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Abstract

In this paper, a dynamic all parameters adaptive BP neural networks model is proposed by fusing genetic algorithms
(GAs), simulated annealing (SA) and error back propagation neural network (BPNN) to offset the demerits of one par-
adigm by the merits of another. Adopting multi-encoding, the model can optimize the input nodes, hidden nodes, transfer
function, weights and bias of BP networks dynamically and adaptively. Under accurate premise, the simple architecture
(less input and hidden nodes) of network model is constructed in order to improve networks’ adaptation and generaliza-
tion ability, and to greatly reduce the subjective choice of structural parameters. The results of application on oil reservoir
prediction show that the proposed model with comparatively simple structure can meet the precision request and enhance
the generalization ability.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Dynamic; All parameters; Adaptive; Genetic algorithms; BP neural network; Structure identification
1. Introduction

Artificial neural networks (ANNs), due to their excellent ability of non-linear mapping, generalization, self-
organization and self-learning, have been proved to be of widespread utility in engineering and are steadily
advancing into new areas [1–5]. The ‘feed-forward, back propagation’ neural network usually trained by
back-propagation of errors (BPNN) is perhaps the most popular network architecture in use today [6].
Although encouraging results have been reported in which ANNs-based system outperformed widely-used
well-established statistical methods, many inconsistent reports have been undermining the robustness of these
findings. The reasons of these discrepancies are well-known problems characterized BPNN: (1) As the BP
algorithm optimizes a target function by using the gradient descent method, the calculation may overflow
or fluctuate between the optima; (2) BPNN is sensitive to the choice of topology and size. Different hidden
nods and transfer function may lead to different results when BPNN is trained and tested on the same data-
base; (3) The convergence of BPNN is also sensitive to the initial selection of weights. If the initial sets of
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weights are not selected properly, the optimization solution could be trapped in a local optimum; (4) Gener-
ally, BP algorithms adjust weights and bias complying with a certain rule. It is impossible to adjust structure
self-adaptively in a fixed topology.

Despite the increasing level of research activity the problem described has not yet been solved definitively.
Different approaches can be categorized as follows: (1) empirical or statistical methods, that are used to study
the effect of ANNs internal parameters and choose appropriate values for themselves based on the model’s
performance [7–10]. The most systematic and general of these methods utilize the principles from Taguchi’s
design of experiments [11]. The best combination of the number of hidden layers, hidden neurons, choice
of input factors, training algorithm parameters, etc., can be identified by these methods even though they
are mostly case-oriented. (2) Grey correlation analysis [12]. In the case of that grey correlation analysis is used
to determine the number of the hidden nods in the BPNN’s optimal network and to improve the network’s
performance. (3) Network growing/or pruning algorithms that, respectively, add and/or remove neurons from
an initial architecture using a previously specified criterion to indicate how ANNs’ performance is affected by
changes [13–17]. The basic rules are that neurons are added when training is slow or when the mean squared
error is larger than a specified value, and that neurons are removed when a change in a neuron’s value does not
correspond to a change in the network’s response or when the weight values that are associated with this neu-
ron remain constant for a large number of training epochs. Since both constructive and pruning algorithms
are basically gradient descent methods, their convergence to the global minimum cannot be guaranteed.
Therefore they can be trapped to a local minimum close to the point of the search space where the algorithm
starts. (4) Evolutionary strategies that search over topology space by varying the number of hidden layers and
hidden neurons through application of genetic operators and evaluation of the different architectures accord-
ing to an objective function [17–21]. In recent years, the considerable progress has been made in last category.
However, most of previous researchers hybridized two of evolutionary techniques such as GA–BP, SA–BP,
GA–SA. Little has fused GAs, SA, and BP synchronously.

In this paper, a dynamic all parameters adaptive BP neural networks model is proposed by fusing genetic
algorithms (GAs), simulated annealing (SA) and error back propagation neural network (BPNN) to offset
demerits of one paradigm by merits of another. The algorithms whose every chromosome structures consist
of both binary and real parts are briefly described as following: Firstly, the model optimizes input nodes, hid-
den nodes, transfer function, weights and bias of BP networks utilizing GA. Secondly, in order to get proper
weights and bias of a fixed network structure, the real part of chromosome corresponding weights and bias
value go to SA–BP hybrid algorithms with a certain probability. The better weights and bias can be got by
using SA global search avoiding being trapped in a local minimum when adjusted by BP algorithm. Finally,
set weights and bias obtained by SA–BP to corresponding chromosome, and then go to next generation oper-
ation. Under the premise of ensuring accuracy, the architecture of the network model is relatively simple (less
input and hidden nodes) so that to improve adaptation and generalization ability of networks, and to greatly
reduce subjective choice of structural parameters.

