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Abstract

While wireless local area network-based indoor localization is attractive, the problems concerning how to capture
the signal-propagating character in the complex dynamic environment and how to accommodate the receiver
gain difference of different mobile devices are challenging. In this article, we solve these problems by modeling
them as common mode noise and develop a localization algorithm based on a novel differential radio map
approach. We propose a differential operation to improve the performance of the radio map module, where the
location is estimated according to the difference of received signal strength (RSS) instead of RSS itself. The particle
filter algorithm is adopted to realize the target localization and tracking task. Furthermore, to calculate the particle
weight at arbitrary locations, we propose a local linearization technique to realize continuous interpolation of the
radio map. The indoor experiment results demonstrate the effectiveness and robustness of our approach.
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Introduction
Ubiquitous computing and communication have become
popular with the development of wireless communica-
tion technology over the last decade. The need for loca-
tion information to capture contexts and configure
them into the computing and communication processes,
coupled with the unavailability of global positioning sys-
tem (GPS) in indoor environment, has triggered
increased research interest in indoor localization.
Recently, numerous localization systems have been
developed based on the received signal strength (RSS) of
the wireless local area networks (WLANs). The advan-
tage of these systems is that the cost of deploying a spe-
cialized infrastructure is avoided. However, building an
indoor localization system based on WLAN is a challen-
ging problem due to the complex indoor signal propaga-
tion character and different hardware solutions of
different mobile devices.
Radio map-based approach is the most widely adopted

method to realize indoor localization [1-11]. The essen-
tial idea is to construct the radio map by dividing the
whole deployment area into cells and then collecting the

RSS measurements from various access points (APs) at
each cell, and thus a mobile device can be localized by
matching the observed RSS vector with the radio map.
In the indoor environment, the RF signal propagation is
unpredictable and affected by several factors, such as
the presence and movement of human beings, relocation
of furniture, multi-path fading, humidity and tempera-
ture variations, and closing or opening doors. In such a
dynamic environment, the radio map obtained in one
time period may not be applicable to other time periods.
To solve this problem, Chen et al. [9] built multiple
radio maps under various environmental conditions and
used sensors to identify the current environment so as
to select the most approximate map. Yin et al. [10] off-
set the variational environmental factors by adding some
reference points as sniffers to capture the dynamic char-
acters of the environment and rebuilt the radio map
with regression method. Although these methods par-
tially overcome the negative effect of dynamic environ-
ment, the need for specific infrastructures, such as the
environmental sensors and sniffers, makes these meth-
ods impractical. More recently, Fang and Lin [11]
adopted a temporal sequence of RSS samples as the
character vector of the radio map so as to overcome the
multipath problem. While this approach demonstrates
the effectiveness for the multipath effect, it is of little
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use for other problems. The question of how to adapt to
the dynamic complex environment without any addi-
tional infrastructure is a promising and challenging pro-
blem. Because with the changing of environment, it is
most likely that the RSS measurements in one location
from different APs are prone to shift in the same direc-
tion, we can model the dynamic of the indoor environ-
ment as the common mode noise. Inspired by the fact
that differential signals are widely used in the circuit
design to restrain the common mode noise, we adopt
the difference of RSS from different APs as the charac-
teristic signal of the radio map. Suppose the RSS mea-
surement vector from three APs are (RSS1, RSS2, RSS3).
Instead of treating it as the fingerprint to realize locali-
zation, we adopt the differential vectors (RSS1 - RSS2,
RSS1 - RSS3, RSS2 - RSS3) as fingerprint. Compared with
the traditional RSS vector, the differential vector can be
effectively adapted to the dynamic indoor environment.
Furthermore, it can accommodate the receiver gain dif-
ference of different mobile devices. We are aware that
the receiver gains of even the same type of devices are
different, let alone different types of devices. If the
device used in the localization phase is different from
that used in the radio map building phase, then the esti-
mation error will be increased dramatically. Because the
difference of receiver gain offsets the RSS measurements
in the same direction, we can also model it as common
mode noise.
In this article, we propose a novel robust indoor loca-

