [21], which is equivalent
to independent component analysis (ICA) [22]–[25], can offer
exact quantitative predictions that often turn out to be in line
with the measurements from the visual cortex [21]. Moreover,
natural scenes contain sparse structures, while sparse coding
just provides a strategy for extracting these intrinsic structures
in images [26]–[28]. In sparse coding, a given image may
usually be represented using a set of basis vectors so that
only a small number of basis vectors are activated and the
rest are activated weakly or not at all at the same time [20].
Similarly, Bell and Sejnowski [23] obtained similar results by
a technique called ICA. In fact, sparse coding and ICA actually
use quite similar approaches, and their respective algorithms
can be related mathematically [23], [29]. Therefore, we can
make use of ICA models to accomplish the sparse coding
process.

Inspired by above facts, we propose to use ICA models to
simulate the visual processing at the level of visual cortex.
Then, for each input image (patch), the output information of
this model is named as sparse feature. The sparse feature can
be seemed as the response of neurons in visual cortex which
is closely associated with visual perception [29]. Meanwhile,
the difference between the responses of the reference and
distorted images can reflect the perceived difference in quality
by humans. So measuring the feature fidelity to the reference
image can be an effective way for evaluating the quality of a
given image. Our previous research in [30], [31] has achieved
some success in this way. In [30], ICA is used for training a
feature detector on samples of each reference image. Because
the samples come from each corresponding reference image,
the training process should be involved in every evaluation,
which takes a lot of time. However, our further research found
that different source images for the ICA training will lead to
similar results of quality assessment. This indicates that the
difference of training samples has only a little effect on the
quality evaluation, as confirmed in the experiment of Sec.V H.
Therefore, the feature detector can be trained only once, and
then be used for evaluating all the test images.

In this paper, a novel IQM called sparse feature fidelity
(SFF) is proposed for FR IQA. The SFF relates the quality of
an image with the fidelity to the reference image in the form of
sparse features that are extracted by a feature detector which
is trained on samples of natural images by ICA. After dividing
a test image into image patches, the mean value of each
patch will be subtracted. Then all the patch vectors with zero
mean will be used for the computation of feature similarity,
while all the mean values will be used to compute luminance
correlation. The component of feature similarity measures the
structure difference between two images, while the luminance
correlation evaluates brightness distortions. Finally, the SFF

index is obtained by combining the two components into a
quality score. Unlike most of the other IQA methods, SFF is
based on all the RGB color components, and it can detect the
color distortion in a perceptual way. Experimental results show
that SFF index has high correlation with subjective quality
evaluation.

Unlike our previous work, the feature detector of this
paper is a universal one, once it has been obtained, it
can be used for evaluating the quality of images without
the time-consuming training process. Moreover, the proposed
fidelity metric considers not only structure distortions but
also luminance changes, which makes this metric more accu-
rate and applicable to a wider range of distortions. Besides
that, to improve the efficiency and accuracy, we only use
the reference-distorted patch pairs with low quality for the
computation of feature similarity and luminance correlation by
a selection strategy which can be explained as a simple model
of visual attention mechanism. In addition, a visual threshold is
designed based on the features of the corresponding reference
image to enhance the accuracy of quality evaluation.

The rest of this paper is organized as follows. Section II
provides some background work about the HVS and methods
for modeling of the HVS. Section III explains the sparse fea-
ture and feature detector. Section IV presents the computation
procedure of the SFF index. Section V first describes the
experimental method for validation of IQMs, and then shows
results and comparisons. Finally, we conclude this paper in
Section VI.

II. SIMULATION OF THE HVS

Images will fall upon the retina when we are viewing
the natural world. Then the lateral geniculate nucleus (LGN)
transmits visual signals from the retina to cortex and controls
how much of the information is allowed to pass [32]. From
the LGN, the signals are sent to the most important part,
the primary visual cortex (V1), where most of the visual
processing is performed.

A number of studies have proposed that the retina and
the LGN are dedicated to whitening the input signals [18],
[33], [34]. Moreover, the principle of redundancy reduction is
successful in accounting for response properties of neurons
in the retina and LGN [35]. Therefore, we use whitening
and dimension reduction to simulate the functions of the
retina and LGN. The act of whitening is a special processing,
which is to attenuate the low frequencies and boost the high
frequencies to yield a roughly flat power spectrum across all
spatial frequencies [18].

The spatial receptive fields of simple cells in the cortex
can be characterized as being localized, oriented, and band-
pass [36]. In [20], Olshausen and Field proposed that a coding
strategy that maximizes sparseness is sufficient to account for
those three response properties of cortical simple cells. In fact,
similar results can be obtained when ICA is applied to natural
images [23]. Therefore, we use ICA to simulate the visual
processing of cortical simple cells in the visual cortex. Another
advantage of using ICA models is that ICA can generate a
complete dictionary for image representations, which means
we don’t have to find the sparsest solutions for images.
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III. SPARSE FEATURE AND FEATURE DETECTOR

Let’s start with the basic assumption that an image (patch)
vector, x, can be represented by a linear superposition of some
basis vectors in F: x = Fs. The coefficient vector, s, is a
random vector that is different from image to image. Inverting
this linear system, we obtain s = Wx with W being the
(pseudo) inverse of F. Generally, the goal of sparse coding is
to find a weighting matrix (W) that can transform every image
vector, x, into a sparse coefficient vector, s, by maximizing the
sparseness or super-gaussianity of s [20].