The paper is organized as follows. In Section 2, we describe design of the model in detail. The algorithm
approach of adaptive optimize parameters of BPNN is described in Section 3. In Section 4, applications
are presented and the performances of the various existing methods are compared. We conclude in Section 5.

2. Design of the model

GA is a global search procedure that searches from one population of points to another. As the algorithm
continuously samples the parameter space, the search is directed toward the area of the best solution so far.
This algorithm has been shown to perform exceedingly well in obtaining global solutions for difficult non-lin-
ear functions [4]. The application of the GA to one particularly complex non-linear function, the ANN, has
also been shown to dominate other more commonly used search algorithms [19,20,22]. It has some main dis-
advantages, for example, slow convergence speed; premature convergence or stalling; the larger number of
populations and individuals for some complex optimization problems. SA, as its name implies, exploits an
analogy between the way in which a metal cools and freezes into a minimum energy crystalline structure
(the annealing process) and the search for a minimum in a more general system. The algorithm is based upon
that of Kirkpatrick et al. [23], which was originally proposed as a means of finding the equilibrium configu-



Fig. 1. A typical back-propagation ANNs model.
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ration of a collection of atoms at a given temperature. SA’s major advantage over other methods is the ability
if avoiding becoming trapped at local minima. The algorithm employs a random search, which not only better
but also worse neighboring solutions with a certain probability. SA is a powerful optimization technique to
solve the combinatorial optimization problems, but it is computationally intensive, especially for more com-
plicated problems [24]. BP algorithm which is mostly used to train networks is a gradient-based method; hence
some inherent problems are frequently encountered in the use of this algorithm, e.g., very slow convergence
speed in training, easily to get stuck in a local minimum, etc. [25]. To overcome these disadvantages, combin-
ing GA, SA and BP could achieve more effective results. This study employs genetic algorithm to carry out
near-optimal neural network structure, and SA, BP to realize optimal weights and bias of the network.

The common three-layer feed-forward type of ANNs, as shown in Fig. 1, is considered. This is the type of
network in which the units each perform a biased weighted sum of their inputs and pass this activation level
through a transfer function to produce their output, and the units are arranged in a layered feed-forward
topology.

To dynamic and adaptive optimize all parameters of BP neural networks by a hybrid algorithm of GA–SA–
BP; first of all, design as following must be done in this section.

2.1. Chromosome multi-encoding

In order to optimize BP neural network structure, transfer function, weights and bias at the same time, we
used GA with multi-encoding. Chromosome structures with six gene segments include both binary and real
parts, as it is demonstrated in Fig. 2 and presented as chromsom ¼ ½X 1;X 2;X 3;X 4;W 1;W 2�. Neurons of net-
work in the input and hidden layer, as well as the transfer function type of neurons are coded by the first part
of chromosomes structure. If the value of gene X1 and X2, coded in binary system, is ‘‘1’’, the neuron is
selected, on the contrary, if the value is ‘‘0’’, the neuron is unselected. For example, there are 10 inputting vari-
ables, the masking binary string encoded as [11111 11000] presents that the first seven inputs of feature work
piece parts should be kept, and the last three inputs should be removed. X3 and X4 are the genes of determi-
nation the type of transfer function of hidden and output layer neurons respectively. For example, code binary
string as 000, 0 01, 011 representing the transfer function of hanrdlim, logsig and tansig respectively. Those
Weights and bias 
of hidden layer

binary part real part 

Weights and bias 
of hidden layer

R: [-10, 10] 
Input and hidden layer nods 
Selection  
0: unselected; 1: selected 

Transfer function of hidden
and output layer nods  

X1 X2 X3 X4 1W 2W

Fig. 2. GANN chromosome structure.



S. Yu et al. / Applied Mathematics and Computation 195 (2008) 66–75 69
genes located in the real part, W1 and W2 are use to code the weights and bias parameters which may be in
values of [�10,10].

2.2. Selection operator

Generally, selection operator of genetic algorithm is implemented by using roulette-wheel algorithm. The
main defect of the roulette-wheel algorithm is that local optimal gene dominates the whole generation, while
global optimum would likely be eliminated before emerging. Therefore, the roulette wheel with elitist selection
method is considered as the selection mechanism in this proposed GA–SA–BP algorithm. This method includ-
ing two phases, at first, the elitist strategy was adopted. The generation whose fitness is within top 10% will be
directly copied to the new generation. Then the rest of chromosome is selected by roulette wheel.