lization algorithm under the framework of Bayesian fil-
ter. The particle filter (PF) [12,13] is adopted to achieve
the localization and tracking task, which makes full use
of the history observation to improve the estimation
accuracy. The differential radio map is used for building
the observation likelihood for the PF algorithm so as to
solve the dynamic environment and different receiver
gain problem. For the sake of predicting signal strength
measurements at arbitrary locations so as to calculate
particle weight and improve localization accuracy, we
also adopt a local linearization technique to realize con-
tinuous interpolation of the radio map.
This article is organized as follows. Section II provides

a brief overview of the indoor localization problem. In
Section III, the definition of the differential radio map is
given, and the localization architecture is described from
the view of system. The detailed implementation of our
differential radio map-based PF algorithm is presented
in Section IV. Section V validates our algorithm by eva-
luations. Finally, the conclusion is drawn in Section VI.

Related works
Indoor localization with WLAN has been an active
research area in the last decade. Honkavirta et al. [14]
presented a survey of location fingerprinting methods,

and Seco et al. [15] reviewed the indoor localization
algorithms from the aspect of mathematic. In this sec-
tion, we give a brief overview of some key research find-
ings in this area. Considering the needs of building the
radio map, we divide the methods into map-based and
non-map based algorithms.
The principle of the radio map based method is to fin-

gerprint each cell of the deployment area with a RSS
measurement vector from various APs. A mobile device
is then localized by matching the observed RSS against
the radio map. To the best of our knowledge, radio
map-based indoor localization was first introduced by
Bahl and Padmanabhan [1]; they proposed the well-
known RADAR system and realized the localization
using the deterministic fingerprint. Since then some
schemes have been proposed to reduce the manual cali-
bration effort and make the radio map more robust so
as to improve the localization accuracy. To reduce man-
ual effort, Deasy and Scanlon [2] proposed a technique
to estimate the radio map using a signal propagation
model. They used an instrument to measure the signal
propagation model parameters and built the simulated
radio map automatically. Compared with the traditional
measured radio map, although the building of the simu-
lated radio map is time efficient, the localization accu-
racy degenerates significantly. Tsai et al. [3] also
adopted the signal propagation model and the interpola-
tion technique to build the map. Chai and Yang [4] pro-
posed a scheme to reduce the sample location in the
radio map building phase so as to reduce the manual
effort and developed an interpolation technique to effec-
tively patch a radio map. Philipp [5] introduced a colla-
borative way to build the radio map with the
collaboration of users, each user could create and man-
age the map, and the whole map can be built gradually
with the participation of more and more users. Recently,
Chintalapudi et al. [6] also developed a collaborative
localization system named EZ which did not require any
knowledge about the RF environment. EZ adopted an
improved genetic algorithm to solve the constraint
equations defined by signal propagation models so as to
calculate the parameters of the APs and training points.
However, it requires the mobile device equipped with
GPS, and it can work well only if there are enough APs
to provide excellent coverage. In order to make the
radio map more informative, Wu et al. [7] adopted the
probability distribution function (PDF) as the fingerprint
of the map. Youssef and Agrawala [8] also employed a
stochastic description of the radio map. As has been dis-
cussed above, with the purpose of adapting the radio
map to the dynamic environment, Chen et al. [9], Yin et
al. [10], and Fang and Lin [11] have made some pioneer-
ing research contributions. As a continuation of these
schemes, our proposed approach adopts the differential
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radio map to make the algorithm more robust and a
local linearization technique to realize continuous inter-
polation of the radio map.
Besides the above research studies, some schemes