In neurophysiological modeling, the row elements of W are
related to the receptive fields of neurons in the primary visual
cortex [20]. Each weighting vector of W can be interpreted as
a model of the simple cell receptive field, while the coefficient
vector, s, typically represents simple cell responses (outputs).
Moreover, W can also be considered as a feature detector
[29], since the values of the coefficient vector have a sparse
distribution [20], s is named as sparse feature in this paper.

IV. SPARSE FEATURE FIDELITY

The calculation process of the proposed method is divided
into two stages: training and fidelity computation. Firstly, the
feature detector, W, is received from a training stage. Then W
is used to extract sparse features from reference and distorted
image patches. Finally, SFF quality index is calculated on the
basis of the sparse features in the second stage.

A. Training of the Feature Detector

Firstly, thousands of samples (image patches) are randomly
taken from nine natural images with no distortion. Then these
sample vectors are whitened by principal component analysis
(PCA). Finally, W will be trained on the whitened data, Z, by
a sparse coding algorithm. In our study, we choose FastICA
[37] to implement this training process.

1) Preprocessing: At the beginning of the training process,
18000 image patches of size 8 × 8 are randomly taken
from nine natural images with no distortion. In practical
calculations, each patch should be vectorized into a column
vector by scanning the numerical values in the patch row-by-
row and channel-by-channel. Since a color image has three
channels, the length of the vector is 8 × 8 × 3 = 192. The
statistical analysis of the vectors is not influenced by the choice
of this transformation [29]. Then each vector is centred by
subtracting the mean pixel value of each patch. Thus, all the
sample vectors form a matrix X.

2) Whitening and Dimension Reduction: This step serves
as a model of the LGN because it could explain the center-
surround structure of the receptive fields of ganglion cells
in the retina, as well as those in the LGN [33]. We use
PCA to reduce the dimension of the sample vectors so that
the maximum amount of information is preserved and the
redundant information is discarded. Then PCA can also be
used for whitening of the sample data.

PCA can be done by eigenvalue decomposition of a data
covariance matrix. The covariance matrix of the sample data

can be obtained by

U = 1

S

(
X×XT

)
(1)

where S denotes the amount of samples. After eigenvalue
decomposition, let D = diag(d1, …, dM ) and E = (e1, …, eM )
respectively denote the M largest eigenvalues and corre-
sponding eigenvectors for the covariance matrix, U. In our
study, only the first 8 principal components of the samples
are retained for training. That means the dimension of each
whitened vector will be reduced from 192 to M = 8. Then
the whitening matrix, V, is given by

V = D−1/2 × ET (2)

where D−1/2 = diag(1
/√

d1, ..., 1
/√

dM ). Finally, sample
data, X, can be whitened into Z by the following multiplication

Z = V× X (3)

3) Training by FastICA: The feature detector is learned from
the whitened data, Z, by a sparse coding algorithm. In fact,
maximization of sparseness is very closely related to ICA since
sparseness is a form of super-Gaussianity or kurtosis [25]. So
a fixed-point ICA algorithm called FastICA [37] is used to
generate the feature detector. For whitened data Z, finding
one maximally non-Gaussian direction by FastICA algorithm
has the following basic form of iteration:

ww
(p) = E

{
Zg

((
ww

(p−1)

)T
Z
)}

−E

{
g′

((
ww

(p−1)

)T
Z

)}
ww

(p−1) (4)

where ww denotes the vector of the feature detector in the
whitened space, p denotes the iteration step, E(•) is the expec-
tation operator, g′(•) denotes the derivative of the function,
g(•), and g(•) is the derivative of the function, G(•). Here we
chose the following functions:

G(u) = 1

η
log cosh(ηu) (5)

g(u) = tanh(ηu) (6)

where 1 ≤ η ≤ 2, while in this paper, η is set to η = 1.
Starting from a random orthogonal matrix, each iteration of

the algorithm consists of updating each row, (ww)T , of Ww

by (4), followed by orthogonalization of the matrix through:

Ww ←
(

WwWwT
)−1/2

Ww (7)

The same procedure will repeat until it reaches the conver-
gence. The convergence criterion is as follow.

∥∥∥∥
∣∣∣∣Ww

(p) ×
(

Ww
(p−1)

)T
∣∣∣∣− I

∥∥∥∥
F

< 10−8 · M (8)

where ||•||F denotes the Frobenius norm, I is an identity matrix,
M is the number of independent components.

After the learning process, the feature detector should be
transformed from the whitened space to the original space by

W =Ww ×V (9)
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Red Green Blue

W

Fig. 1. An illustration for the feature detector, W. W has three sections,
corresponding to three color channels. Each section forms 8 blocks that are
similar to the spatial receptive fields.