2.3. Crossover operator

Crossover is a mechanism of randomly exchanging information between two chromosomes. Different cross-
overs mechanisms for binary and real part are implemented in this study. The two-point crossover mechanism
is applied to the binary part of chromosome, which is demonstrated in Fig. 3.

The following crossover for real part: Let chrom1 and chrom2 are two chromosomes, and are two indepen-
dently distributed random variables with range [0,1]. We can get two new chromosome by Eq. (1):
chrom10 ¼ chrom1þ ð1� r1Þ � ðchrom2� chrom1Þ;
chrom20 ¼ chrom2þ ð1� r2Þ � ðchrom1� chrom2Þ:

�
ð1Þ
2.4. Mutation operator design

The purpose of mutation operation is to make genetic algorithm obtain local random research capability
through varying certain genes of chromosome. If a chromosome is selected for mutation, one gene is randomly
selected for changing their values. In the respect of binary representations the process is particularly simple:
randomly choose a locus and switch its value, either 0 # 1 or 1 # 0. While, for the real part of the chromo-
some, let p is a parent, then the child chromosome is, p0 ¼ p þ � where is a distributed random variables with
range [0,1].

2.5. Fitness function

A fitness value is given by Eq. (2):
fitness ¼ 1

E þ a � ðinput noþ hide nodÞ ; ð2Þ
where E is the mean squared error of neural network. a (0 < a < 0.01) is the affection coefficient of the number
of input nods and hidden layer nods. input_no, hide_nod are the number of input nods and hidden layer nods,
respectively. Furthermore, one input nod and one hidden layer nod must be selected at least in every chromo-
some, namely, input_no P 1, hide_nod P 1.
Parent 1 

Parent 2 

1 0 1 1 1 1 0 0 0 0 1 1 1 

1 1 1 1 0 1 0 1 0 1 0 0 1 

1 0 1 1 1 1 0 1 0 1 0 1 1 

1 1 1 1 0 1 0 0 0 0 1 0 1 

Child 1 

Child 2 

Crossover point 

Fig. 3. Two-point crossover.
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2.6. Adaptive probability of crossover and mutation

Traditional crossover and mutation operators are based on a randomization mechanism, i.e., generating a
cut point, and determining the position of the bit shifted by mutation of the solution. But this is not the case in
natural evaluation which is mimicked by the GA. Actually renewing the bits of the solution is dynamic or
adaptive, but not random. The slightly modified adaptive probabilities of crossover and mutation given by
Srinivas and Patnaik [26] are used in this study to choose the probability of mutation and crossover according
to the fitness value of the solutions. The modified expression of pc and pm are as follows:
P c ¼
ðfmax � f 0Þ=ðfmax � faveÞ if f 0 P favg;

1:0 if f 0 < fave;

�
ð3Þ

P m ¼
0:5 � ðfmax � f Þ=ðfmax � faveÞ if f P fave;

ðfave � f Þ=ðfave � fminÞ if f < fave:

�
ð4Þ
Here, f is the fitness of an individual, fave the average fitness value of the population, and fmax and fmin the
maximum and minimum fitness value of the population respectively. f 0 is the larger of the fitness values of
the solutions to be crossed.

3. The algorithm approach of adaptive optimize parameters of BPNN

The algorithm approach of optimizing the network structure, transfer function and weights value using GA
combining SA and BP include two phases: firstly, the model optimizes the input nodes, hidden nodes, transfer
function, weights and bias of BP networks by utilizing GA. Secondly, in order to get proper weights and bias
of a fixed network structure, the real part of chromosome’s corresponding weights and bias value go to SA–BP
hybrid algorithms with a certain probability. The better weights and bias can be got by using SA global search
avoiding being trapped in a local minimum when adjusted by BP algorithm. The more details are described as
follows:

(1) Standardize the training and testing data.
(2) Initialize prior parameters of the model: the size of population = pop_size, the max generation max gen.
(3) Generate initial population chromsom ¼ ½X 1;X 2;X 3;X 4;W 1;W 2�, in which X 1;X 2;X 3;X 4 are binary

codes and W 1;W 2 are real number codes and the value of fitness is calculated.
(4) The operation of relative genetic operators.

(4.1) Select and reproduce population according to value of fitness.
(4.2) Calculate the self-adaptive crossover probability Pc, and crossover operation of different code genes.
(4.3) Calculate the self-adaptive crossover probability Pm, and mutation operation of different code gene.
(4.4) Estimate the number of 1’s in the X1 gene code, if the number is 0, one of the genes set to 1 randomly.