based on the deterministic and proba-bilistic framework
have also been developed. Lim et al. [16] used the trun-
cated singular value decomposition to calculate the sig-
nal-distance map (SDM) based on the online
measurements between the APs. Although the dynamic
SDM makes it possible to capture the challenging
dynamic indoor environment, the requirements of the
high AP density and the modification of commercial
AP’s software make the scheme impractical. Hossain et
al. [17] proposed a robust localization algorithm that
could make use of multiple wireless techniques.
Schwaighofer et al. [18] first adopted the Gaussian pro-
cess (GP) as a non-parametric tool to realize the
approximation of the radio map of cellular network. Fer-
ris et al. [19] introduced the GP into the WLAN-based
indoor localization. Compared with other regression
models, the GP takes into account the noise of the
observation and provides the ability to approximate
nonlinear signal propagation model. Madigan et al. [20]
adopted a Bayesian hierarchical approach to realize
indoor localization, which eliminated the need of know-
ing the locations of the training points. Huang et al.
[21] proposed a similar Bayesian algorithm and intro-
duced the stochastic properties of measurement errors
and the reliability of the measurement data into the fac-
tor graph framework so as to improve the accuracy.
Wymeersch et al. [22] also proposed a Bayesian localiza-
tion algorithm and took the cooperation of the nodes
into consideration to improve the accuracy. Feng et al.
[23] employed the compressive sensing theory to analyze
the localization problem. The localization problem is
modeled as a sparse question and can be solved by the
L1 minimization. While these methods cut down the
measurement effort and partially adapt to the dynamic
environment, they still require effort in terms of placing
sniffers, modifying commercial AP’s software, obtaining
the knowledge of AP placement, and of complex
computation.

Differential radio map and system architecture
In this section, we define the differential radio map and
analyze its ability to restrain the dynamic environmental
noise and receiver gain difference. The architecture of
the proposed localization system is presented thereafter.

Differential radio map
The construction of the differential radio map is almost
the same as that of the traditional radio map, except
that a differential operation module is introduced. First,
we divide the deployment area into equal square

training cells with their vertices set as the training
points. Then, we perform off-line training to record RSS
measurements transmitted by each AP and store these
measurements into the radio map. The radio map has
the following form:

Map = {pi, Ri|i = 1, . . . , M}, Ri = {Rij|j ∈ Ni}, (1)

where M is the total number of training points, pi and
Ri indicate the location and fingerprint of the ith train-
ing point, respectively, Ni is the detected AP list at the
ith training point, Rij is a Gaussian PDF represented by
N(μij, σ 2

ij ) with the mean μij, and covariance σ 2
ij , which

is used to approximate the RSS measurements collected
at the ith training point and transmitted by the jth AP.
Unlike the traditional radio map which adopts the fin-

gerprint Ri directly for localization, we adopt the differ-
ential fingerprint R̄i which takes the Ri as input, and it is
calculated as follows:

R̄i = {Rij − Rim|j ∈ Ni, j �= m}, Rim = max{Rij|j ∈ Ni}, (2)

where Rim is the strongest RSS measured at the ith
training point (the measurement with lower ID is
adopted when equal RSSs are measured), and Rij -Rim is
represented by N(μij − μim, σ 2

ij + σ 2
im).

In theory, the propagation of radio signal is regulated
by a certain principle. The shadowing model is widely
adopted to approximate the signal propagation character
in the indoor circumstance. With this model, Rij is
defined by

Rij = G + Pj − Lj − 10βlog10dij + v, (3)

where G is the receiver gain, Pj is the transmitting
power (dBm) of the jth AP, Lj is the signal attenuation
power (dBm) at the distance of 1 m, b is the path loss
exponent, dij is the Euclidean distance between the ith
training point and jth AP, and v represents the measure-
ment noise. G + Pj - Lj is always represented by one
symbol and is called the received power at the distance
of 1 m in other studies. To analyze the feature of the
differential operation, we use three symbols to represent
each factor here. The dynamic indoor environment
always causes the change of parameters Lj and b, and
the change of these parameters incur the change of the
Rij. As for different types of device, the receiver gain G
is different, and thus the change of device causes the
change of Rij , as well.
The differential RSS is calculated as