Fig. 1 shows the retained feature detector, W, where all the
entries of this matrix are quantified into gray scale values. The
feature detector is in the form of an 8 × 192 matrix which can
transform an image vector of length 192 into a sparse feature
vector of length 8. Each row element of W consists of three
sections that can form three 8 × 8 patches corresponding to
the RGB channels. Thus all the eight row elements form three
sets of 8 × 8 patches, each set has 8 patches. These patches
are similar to receptive fields with different directions. So this
feature detector serves as a model of neurons in visual cortex
which transforms image patches into visual responses.

B. Procedure of Fidelity Computation

As shown in Fig. 2, the fidelity computation of SFF index
consists of two components: feature similarity and luminance
correlation. Before the computation, reference and distorted
images should be first divided into non-overlapping patches
of size 8 × 8 by a sliding window that scans sequentially
on a regular grid. Since the images are divided in the same
way, each reference patch and its distorted counterpart form
a patch pair which will then be considered as a pair of
vectors. Then in the computation of feature similarity, the
mean value of each image patch should be removed because
it does not contain any interesting information about contrast
and structure. However, luminance changes can also cause
perceptible distortions although they are not as annoying as
contrast or structure changes [15]. Therefore, the mean values
will then be employed to evaluate luminance changes in the
computation of luminance correlation. Finally, the SFF quality
index will be obtained by combining the feature similarity and
luminance correlation together.

C. Feature Similarity

By removing the mean value of each patch, all the pixel
values in an image patch form a column vector with zero
mean. Then all the column vectors from each reference and
the corresponding distorted image form two matrices, Xre f and
Xdis . Finally, the similarity computation will be completed by
the following 4 steps as shown in Fig. 2.

1) Step 1: Selection of reference-distorted patch pairs.
Supra-threshold distortions can be a strong attractor of visual
attention, and as a result, have a severe impact on the perceived
quality [38]. This is why the HVS is more sensitive to poor
quality regions in images than the good ones. Because the
regions with low quality are critical to quality evaluation, a

reasonable approach to improve the prediction performance is
to utilize the image patches with large differences [39].

Some researchers proposed several weighting strategies that
put more weight on the poor quality regions [39]. But weight-
ing strategies will increase the complexity of a metric. In
order to keep the proposed metric simple, we propose to only
use the reference-distorted patch pairs with large differences
for the similarity computation. In this research, the difference
between a pair of vectors is measured by the mean absolute
error (MAE). Let xre f and xdis denote a reference and the
corresponding distorted patch vectors, respectively, then the
MAE between xre f and xdis is defined as

M AE
(

xre f , xdis
)
= 1

n

n∑
i=1

∣∣∣xref
i − xdis

i

∣∣∣ (10)

where n denotes the number of pixels in each image vec-
tor. Finally, all the MAE values between the reference and
distorted patches form a vector which is denoted by d, the
element of which is di = M AE

(
xre f

i , xdis
i

)
.

In order to select a set of useful patch pairs for quality
assessment, a threshold THx is designed on the basis of the
median value of d, and then it will be used to select reference-
distorted patch pairs. If the MAE value of a patch pair is not
less than the value of THx , this patch pair will be selected, then
let yre f and ydis denote the retained reference and distorted
image vectors, respectively. Finally, all the retained vectors
form two matrices, Yre f and Ydis , as expressed in (11).
(

Yre f , Ydis
)
=

{
(yre f

i , ydis
i )

∣∣∣M AE
(

yre f
i , ydis

i

)
≥T Hx

}
(11)

T Hx = Tx · median(d) (12)

where median(•) represents the median value of a vector, Tx

is an adjustment for THx , its default value is 1.
2) Step 2: Feature Extraction. After the selection step,

the sparse feature vectors, ai and bi , can be extracted by a
multiplication operation.

ai =W× yre f
i , bi =W× ydis

i (13)

Since the size of W is 8 × 192, the length of ai and bi

is M = 8. For simplicity, we use a vector pair, (ai , bi ), to
represent the features of a reference image patch together with
its distorted counterpart. Moreover, all the feature vectors of
Yre f and Ydis form two matrices, A and B, respectively.

(A, B) = {(ai , bi )|i = 1, . . . , N } (14)

where N is the number of the selected patches in an image,
ai and bi denote the column vector in A and B, respectively.