The same principle is also used in the X2, else go to (5).
(5) Utilize SA–BP to get the optimal network weights basing on the fixed input, structure, and transfer func-

tion, and let p = 1.
(5.1) If p 6 pop size, go to (5.2), else go to (6).
(5.2) chromsomp will be entered into SA–BP based on certain probability, which means if rand < P SABP, go to

(5.3), else p = p + 1, and go to (5.1).
(5.3) Set the initial annealing temperature t0, final temperature ts, annealing ratio a and length of Markov L. If

t 6 ts the individual optimized by BP algorithm and can get chromsomp ¼ ½X 1
p;X

2
p;X

3
p;X

4
p;W

1�
p ;W

2�
p �, else

let p = p + 1, go to step (5.2).
(5.4) Utilize SA to optimize the chromsomp ¼ ½X 1

p;X
2
p;X

3
p;X

4
p;W

1�
p ;W

2�
p � globally, and get the individual opti-

mized weights chromsomp ¼ ½X 1
p;X

2
p;X

3
p;X

4
p;W

1��
p ;W 2��

p �. Let p = p + 1 go to (5.1).
(6) Calculate fitness value of the population which optimized by GA–SA–BP from step (4) and (5),

chromsom ¼ ½X 1;X 2;X 3;X 4;W 1��;W 2���.
(7) Let gen ¼ genþ 1, if gen 6 max gne, go to next generation and implement a new GA–SA–BP operation

from the Step (4), else stop the iteration, get the best individual best chromsome,namely the best input
number, hidden nodes number, transfer function and the optimal network weights.
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Table 1
The samples and raw data

Seismic attribute Oil well

G53 G101 G104 G105 G108 G207 G406 G508 G43 G405 G34 G35 G36 G38 G23

Average peak value 0.07 �0.45 0.33 0.01 0.01 0.53 �0.11 0.17 �0.03 0.11 0.12 0.08 0.03 0.12 0.02
Average trough value �0.28 �1.24 �1.07 �1.49 �1.59 �0.29 �0.80 �2.66 �0.48 �1.80 �0.89 1.87 �0.98 �1.76 �1.51
Max. amplitude 0.13 0.11 0.33 0.01 0.01 0.97 0.00 0.32 0.00 0.11 0.12 0.15 0.03 0.12 0.02
Mean amplitude �0.1 �0.60 �0.26 �0.53 �0.60 0.05 �0.40 �0.77 �0.32 �0.63 �0.32 �0.71 �0.45 �0.67 �0.58
Min. amplitude �0.31 �1.35 �1.07 �1.49 �1.59 �0.83 �1.05 �2.66 �0.89 �1.80 �0.89 �1.87 �1.64 �1.76 �1.51
Sum of negative amplitude �20.11 �35.33 �24.04 �40.37 �29.81 �8.15 �33.17 �35.03 �24.57 �35.75 �21.12 �37.77 �26.90 �35.41 �38.24
Sum of positive amplitude 3.55 7.01 12.17 2.66 2.85 8.12 2.10 17.53 0.78 6.98 7.41 7.77 5.47 9.19 2.82
Arc length 1.15 1.12 1.05 1.22 1.08 1.06 1.21 1.21 1.08 1.15 1.08 1.15 1.16 1.13 1.10
Dominant frequency 116.21 0.00 36.13 0.00 0.00 77.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average energy 0.03 0.63 0.31 0.53 0.70 0.21 0.25 1.63 0.20 0.87 0.23 1.05 0.50 0.94 0.63
Energy half-time 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01
Instantaneous frequency 91.25 40.39 37.32 37.97 37.54 88.83 45.39 37.10 35.19 39.01 40.15 37.95 42.88 37.98 38.67
Instantaneous phase 0.04 �0.50 0.12 0.68 0.23 �0.62 �0.90 0.20 �0.44 �0.02 0.57 0.11 0.57 0.11 0.19
Average magnitude 1.24 1.84 1.45 2.15 1.48 0.63 1.68 2.29 1.27 2.03 1.24 2.07 1.35 2.03 2.05
Max. magnitude 2.85 2.74 2.42 5.07 3.11 1.58 3.93 4.67 2.45 3.85 2.70 3.63 3.13 3.59 3.73
Ratio of pos to neg sample 46.15 27.78 66.67 17.65 37.50 85.71 10.53 76.92 11.11 50.00 53.33 57.14 26.32 37.50 17.65
Sandstone thickness 2.2 9.20 6.80 8.30 6.80 20.40 2.20 20.00 11.20 5.40 12.40 5.20 24.00 4.00 11.60
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The GA–SA–BP NN model is not a simple combination with the above steps, but a mutual integration.
Three algorithms will exert their respective merits. Dynamic all parameters of GA–SA–BP start from many
initial points simultaneously to search for a group of nodes in the solution space, construct a constantly evolv-
ing population serial, and combine the random and directional searching to implement win–win. At the time
being, individual go to SA–PB based on certain probability, but not all individuals in the non-population. This
could both assure precision of the network, and greatly improve the operation speed of the model. A flowchart
of the describing approach is presented in Fig. 4.