Rij − Rim = (Pj − Pm) − (Lj − Lm) − 10β(log10dij − log10dim) + ṽ, (4)

where Pj - Pm is a constant which does not change
with environment. While Lj and Lm change with the
environment, they always offset to the same direction.
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Consequently, the change of Lj -Lm is not significant
compared with the change of Lj and Lm. As for 10b
(log10 dij - log10 dim), since log10 dij - log10 dim is less
than log10 dij and log10 dim, the change must be insignif-
icant, too. From Equation 4, we can see that the term G
is eliminated in the expression. Therefore, the differen-
tial RSS scheme is immune to the dynamic indoor envir-
onment, and can solve the problem caused by different
receiver gains of multi-devices.
To validate the above theoretical analysis, we placed

two different types of mobile devices at the same loca-
tion and collected RSS measurements from two APs
located at different places. We used an Intel 4965AGN
wireless card and a TP-LINK TL-WN322G wireless
card to gather RSS. There is a door between the wireless
cards and APs, and we closed the door in the time
instant 15-45. We define Int1 and Int2 as the RSS mea-
surements, respectively, from AP1 and AP2 by
4965AGN, TP1 and TP2 as the RSS measurements by
TL-WN322G, Int_dif as the differential signal of Int1
and Int2, and TP_dif as the differential signal of TP1
and TP2. Figure 1 demonstrates that the change of the
differential RSS is quite insignificant compared with the
change of RSS. It can also be seen that while the differ-
ence of the RSS measurements from the same AP with
different devices is remarkable, the difference of differ-
ential RSS measurements is almost the same. The aver-
age differences between Int1 and TP1, Int2 and TP2 are
10.5 and 11.3, respectively, while that between Int_dif
and TP_dif is only 0.8.

System architecture
The system flow of the proposed differential radio map-
based localization system is plotted in Figure 2, where xt
is the current estimated location information, yt is the
current observation, p (xt-1 |yt-1) is the posterior PDF

estimation of time instant t - 1, p (xt |yt-1) and p (xt |yt )
are the prior and posterior PDF estimations of time
instant t, respectively.
The localization system follows the framework of

Bayesian filter [12,13] and estimates the posterior PDF
of the location recursively conditioned on all the mea-
surements, y1,...,yt. The essential of the Bayesian filter is
the prediction process and observation update process,
which are defined as follows:

p(xt|yt−1) =
∫

p(xt−1|yt−1)p(xt|xt−1)dxt−1, (5)

p(xt|yt) =
p(yt|xt)p(xt|yt−1)∫
p(yt|xt)p(xt|yt−1)dxt

, (6)

where the term p (xt|xt-1) represents the motion
model, which describes the motion of the mobile device,
and p (yt|xt) represents the observation likelihood
model, which describes the likelihood of observing a dif-
ferential RSS measurement vector yt at a location xt. We
describe the detailed models in the next section.

Implementation of the algorithm
This section first gives a brief introduction of the PF
algorithm, and then defines the motion model and
observation model in detail.

PF algorithm for localization and tracking
Bayesian filter algorithms [24] have achieved great suc-
cess in handling the localization and tracking problem
through the sequential estimation of target’s state, coop-
eration with the movement modeling, prior distribution
prediction, and posterior distribution estimation. Among
these Bayesian filter algorithms, the PF algorithm
[12,13] has emerged as a popular choice because of its
unique ability in dealing with the complex non-Linear
and non-Gaussian estimation problem. For these rea-
sons, we adopt the PF algorithm for localization in this
article. The PF algorithm approximates the probability
distribution of the estimated target with several
weighted particles, and deals with the sequential estima-
tion by carrying out a series of particle-propagating
operations. Let {xi

t, wi
t|i = 1, . . . , N} denote a particle

set, where xi
t is a sample of xt with associated normal-

ized weight wi
t. Then, the posterior PDF p (xt|yt) can be

approximated as

p(xt|yt) ≈
∑
i=1

wi
tδ

(
xt − xi

t

)
, (7)