3) Step 3: Thresholding. As the feature detector serves as
a model of neurons in the visual cortex, the sparse feature
vectors can be seemed as visual responses to image patches.
Different regions in an image will lead to different responses
since they have different visual importance to the whole
image [39]. Certain patches in an image may be visually
more important than others, and these patches are essential
to perceived quality of an image. In order to remove the
perceptually unimportant signals, a visual threshold for each
test image is computed based on the feature vectors that are
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Reference image 

Reference-distorted patch pairs

Divide each image into patches 

Remove the mean value of 
each image patch 

Distorted image 

SFF index 

Calculate the mean value 
of each image patch 

Selected mean 
value pairs: 
(mref, mdis)

---------- Feature similarity ---------- ------- Luminance correlation -------

Correlation
measurement 

Selection of mean 
value pairs 

SFFm

Feature 
extraction Feature pairs: 

(A, B)

Similarity 
measurement 

Selection of 
patch pairs Selected image pairs:

 (Yref, Ydis)

Visual
Threshold Thresholded feature 

pairs: (Ath, Bth)

SFFf

Fig. 2. Block diagram for the fidelity computation of SFF. SFF has two components, SFF f is the result of feature similarity, and SFFm is the result of
luminance correlation.

extracted from the reference image. The threshold value is
given by

V T = Tv

N

N∑
i=1

V R(ai ) (15)

where Tv is a parameter for adjustment of the threshold,
according to our experiment (as shown in Sec. V G), its proper
value is 0.4. In addition, VR represents the intensity of the
visual response to an image patch, which is obtained by

V R(a) =
M∑

j=1

a2
j (16)

where a j is the j -th value of a.
For each reference feature vector ai , if VR(ai) > VT, then

ai and its corresponding distorted vector, bi , will be used to
compute the fidelity index. This means the patches that have
strong visual responses will be used for fidelity computation.
After this thresholding step, all the retained sparse feature (or
response) vectors for each reference and distorted image form
two matrices, Ath and Bth .
(

Ath, Bth
)
= {(ak, bk)|VR(ak) > V T, k ∈ {1, . . . , N}} (17)

where (ak , bk) denotes the feature pairs that above the thresh-
old value.

4) Step 4: Similarity Measurement. Finally, the feature
similarity component of SFF, SFF f , is given by:

SF F f = 1

K · M
K∑

i=1

M∑
j=1

2Ath
i j Bth

i j + C
(

Ath
i j

)2 +
(

Bth
i j

)2 + C
(18)

where K denotes the number of the retained feature vectors in
an image, Ath

i j and Bth
i j denote the values of the i -th column

and j -th row in Ath and Bth , respectively. C is a small positive
constant to stabilize the result, and its proper value is 0.08.

D. Luminance Correlation

The computation of luminance correlation is based on the
mean value of every image patch. The mean values of a
reference-distorted patch pair form a mean value pair. It is not
necessary to use all the mean value pairs for measuring the
luminance distortion, since some pairs with small differences
will not affect or even moderate the perception of the regions
with large luminance changes. So we only consider the mean
value pairs with large differences, and then calculate the
correlation between two sets of selected mean values. The
computation consists of the following two steps.

1) Step 1: Selection of mean value pairs. The luminance
difference of a patch pair is measured by the absolute error
between the mean values of the patches. The absolute errors
of all the mean value pairs can form a vector, h, the element of
which is hi =

∣∣∣μ(xre f
i )− μ(xdis

i )
∣∣∣. Then the selection strategy

is as follows.
(

mre f , mdis
)
=

{(
μ(xre f

i ), μ(xdis
i )

)
|

∣∣∣∣μ(xre f
i )− μ(xdis

i )

∣∣∣∣ ≥ T Hm

}
(19)

T Hm = Tm · median(h) (20)

where mre f and mdis denote the selected mean values of
the reference and distorted image patches, respectively, μ(•)
represents the mean value of a image vector, Tm is designed
to adjust the value of THm , its default value is 1.

2) Step 2: Correlation Measurement. After the selection
step, the component of luminance correlation, SFFm , which
is calculated on the basis of mre f and mdis , is defined as

SF Fm =∑K
i=1 ((mre f

i −μ(mre f )) · (mdis
i −μ(mdis)))+Cm√∑K

i=1 (mre f
i −μ(mre f ))2 ·∑K

i=1 (mdis
i −μ(mdis))2+Cm

(21)
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(a) (b) (c)

(d) (e) (f) 

(g) (h) (i)

Fig. 3. Source images for the training process of SFF (D1). (a)–(i) are sample
images taken from SIMPLIcity test set.

where Cm >0 is a small constant to avoid dividing by zero
(e. g., Cm = 0.001), mre f

i and mdis
i denote the i -th elements

of mre f and mdis , respectively.

E. Sparse Feature Fidelity

Finally, the SFF index is calculated by combining SFFm

and SFF f into a quality score.

SF F = λ · SF Fm + (1− λ) · SF F f (22)

where 0 < λ < 1 is a parameter for adjusting the relative
importance of the two components, its proper value is 0.8.

V. EXPERIMENTS AND RESULTS

In this section, we shall present experimental results and
comparisons on five color image databases. The SFF index was
compared with seven state-of-the-art IQMs including: PSNR,
SSIM [5], VSNR [11], IFC [40], pixel domain VIF (VIF-p)
[13], IW-SSIM [10], and FSIM [41]. These IQMs were applied
using their default implementations. In addition, nine source
images for the training stage of SFF are shown in Fig. 3. They
were randomly selected from the SIMPLIcity test set which
contains 1000 images that are extracted from the COREL
database [42].