4. Application on oil reservoir prediction

In reservoir engineering, the application of reservoir lateral forecasting technique has become a main
approach in the exploration and development of oil and gas field. It can obtain believable results on reservoir
depth, thickness, and physical properties, utilizing seismic and log data, and tracking the horizontal distribu-
tion of reservoir. ANNs approaches commonly provide results that are statistically more significant than
‘‘conventional’’ methods such as multivariate regression, although the nature of the relationships between
attributes and reservoir thickness is more difficult to evaluate with ANNs results [27–29]. A simulation study
to predict the thickness of oil reservoir based on the seismic information using the dynamic all parameters
GA–SA–BP model.

4.1. Network input and sample

The major tool to predict the thickness of oil reservoir is the seismic information. More than 50 seismic
attributes which are specific measurements of geometric, kinematics, dynamic, or statistical features derived
from seismic data could be gotten. Not all of them have definite corresponding relationship with the thickness
of reservoir; obviously, some of the seismic attributes may have no relationship with the thickness of reservoir
at all, which results in repetition and redundancies of information. The infinite increase of the number of attri-
butes brings bad effects on reservoir prediction, and the seismic attributes sensitive to targets predicted are not
completely identical in different work areas and different reservoirs. For that reason, seismic attributes have to
be optimized properly.

In this article, we select an oil zone which belongs to JiangHan basin, center of China and extract 15 seismic
attributes in certain window length along the line 167 which have 15 wells on or near. The seismic attribute
values will be used as inputs sand the thickness of reservoir will be the target, and values are inputted into
GA–SA–BP to optimize the seismic attributes which is the appropriate number of inputs. Table 1 presents
the samples and raw data. Randomly select 12 of the 15 wells as the sample training network, and three wells
as the testing sample.

4.2. Comparative researches on network performance

According to the model design in Section 2 and the procedures of algorithm in Section 3, 20 random exper-
iments would be done, when the training reaches the max gen, and MSE is 1.2323e�005. During the 20
Table 2
The parameters setting and the performance comparison of 20 randomly experiments with various existing methods

ANN algorithms Genetic
generation

pop size t0 L Iterations of
BP training

Mean of training
MSE

Mean of testing
MSE

Momentum with adaptive learning rate BP [29]a – – – – 2500 1.7830e�004 0.1254
GA–SA [30]a 10 50 50 20 – 4.1201e�004 0.1167
GA–BP [30]a 10 50 – – 100 8.7420e�005 0.1906
SA–BP [31]a – – 50 20 100 8.5731e�005 0.1308
GA–SA–BP with a fixed structurea 10 50 50 20 100 7.4458e�005 0.1845
Adaptive dynamic all parameters GA–SA–BP 10 50 50 20 100 3.9709e�005 0.0315

a Represents the designed input node number is the largest dimension 15, hidden node number is 8, hidden layer and output layer
transfer function randomly selected initially, the topology structure is fixed, namely 15–8–1.
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random experiments with the same parameters setting, there will be 18 times to get the best individual corre-
sponding network which is 6–3–1, namely the structure are six input nodes, three hidden nods and one output
node. The transfer functions of hidden layer and output layer are tansig and logsig respectively. And do a
comparative research of all dynamic parameters GA–SA–BP network model and the Momentum with adap-
tive learning rate BP model, GA–SA training network model, GA–BP training network model and SA–BP
training network model. The setting of parameters and the results of 20 random experiments are listed in
the Table 2. We can get the result that dynamic all parameters GA–SA–BP model has better precision and
generation.

5. Conclusion

(1) Utilizing multi-code which combine the GA, SA and BP perfectly, and each of them can exert their indi-
vidual merits and realize win–win. Because the dynamic all parameter GA–SA–BP make use of GA pop-
ulation to do the research and SA probability combination; random conjunction of GA, SA and BP
directional search, it is easier to get the global optimization.

(2) Let individual enter SA–BP by certain probability PSABP, this heuristic method could greatly improve
the speed of calculation, and also assure the convergence of algorithm.

(3) The relative parameter in the BP network design will be adapted to optimize the topology structure,
transfer function based on the sample characters in the learning process and this could greatly reduce
the subjectivity and get the simplest network structure with certain precision and also strengthen the gen-
eration of network.
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