where δ () is the Dirac delta function. Suppose we
have the proposal distribution q (xt|xt-1, yt), then the
predicted location xi

t can be generated based on the
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Figure 1 RSS measurements of different devices from different
APs.
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previous location xi
t−1 and the latest observation yt as

follows:

xi
t ∼ q(xi

t|xi
t−1, yt), i = 1, . . . , N. (8)

and wi
t is given by

wi
t ∝ wi

t−1
p(yt|xi

t)p(xi
t|xi

t−1)

q(xi
t|xi

t−1, yt)
. (9)

Most articles in the literature define the proposal dis-
tribution as q (xt|xt-1, yt) = p (xt|xt-1), which only consid-
ers the motion model and neglects the latest observation
yt. For simplicity, we follow this scheme. Interested
readers could find out the methods of designing
advanced proposal distribution in [25]. Now, the ques-
tion is how to define the motion model p(xi

t|xi
t−1) and

the observation likelihood model p(yt|xi
t) for the

particles.

Motion model
Speaking in general, the motion model of the mobile
devices in the indoor environment is untraceable, and
the velocity and direction of the mobile device are hard
to estimate. In [19], Ferris et al. used a voronoi graph to
aid the motion prediction. Although the performance of
the prediction is improved, it needs detailed floor plan
of the building which is impractical and inconvenient.
Jin et al. [26] adopted dead reckoning sensors to make
prediction, which needs the additional expensive sen-
sors. Based on the principle of making the system as
universal as possible, we define the motion model purely
based on the historical motion information. We consider
only two-dimensional localization, and the extension to
the three-dimensional scenario is straightforward. The

two-dimensional location state xt can be represented by
(Xt, Yt). Suppose the location states of the previous two
time instants are, xt-2 and xt-1, the predicted velocity v̂t

and direction α̂t of the mobile device can be estimated
as follows:

v̂t = min
(√

(Xt−1 − Xt−2)2 + (Yt−1 − Yt−2)2, vmax

)
, (10)

α̂t = arctan
(

Yt−1 − Yt−2

Xt−1 − Xt−2

)
, (11)

where vmax is the velocity threshold of the mobile
device and generally set as 1m/s. The motion model of
the particles can be written as[

Xi
t

Yi
t

]
=

[
Xi

t−1 + vi
tcos(αi

t)�t + nt

Yi
t−1 + vi

tsin(αi
t)�t + nt

]
, (12)

where nt is the noise,

vi
t ∈ [0.6v̂t, 1.4v̂t] , αi

t ∈
[̂
αt − π

6
, α̂t +

π

6

]
. The new parti-

cles are generated in the fan-shaped area. Meanwhile, to
cope with the circumstance such as the swerve of the
mobile device, we randomly select 80% particles that
participate in the prediction defined by Equation 12,
and let the rest 20% particles randomly move in the cir-
cular area, with the last estimation as center and vmax as
radius.

Observation likelihood model
In order to calculate the likelihood of the particles at
arbitrary locations, the first thing that should be solved
is to fulfill the radio map with the ability of representing
the RSS measurements at arbitrary locations. The radio
map defined by Equation 1 is a discrete map, and only

Radio Map

( )1t tp x y −( )1 1t tp x y− − ( )t tp x y

AP AP AP

Differential 
Transformation

Likelihood 
Calculation

Differential 
Transformation

Figure 2 Architecture of the localization system.
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the RSS fingerprints of the training points are recorded.
We adopt a linearization technique to predict RSS mea-
surements at arbitrary locations. Within each of the
square training cells, we use a hyperplane to approxi-
mate the RSS measurements of every AP. The 3D plane
equation includes (x, y, r) coordinate, where (x, y) is the
2D location, and r is RSS measurement. The equation is
defined as

ax × x + ay × y + ar × r = c, (13)

where ax, ay, and ar are the coefficients of the plane
equation, and c is a non-zero constant and set as 1 in
this article. The RSS measurements of the four vertices
and their locations are known, therefore, they can be
used to calculate the coefficients of the hyperplane
equation. Suppose the locations of the four vertices are
(x1, y1), (x2, y2), (x3, y3), and (x4, y4), the mean values of
the RSS measurements from one AP are r1, r2, r3, and
r4. We have a constraint matrix in the following form:

A · B = C, (14)

where

A =

⎡
⎢⎢⎣

x1 y1 r1

x2 y2 r2

x3 y3 r3

x4 y4 r4

⎤
⎥⎥⎦ , B =

⎡
⎣ax

ay

ar

⎤
⎦ , C =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ . (15)

The coefficients of the hyperplane equation can be
solved with the least square algorithm as

B =
(
ATA

)−1
ATC, where ()-1 and ()T represent the matrix

inverse and transpose, respectively. After building the
hyperplane equation for every AP in each of the square
training cells, the mean value of RSS fingerprint at an
arbitrary location can be calculated with Equation 13,
and the average value of the four vertices’ covariance is
set as the covariance of the location.
For the particle xi

t, we first judge which training cell it
belongs to and calculate the RSS fingerprint vector
based on the hyperplane equation, and then, we trans-
form the RSS fingerprint vector and the current,
observed RSS measurement vector to their differential
form. Suppose the differential fingerprint for the jth AP
is N(μ̄ij, σ̄ 2

ij ), the observed differential RSS measure-
ment from the jth AP is ōj, then the likelihood for the
jth AP is N(ōj; μ̄ij, σ̄ 2

ij ). Suppose the RSS measurements
from different APs are independent, the observation
likelihood can be expressed as

p(yt|xi
t) =

⎛
⎝ n∏

j=1

N(ōj; μ̄ij, σ̄ 2
ij )

⎞
⎠

1/n

, (16)

where n is the number of detected APs. The exponent
1/n is used to smooth the likelihood so as to avoid the
occurring of overconfident estimate. We calculate the
observation likelihood values for all the particles and
adopt wi

t−1p(yt|xi
t) as the new particle weight, and then,

normalize it to ensure the summation of weights is
equal to 1.
With the normalized weighted particle set

{xi
t, wi

t|i = 1, . . . , N}, the location estimation xt can be

calculated as xt =
N∑

i=1
xi

tw
i
t. To avoid the occurrence of

degeneration problem, we adopt the adaptive systematic
resample method [25] for further optimizing the quality
of the particles. The outline of our differential radio
map-based Bayesian localization (DRMBL) algorithm is
summarized in Table 1.

Experimental evaluation
In this section, we start by giving a detailed presentation
of our testbed. Then, we evaluate the proposed improve-
ment strategies under different conditions. For simplicity
and comparison, the deterministic fingerprint-based
RADAR algorithm adopts the weighted k-nearest neigh-
bor technique, abbreviated as KNN, and the algorithm
that adopts probabilistic fingerprint localization techni-
que is abbreviated as PL. Furthermore, to evaluate the
effectiveness of our differential strategy, the differential
strategy is also applied to the KNN and PL algorithms.
We define the improved algorithms as DRMKNN and
DRMPL, respectively.

Experiment setup
To evaluate the performance of our algorithm, we per-
formed realistic experiment on the second floor of the
Electronic Information building of Dalian University of

Table 1 DRMBL algorithm

1. Initialization: t = 0, 1

Adopt the estimation of RADAR as the initial estimation.