To provide quantitative performance evaluations of the eight
objective IQMs, we followed the performance evaluation pro-
cedures employed by the video quality experts group (VQEG)
Phase-I/II validation methods [43], [44]. According to VQEG’s
suggestion, a nonlinear mapping function should be involved
to remove the nonlinearity of objective scores and to facilitate
the comparison of the IQMs in a common analysis space. In
this experiment, we chose a five-parameter logistic function
for nonlinear mapping [13].

Q(o) = β1

(
1

2
− 1

1+ exp (β2 (o − β3))

)
+ β4o + β5 (23)

where o denotes the raw objective score of IQMs, and Q
denotes the mapped score. The five fitting parameters, i.e.,

TABLE I

CHARACTERISTICS OF THE FIVE COLOR IMAGE DATABASES

Database Distorted Images Reference Images Distortion Types
CSIQ 866 30 6
IVC 185 10 4
LIVE 779 29 5
TID 1700 25 17
TOY 168 14 2

β1, β2, β3, β4, and β5, are determined by minimizing the sum
of squared differences between the mapped objective scores,
Q(o), and the subjective ratings.

A. Databases for Validation

So far, there are five databases of ordinary color images
for IQA [45], all of which were used in our validation and
comparisons, i.e., LIVE [46], CSIQ [47], [48], IVC [49],
TID2008 (TID) [50], and Toyama-MICT (TOY) [51]. Each
of the image databases consists of hundreds of distorted
images contaminated by a variety of distortion types. Each
of these distorted images is provided with a subjective score,
e.g., mean opinion score (MOS) or differential mean opinion
score (DMOS). Main characteristics of the five databases are
summarized in Table I.

In our experiment, only the distorted images in the five
databases are employed (i.e., reference images are excluded).
Then the performance validation is conducted by comparing
these subjective ratings with the objective evaluations of IQMs.

B. Performance Metrics

According to VQEG’s reports [43], [44], the performance
of an objective IQM should be evaluated with respect to
three aspects of its ability to estimate subjective assessment
of image quality: prediction accuracy stands for the ability to
predict the subjective quality ratings with low error; prediction
monotonicity stands for the degree to which the metric’s
predictions agree with the relative magnitudes of subjective
quality ratings, in other words, the objective quality scores
should be monotonic in their relationship to the subjective
scores; prediction consistency stands for the degree to which
an IQM maintains prediction accuracy over the range of test
images.

To provide a complete evaluation of each IQM, five met-
rics were employed to measure the performance of IQMs,
including the Pearson linear correlation coefficient (PLCC)
(after nonlinear mapping), the Spearman rank-order correlation
coefficient (SRCC), the Kendall rank-order correlation coef-
ficient (KRCC), the root mean squared error (RMSE) (after
nonlinear mapping), and the outlier ratio (OR) (after nonlinear
mapping). Among all these performance metrics, PLCC and
RMSE are adopted to evaluate the prediction accuracy; SRCC
and KRCC operate only on the rank of the data points and
ignore the relative distance between data points, they are
employed to assess the prediction monotonicity; OR is used as
a measurement of an IQM’s prediction consistency. A better
objective IQM should have higher PLCC, SRCC, and KRCC,
while lower RMSE and OR values.
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TABLE II

PERFORMANCE COMPARISON OF 8 IQMS ON FIVE DATABASES

Database Metric PSNR SSIM VSNR IFC VIF-p FSIM IW-SSIM SFF

CSIQ

PLCC 0.8000 0.8612 0.8002 0.8366 0.9388 0.9120 0.9144 0.9643
SRCC 0.8057 0.8755 0.8106 0.7671 0.9280 0.9242 0.9213 0.9627
KRCC 0.6078 0.6900 0.6247 0.5897 0.7658 0.7561 0.7529 0.8281
RMSE 0.1575 0.1334 0.1575 0.1438 0.0905 0.1077 0.1063 0.0695
OR 0.1674 0.1339 0.1386 0.1513 0.1028 0.1224 0.1189 0.0831

IVC

PLCC 0.7196 0.9119 0.8032 0.9093 0.8963 0.9376 0.9231 0.9324

SRCC 0.6884 0.9018 0.7983 0.8993 0.8877 0.9262 0.9125 0.9249

KRCC 0.5218 0.7223 0.6036 0.7202 0.6968 0.7564 0.7339 0.7553

RMSE 0.8460 0.4999 0.7258 0.5069 0.5403 0.4236 0.4686 0.4404

OR 0.1514 0.0703 0.1243 0.1351 0.1405 0.0703 0.0811 0.0811

LIVE

PLCC 0.8723 0.9449 0.9231 0.9268 0.9464 0.9597 0.9522 0.9632
SRCC 0.8756 0.9479 0.9274 0.9259 0.9448 0.9634 0.9567 0.9649
KRCC 0.6865 0.7963 0.7616 0.7579 0.8044 0.8337 0.8175 0.8365
RMSE 13.3600 8.9460 10.5060 10.2642 8.8249 7.6780 8.3472 7.3460
OR 0.1335 0.0873 0.1065 0.1091 0.0680 0.0719 0.0706 0.0655

TID

PLCC 0.5734 0.7732 0.6820 0.7340 0.8711 0.8738 0.8579 0.8817
SRCC 0.5531 0.7749 0.7046 0.5675 0.8506 0.8805 0.8559 0.8767

KRCC 0.4027 0.5768 0.5340 0.4236 0.6660 0.6946 0.6636 0.6882

RMSE 1.0994 0.8511 0.9815 0.9113 0.6590 0.6525 0.6895 0.6333
OR 0.1553 0.1471 0.1318 0.1535 0.1124 0.1176 0.1224 0.1212

TOY

PLCC 0.6428 0.8887 0.8680 0.8403 0.8892 0.9078 0.9248 0.9030

SRCC 0.6132 0.8794 0.8614 0.8354 0.8846 0.9059 0.9202 0.8992

KRCC 0.4443 0.6939 0.6762 0.6370 0.7027 0.7302 0.7537 0.7217

RMSE 0.9587 0.5738 0.6213 0.6784 0.5727 0.5249 0.4761 0.5378

OR 0.1012 0.0952 0.1250 0.1012 0.0952 0.0952 0.0714 0.1012

PLCC 0.7216 0.8760 0.8159 0.8494 0.9083 0.9182 0.9145 0.9289

Average result SRCC 0.7072 0.8759 0.8205 0.7990 0.8991 0.9200 0.9133 0.9257

on above five KRCC 0.5326 0.6959 0.6399 0.6256 0.7271 0.7542 0.7442 0.7660
databases RMSE 3.2843 2.2008 2.5971 2.5009 2.1375 1.8773 2.0175 1.8054

OR 0.1418 0.1068 0.1205 0.1300 0.1038 0.0955 0.0926 0.0904

PLCC 0.6999 0.8422 0.7751 0.8122 0.9049 0.9056 0.8973 0.9217

Weighted SRCC 0.6897 0.8460 0.7881 0.7185 0.8919 0.9116 0.8982 0.9188
average KRCC 0.5184 0.6621 0.6130 0.5574 0.7217 0.7430 0.7244 0.7571

result RMSE 3.4425 2.3581 2.7654 2.6710 2.2362 1.9876 2.1453 1.9013
OR 0.1509 0.1252 0.1263 0.1403 0.1014 0.1057 0.1060 0.0976

C. Overall Performance

Table II lists the performance evaluation results of SFF
and other seven IQMs on the five databases. The best results
across the eight IQMs for each database are highlighted in
boldface. From Table II, we can see that SFF performs the
best on LIVE and CSIQ databases, and it is comparable in
performance to FSIM on TID database, meanwhile, it performs
better than the other IQMs except FSIM and IW-SSIM on IVC
and TOY databases. Moreover, the average results over the five
databases are provided at the bottom of Table II, where the
average values are computed in two cases. In the first case, the
performance metric scores are directly averaged across the five
databases; while in the second case, different weights are given
to different databases depending upon their sizes (measured
as the numbers of distorted images). From the two kinds of
average results, we can see that SFF performs the best on
average. In general, SFF correlates much more consistently
with the subjective evaluations than the other seven IQMs.

In order to provide a visual illustration for the perfor-
mance comparison among the eight IQMs, scatter plots of
subjective ratings versus objective scores obtained by IQMs
on CSIQ database are shown in Fig. 4, where each point
represents one test image. The curves shown in Fig. 4 are
obtained by a nonlinear fitting according to (23). Compared
with other scatter plots, SFF’s points are more close to each
other, which means that SFF correlates well with subjective
ratings.

D. Efficiency Evaluation

To compare the computational complexity of different
IQMs, we measured the average execution time required for
assessing an image of size 512 × 512 in CSIQ database using
a laptop computer with Intel B940 processor at 2.00 GHz.
All the codes were implemented with Matlab. Table III shows
the results of computation time. It can be seen that SFF takes
more time than PSNR and SSIM, but less time than VSNR,
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Fig. 4. Scatter plots of eight IQMs on CSIQ database. (a) PSNR, (b) SSIM, (c) VSNR, (d) IFC, (e) VIF-p, (f) FSIM, (g) IW-SSIM, and (h) SFF.