2. While (t >1) do

2.1 Prediction update

A. Estimate the velocity and direction using Equations 10 and
11

B. Make prediction using Equation 12

2.2 Observation update

A. Calculate the observation likelihood function of each
particle with Equation 16

B. Calculate the normalized weight for each particle

2.3 Adopt the weighted mean of the particles as the current
location estimation

2.4 Resample, if necessary

End
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Technology. The layout of the floor is shown in Figure
3, and a scene of training is illustrated in Figure 4. The
deployment area has a dimension of 72 × 29 meters.
The TP-LINK TL-WR340G+ APs are adopted, and there
are six detectable APs on the floor. We use an IBM
ThinkPad X60 laptop with Windows XP operating sys-
tem as the mobile device. A TP-LINK TL-WN322G
wireless card is adopted to gather RSS in the radio map
building phase, and a 4965AGN card and a TL-
WN322G wireless card are used in the localization
phase. Unless otherwise specified, we adopted the data
collected by 4965AGN in the following evaluations. We
designed the software for collecting RSS based on the
NDIS Miniport [27].
The radio map has 164 locations along the corridor

and 70 locations inside the room. We placed the train-
ing points 1.2 m apart and collected 10 samples at each
point with a time interval of 1 s. The default parameters
for the algorithms are as follows: the parameter k of
KNN is 4, and the number of particles used in the
DRMBL is 1000.

Evaluation results
Figure 5a demonstrates the comparison of the cumula-
tive distribution function (CDF) of the localization error
when using a TL-WN322G wireless card which is the
same as that used in the training phase; the DRMBL
algorithm outperforms other algorithms and its average

localization error decreases by 13% compared with
KNN. The average localization errors of DRMKNN and
DRMPL algorithms decrease by 4% and 3.7%, respec-
tively, when comparing with KNN and PL algorithms.
Figure 5b shows the localization error when using an
Intel 4965AGN wireless card. It can be seen that the
performances of DRMBL, DRMKNN, and DRMPL algo-
rithms are nearly the same as that of Figure 5a, while
the performance of KNN and PL algorithms drops dra-
matically. These results show the effectiveness of our
improvement strategies, and indicate that the differential
method is generic and can be applied to other localiza-
tion algorithms to improve their accuracy.
Table 2 summarizes the detailed results. It can be seen

that comparing with KNN and PL algorithms, the aver-
age error of DRMBL decreases by more than 26% and
22%, respectively. With our differential strategy, the
average errors of DRMKNN and DRMPL decrease by
more than 18% and 10%. However, it should be men-
tioned that the maximum errors of DRMKNN and
DRMPL increases, respectively, by 35% and 36%. This is
because when the RSS measurements from the reference
AP incur from severe noise, the differential operation
may bring noise to the differential RSS vector, which
incurs the increase of localization error. Hence, the
selection of reference AP is of vital importance.
To evaluate the performance of our DRMBL algorithm

under different conditions, we studied the sensitivity of

AP4

AP3

AP2

AP1

AP5 AP6

Figure 3 Floor plan for the testbed.
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the algorithm to the number of APs and radio map spa-
cing. Figure 6a illustrates that the average localization
error decreases gradually with the increase of the num-
ber of APs, and a relatively stable condition can be
achieved when the number of APs is greater than 4. In
Figure 6b, the error bars represent the standard devia-
tion. It demonstrates nearly the same character as that
of average error. It can be seen from Figure 7 that the
accuracy decreases and standard deviation increases gra-
dually with the increase of radio map spacing. However,
the DRMBL algorithm still achieves average error of
2.56 m at the radio map spacing of 9.6 m. It can be
learned from Figure 7a that the performances of
DRMKNN and DRMPL drop dramatically with the
increase of radio map spacing; because with the decrease
of the number of training points, the RSS measurement
from the reference AP may be far away from any train-
ing points, which introduces noise to the differential
RSS vector.
Essentially speaking, our DRMBL algorithm is a PF

algorithm, and the performance of PF algorithm

depends largely on the number of particles adopted in
the algorithm. We evaluated the algorithm using differ-
ent number of particles. Figure 8 illustrates that with
the increase of the number of particles, the average
error and its standard deviation decrease gradually. It
can be seen that 100 particles are sufficient for the algo-
rithm to achieve reasonable results.
Figure 9 demonstrates the tracking effect of our