TABLE III

COMPARISON OF COMPUTATION TIME (IN SECONDS PER IMAGE)

IQM PSNR SSIM VSNR IFC VIF-p FSIM IW-SSIM SFF
Time 0.03522 0.06521 0.63642 2.47865 0.23875 0.76617 0.57353 0.18385

TABLE IV

SRCC COMPARISON OF INDIVIDUAL DISTORTION TYPES ON LIVE AND CSIQ DATABASES

Distortion PSNR SSIM VSNR IFC VIF-p FSIM IW-SSIM SFF

LIVE database
JP2K 0.8954 0.9614 0.9551 0.9113 0.9710 0.9717 0.9649 0.9672
JPEG 0.8809 0.9764 0.9657 0.9468 0.9799 0.9834 0.9808 0.9786
AWGN 0.9854 0.9694 0.9785 0.9382 0.9855 0.9652 0.9667 0.9859
GB 0.7823 0.9517 0.9413 0.9584 0.9675 0.9708 0.9720 0.9752
FF 0.8907 0.9556 0.9027 0.9629 0.8664 0.9499 0.9442 0.9529

CSIQ database
AWGN 0.9363 0.8974 0.9241 0.8429 0.8869 0.9262 0.9380 0.9469
JPEG 0.8879 0.9543 0.9033 0.9411 0.9585 0.9652 0.9660 0.9641
JP2K 0.9361 0.9605 0.9479 0.9251 0.9632 0.9684 0.9682 0.9762
PGN 0.9338 0.8924 0.9080 0.8261 0.9526 0.9233 0.9057 0.9549
GB 0.9291 0.9608 0.9445 0.9525 0.9644 0.9728 0.9781 0.9751
GCD 0.8623 0.7925 0.8695 0.4870 0.8894 0.9420 0.9540 0.9536

IFC, VIF-p, FSIM, and IW-SSIM, which means that SFF has
relatively low computational complexity.

E. Performance on Individual Distortion Types

In this testing, we examined the performance of the compet-
ing methods on different image distortion types. This exper-
iment was conducted on LIVE and CSIQ databases because
these two databases contain the most commonly encountered
distortion types. LIVE contains five types of distortions: JPEG
compression (JPEG), JPEG-2000 compression (JP2K), addi-
tive white Gaussian noise (AWGN), Gaussian blur (GB), and
fast fading Rayleigh channel noise (FF), while CSIQ contains
six types of distortions: AWGN, JPEG, JP2K, pink Gaussian
noise (PGN), GB, and global contrast decrements (GCD).

In order to simplify this experiment, only the SRCC values
are listed. SRCC is chosen because it is suitable for measuring

a small number of data points and its value will not be affected
by an unsuccessful nonlinear mapping.

The experimental results are summarized in Table IV. For
each distortion type, the best (highest) value across the eight
IQM results is highlighted in boldface. We can see that SFF
performs the best for AWGN distortion on both two databases.
Besides that, SFF’s performance is more stable across different
distortion types, e.g., the SRCC values of SFF are almost all
above 0.95.

In order to discover the relationships among the results of
different distortions, Fig. 5 shows the fitting curves of different
distortion types for the six best IQMs (i.e., SSIM, VSNR,
VIF-p, FSIM, IW-SSIM, and SFF) in our experiment. Ideally,
for an IQM, these curves should lie on top of each other. If this
were the case, then this IQM could stably predict subjective
quality across all the distortion types [13]. From Fig. 5, we
can see that all the curves of SFF are very close to each
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(a) (b) (c)

(d) (e) (f) 

Fig. 5. Fitting curves of different distortions for six best IQMs on CSIQ. (a) SSIM, (b) VSNR, (c) VIF-p, (d) FSIM, (e) IW-SSIM, and (f) SFF.

(a) (b) (c) (d)

Fig. 6. Example images for the evaluation of color distortion. (a) Reference image, (b) Pink Gaussian noise of level 1, (c) Pink Gaussian noise of level 2,
(d) Color distortion.

TABLE V

EVALUATION RESULTS OF THE EXAMPLE IMAGES IN FIG. 6

Image SSIM VSNR VIF-p IW-SSIM FSIM FSIMc SFF

Fig. 6(b) 0.9852 36.2785 0.8487 0.9850 0.9883 0.9873 0.9922
Fig. 6(c) 0.9450 29.2942 0.6614 0.9453 0.9587 0.9559 0.9769
Fig. 6(d) 0.9970 36.6535 0.9362 0.9984 0.9987 0.9635 0.9506

Fig. 7. Performance impact of Tx and Tm for SFF.

other, which means SFF can be stably calibrated for predicting
quality for a range of distortion types.

F. Evaluation of Color Distortion

Color information is significant to visual perception and
IQA. However, most IQMs are designed for gray-scale images,

and they only use the luminance component (or the average of
RGB values) to make quality predictions. These IQMs can not
accurately predict the perceived quality when a color-distorted
image has no changes in the luminance component. Whereas,
the SFF is sensitive to color distortion since it uses all the
RGB color components in a perceptual way. In fact, the HVS
encodes the chromatic signals conveyed by the three types of
retinal cone photoreceptors in an opponent mechanism which
can constitute a sparse code for natural images [52], moreover
this mechanism can also be simulated by ICA [53].

Fig. 6 shows four example images. Fig. 6(a) is a reference
image from CSIQ database, Fig. 6(b) and (c) are two images
contaminated with different levels of pink Gaussian noise,
and Fig. 6(d) is an image with color distortion (its red
and luminance values remain unchanged, then green pixel
values were decreased by 10%, finally its blue pixel values
were computed by subtracting the red and decreased green
values from the luminance values of the original image).
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(a) (b) (c)

Fig. 8. Performance impact of Tv , λ, and C for SFF. (a) Results influenced by C and λ. (b) Results influenced by C and Tv . (c) Results influenced by λ
and Tv .