DRMBL algorithm. A mobile device is moving in the
deployment area, its motion trace covers straight corri-
dor with excellent AP signal coverage and corner with
noisy and feeble AP signal. In Figure 9a, the blue “L”
shape line is the ground truth trace, and the black trace
is the estimated one. We can see that, in the corridor,
the tracking performance is very good; however, in the
corner, the estimation error increases remarkably. For
clarity, we mark the poor estimations with red stars and
plot the detailed estimation errors in Figure 9b. From
Figure 9, we can learn that one should pay special atten-
tion to the placement of APs to ensure that the radio
signal could cover every corner in the deployment area.

Figure 4 A scene of training.
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Discussion
We highlight some of the experience on the DRMBL
algorithm, including the differential strategy, the density
of training points, and the characteristic of the PF
algorithm.
It should be mentioned that the differential strategy is

generic. It can be adopted by any localization system as
long as they use the RSS as measurement, such as
WLAN, Zigbee, Bluetooth, and GSM-based systems. If
N APs are detected, ideally there are C2

N pairs of differ-
ential RSS measurements. For simplicity, we select the

AP with the strongest RSS as the reference AP and
select N - 1 differential RSS measurements relative to it
according to Equation 2. Computational resources per-
mitting, one can utilize all the differential measurements
to improve the performance. The performance of the
differential strategy is greatly affected by the reference
AP. Therefore, the selection of the most appropriate
reference AP is vital for the DRMBL algorithm. We
have verified four criteria: AP with the strongest RSS,
AP with the weakest RSS, AP with the minimum stan-
dard deviation, and AP with the maximum standard
deviation. Table 3 illustrates that the criterion of select-
ing the AP with the strongest RSS is superior to others.
As has been seen from Figure 7a, one shortcoming of

the differential strategy is that it requires dense training
points. Our DRMBL algorithm solves this problem with
continuous interpolation technique. When the differen-
tial strategy is adopted, we suggest that the interpolation
technique could be used for generating some virtual
training points. Figure 10 demonstrates the results of

Table 2 Comparison of localization error

Algorithm Median
(m)

Average
(m)

Stand deviation
(m)

90%
(m)

Max
(m)

KNN 2.42 2.78 1.89 5.28 7.34

DRMKNN 1.97 2.28 1.85 4.19 9.95

PL 2.26 2.60 1.86 4.82 7.50

DRMPL 1.92 2.34 2.12 4.61 10.23

DRMBL 1.49 2.04 1.75 4.17 6.80

A  

B
Figure 5 CDF of localization error with different hardware.

A  

B
Figure 6 Impact of the number of APs.
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DRMKNN and DRMPL with interpolation technique
used in the radio maps of 4.8 and 9.6 m spacings.
Moreover, with the essential similarity to PF algorithm,

DRMBL deals with the location estimation problem by
means of prediction and observation update process. In
this article, we suppose that the algorithm knows nothing
about the prior knowledge; if we have some prior infor-
mation about the velocity or direction, the tracking accu-
racy will be improved significantly. Figure 11
demonstrates the localization error for tracking the same
trace as that of Figure 9a while having prior velocity
information. The estimation error is remarkably reduced,
and the average localization error is only 1.17 m.

Conclusion
To address the problem of realizing accurate localization
in complex dynamic environment in the WLAN which

A  

B
Figure 7 Impact of the radio map spacing.

Figure 8 Impact of the number of particles.

A  

B
Figure 9 Tracking a moving device.
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is made up of different types of devices, we proposed a
novel DRMBL algorithm under the Bayesian framework.
We proposed a differential strategy to overcome the
common mode noise and a continuous interpolation
technique to accurately realize the particle weight calcu-
lation. The experiments validated our proposed
schemes, and revealed that DRMBL algorithm could

achieve reasonable localization results under challenging
background conditions. The schemes proposed in this
article are generic and could be adopted by other locali-
zation systems.
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