For comparisons, SSIM, VSNR, VIF-p, FSIM, and IW-SSIM
were selected to compare with SCC. Moreover, FSIMc [41],
which is the chromatic version of FSIM, was also chosen
for this comparison. The original quality scores evaluated by
the 7 IQMs are listed in Table V. The evaluation results of
SSIM, VSNR, VIF-p, IW-SSIM, FSIM, and FSIMc indicate
that Fig. 6(d) is better than Fig. 6(c), or even Fig. 6(b).
However, as we can see that Fig. 6(d) is worse than Fig. 6(c),
and is much worse than Fig. 6(b), which is consistent with
the result of SFF. Compared with other IQMs, SFF can give
more accurate perceptual quality scores when evaluating color-
distorted images.

G. Performance Impact of Parameters

In this section, we shall test five parameters of SFF, i.e.,
Tx , Tm , Tv , λ, and C to find how the parameters affect
the performance of SFF. This testing was conducted on five
databases, and then the average results (i.e., SRCC values)
across all the databases were used for analyzing the impact of
parameters.

We first analyzed the sensitivity of SFF to the values of Tx

and Tm , while other parameters were fixed to be Tv = 0.4,
λ = 0.8, and C = 0.08. Firstly, 5 different values of Tm

(from 0.6 to 1 with increment of 0.1) and 6 different values
of Tx (from 0.5 to 1 with increment of 0.1) were selected
for this testing. The two sets of parameter values can provide
30 different combinations and result in 30 different results of
SRCC. Fig. 7 shows the surface plot of SRCC as a function
of the two parameters, each point represents an average result
across the five databases. As shown in Fig. 7, SFF can give
the best results when Tx as well as Tm is 1.

The other three parameters, Tv , λ, and C , are related with
each other, so we analyzed the performance of all the three
possible parameter combinations, i.e., (C , λ), (C , Tv ), and
(λ, Tv ). Firstly, Tx and Tm are both fixed to 1. Then 6 values
of C (from 0.04 to 0.09 with increment of 0.01), 5 values of
λ (from 0.5 to 0.9 with increment of 0.1), and 5 values of
Tv (from 0.1 to 0.5 with increment of 0.1) were selected for
this testing. The performance results of the three parameter
combinations are shown in Fig. 8, from which we can see
that the proper setting for SFF is Tv = 0.4, λ = 0.8 and
C = 0.08.

TABLE VI

COMPARISON OF SRCC RESULTS FOR TWO TRAINING DATASETS

Data CSIQ IVC LIVE TID TOY Average

D1 0.9627 0.9249 0.9649 0.8767 0.8992 0.9257
D2 0.9632 0.9228 0.9634 0.8721 0.8973 0.9238

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Another set of source images for comparison (D2). (a)–(i) are sample
images taken from SIMPLIcity test set.

H. Performance Impact of Training Data

Though SFF relies on a training process, it will not cause
great changes of the evaluation results if the training images
are more diverse in content. In order to test the robustness of
SFF, we chose another set of images for training (D2), which
is shown in Fig 9. The results based on the two training sets
(i.e., D1 of Fig. 3 and D2 of Fig. 9) are listed in Table VI,
from which we can see that the difference between two sets
of results is small, this means that the evaluation result of SFF
has a certain robustness to the change of training data.

VI. CONCLUSION

In this paper, a novel FR IQM called sparse feature fidelity
(SFF) was proposed for IQA. The computation of SFF is
divided into two stages: training and fidelity computation.
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Firstly, the universal feature detector, which will be used for
extracting sparse features, is trained by FastICA on samples
of natural images in the training stage. Then the fidelity
computation consists of two components: feature similarity
and luminance correlation. The computation of feature sim-
ilarity component is based on the sparse features. Another
component, luminance correlation, is computed based on the
mean values of image patches. Finally, the SFF index will
be achieved by combining feature similarity and luminance
correlation together. To increase the accuracy and stability,
two strategies, visual attention and visual threshold, were
designed to remove the perceptually unimportant information
from image patches. Experimental results and comparisons
with other leading IQMs on five public image databases show
that SFF can achieve higher consistency with the subjective
evaluations than state-of-the-art IQMs.

The proposed IQM depends on a learning process which
is implemented by an ICA algorithm. ICA can simulate the
chromatic mechanism of the HVS (the resulting color filters
resemble either blue–yellow or red–green double-opponent
receptive fields with various orientations) [52], [53]. So SFF
is very effective for color IQA. Moreover, SFF can also
be applied to evaluating gray-scale images by training on
luminance components of images.

However, a few aspects of SFF deserve further research and
improvement. Firstly, MAE in the selection step is too simple
to model the complex visual attention mechanism precisely,
so some reliable algorithms can be considered. Secondly,
in the training stage, FastICA can also be replaced with
other more efficient dictionary learning algorithms for sparse
representations.
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