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Abstract: A consensus regression approach based on partial least square (PLS)

regression, named as cPLS, for calibrating the NIR data was investigated. In this

approach, multiple independent PLS models were developed and integrated into a

single consensus model. The utility and merits of the cPLS method were demonstrated

by comparing its results with those from a regular PLS method in predicting moisture,

oil, protein, and starch contents of corn samples using the NIR spectral data. It was
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found that cPLS was superior to regular PLS with respect to prediction accuracy and

robustness.

Keywords: Near-infrared spectroscopy, partial least squares, consensus modeling,

multivariate calibration

INTRODUCTION

Near-infrared spectroscopy (NIR) combined with chemometric methods; e.g.,

multivariate calibration techniques, has been widely used for the detection and

identification of the composition of plant samples such as tobacco, tea, tra-

ditional Chinese medicine, and corn, etc. (Corti et al. 1993; Blanco and

Romero 2001; Shao et al. 2004; Schulz et al. 2005). Such approaches are

both faster and less expensive than conventional wet chemical methods in

estimating the plant sample constituents.

An NIR spectrum consists of fundamental vibration bands of molecules

that are usually derived from anharmonic X-H (mainly C-H, N-H, and O-H)

stretching modes. Thus, NIR provides rich information about the structural

and physical properties of the samples (Liu et al. 1994; Millar et al. 1996).

However, most NIR spectra contain overlapping bands, which poses a

challenge for extracting sample-specific peaks and further for developing

robust models to predict unknown samples based on the spectra. Accordingly,

many chemometric methods have been investigated for the analysis of NIR

data, including signal preprocessing techniques such as multiplicative

scatter correction (MSC) (Helland et al. 1995), orthogonal signal correction

(OSC) (Sjoblom et al. 1998), wavelet transform (WT) (Chen et al. 2003;

Chen et al. 2004), and data modeling methods such as partial least squares

(PLS) (Inon et al. 2005) and soft independent modeling of class analogies

(SIMCA) (Candolfi et al. 1999).

Chemometric methods have been effectively used to develop predictive

models that relate spectral information with sample characteristics (Thomas

and Haaland 1990). In these approaches, a model is first developed to

correlate the peaks in the spectra with sample characteristics across known

samples, and then the model can be used to predict unknown samples. Most

of such regression techniques used for NIR spectra are based on a single

model. Though these are good approaches, the single model tends to fit the

calibration data to a single spectral pattern, which could result in the loss of

some information in the richly complex spectra that may contain multiple

superimposed patterns. Consensus modeling approaches that are able to

extract separate spectral patterns could improve the fidelity of the correlation

between spectral features and sample characteristics that would be otherwise

lost by a single model’s fit to a single pattern.

In this paper, a consensus regression approach named cPLS was presented.

In cPLS, rather than selecting one PLS model on the basis of best fit, several
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PLS models satisfying a predefined criterion were selected and combined into

one. The effectiveness of cPLS was demonstrated by comparing the prediction

results to those from the regular PLS in an application for calibration of the

NIR spectra of corn samples. The results suggested that combining multiple

individual PLS models by cPLS could improve not only the accuracy of pre-

diction, but also the robustness of the model.

METHODOLOGY

Consensus Modeling for Regression–Theory

Consensus modeling combines the results of multiple individual models

(called member models hereafter) to obtain a single prediction. The use of

consensus modeling in many fields has increased significantly in the last

few years (Wrabl and Shortle 1996, Hilser 2001, Prasad et al. 2003;

Gramatica et al. 2004; Baurin et al. 2004; Svetnik et al. 2005), especially in

the studies of quantitative structure-activity relationships (QSARs). Other

examples are in simple averaging of individually trained neural networks

(Perrone and Cooper 1993) and in the combination of hundreds of decision

trees by boosting weak classifiers in random forest (Breiman 2000). The

underlying assumption in consensus modeling is that multiple models will

effectively identify and encode more aspects of the relationship between inde-

pendent and dependent variables than will a single model.

Among two types of model development, regression and classification,

research has shown that consensus classification models achieved better

performance than single classifier due to better fidelity in extracting discrimi-

nating features within data as well as lower sensitivity to noise (Tong et al.

2003). For regression problems, the consensus model error e(x̄)can be rep-

resented by (Krogh and Vedelsby 1995):

eð�xÞ ¼ �eð�xÞ � �að�xÞ ð1Þ

where ē(x̄) is the average error across all member models, while ā(x̄) is the

variance of the member models with respect to the results of the consensus

model, and ā(x̄) measures the disagreement among member models on input

vector x̄. These two terms are defined as:

�eð�xÞ ¼
1

Nm

XNm

i¼1

ðy� fið�xÞÞ
2

ð2Þ

�að�xÞ ¼
1

Nm

XNm

i¼1

ð fið�xÞ � �f ð�xÞÞ2 ð3Þ

where Nm is the number of member models, x̄ is the vector of the independent

variables (i.e., a set of peaks in the NIR spectra in this study), y is the
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dependent variable (i.e., the moisture, oil, protein, or starch content modeled

in this study), fi (x̄) is the prediction result of the ith member model, while f̄(x̄)

is the prediction of the consensus model, which can either be a linear combi-

nation of the prediction results of multiple member models: f̄ (x̄) ¼ 1/NmP
i¼1
Nm fi (x̄) (used in this study) or a weighted average:

�f ð�xÞ ¼
XNm

i¼1

wifið�xÞ with
XNm

i¼1

wi ¼ 1:

Clearly, the consensus model error e(x̄) can be minimized in two ways,

decreasing ē(x̄) by enhancing the predictive quality of individual member

models or increasing ā(x̄) by diversifying the member models. Therefore, a

robust consensus model should comprise multiple, high quality (low ē(x̄)),

but mutually uncorrelated (high ā(x̄)) models.

cPLS Algorithm

Suppose that there are two matrices, X(n, p) constituting p spectral signals of n

samples and Y(n, 1) presenting dependent variables for the n samples. The

cPLS operates on these two matrices as depicted in Figure 1, which

includes four steps:

1. Determine the number of the samples used to assess the quality of

member models (Nt): Nt is a key parameter of cPLS. It controls the

diversity of member models derived from (n 2 Nt) samples. Although a

large Nt will reduce the correlation between cPLS member models, a

large Nt will also reduce the quality of the individual member model. A

proper Nt must be determined prior to development of the consensus

model. To determine Nt, n samples are randomly divided into a training

set and an assessing set arbitrarily. In this study, the number of member

models, Nm, is set to 100 (this is somewhat arbitrary). Then Nt is

increased from 1 to 30 with a step size of one. The optimal Nt will be

determined if the root mean squared error of prediction (RMSEP)

begins to increase, as shown in Figure 2A. For each Nt, a cPLS model

is developed (as in step 3) from the training set, and the model is then

used to predict the assessing set and the RMSEP is calculated by:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

ðyi � y
_c

i Þ
2

s
ð4Þ

where m is the number of the samples in the assessing set, yi is the

experimental value of the ith sample in the assessing set, and y_i
c is the

prediction of the cPLS model for the ith sample.
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2. Determine the number of member models (Nm): Nm affects the perform-

ance and stability of cPLS. For a given Nt, Nm can be determined as

follows: the data set is randomly divided into a training set and an

assessing set arbitrarily, then Nm increases from 1 to 500 with a step

size of five. For each Nm, a cPLS model is developed from the training

set, and the model is used to predict the assessing set with the RMSEP

computed. Nm is determined if the RMSEP does not decrease, as shown

in Figure 2B.

3. Develop Nm member models: n samples are randomly divided into two

sets, with (n 2 Nt) samples for model development and the remaining

Nt samples for model assessment. A PLS model is then constructed on

the training set, where the number of principal components used for

the model is determined through an external validation. The number of

Figure 1. Flowchart of the cPLS algorithm.
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principal components yielding the lowest RMSEP is selected as optimal

(as shown in Figure 3). The model is then used to predict the assessing

set. The model will become a member of the cPLS if its performance

in predicting the assessing set meets an acceptable criterion of r2 . 0.9,

otherwise it will be discarded. The r2 describes how much variance is

explained by the regression, which can be obtained by:

r2 ¼ 1�

PNt

i¼1ðyi � y
_c

i Þ
2PNt

i¼1ðyi � �yÞ2
ð5Þ

where yi is the experimental value of the ith sample in the assessing set, y
_

i
c

is the prediction for the ith sample, and ȳ is the mean of the experimental

data in the assessing set. The process is repeated until the number of the

member models equals to Nm.

4. Combine Nm member models into one: the final cPLS model averages the

prediction results of Nm member models to obtain a single prediction:

y
_c
¼

1

Nm

XNm

i¼1

y
_

i ð6Þ

Figure 2. (A) RMSEP versus the number of the samples used in the test set (Nt)

during the cPLS model development, and (B) RMSEP versus the number of member

models (Nm) combined to form a cPLS model.
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where y
_c is the prediction of the cPLS, and y

_

i denotes the prediction of the

ith member model.

Software

The cPLS algorithm was developed using the programming language

MATLABw 7.0, running on a personal computer equipped with two Intel

Pentium 4 1.6 GHz processors and 2 GB of RAM. The program is available

upon request.

RESULTS AND DISCUSSION

The cPLS algorithm was tested by comparing with the regular PLS regression

method on a corn NIR data set. The data set, available from http://software.

eigenvector.com/Data/Corn/corn.mat, has NIR spectra of 80 corn samples

measured at Cargill Inc. (Minneapolis, MN, USA) using a spectrometer

MP6. The values associated with the moisture, oil, protein, and starch

content are the dependent variables. The independent variables are the wave-

lengths ranging from 1100–2498 nm at 2 nm intervals (700 variables). The

Figure 3. Relationship between RMSEP and the number of the principal components

used to develop the member models of cPLS.
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objective of the analysis is to predict the moisture, oil, protein, and starch

content of the samples based on their NIR spectra.

To compare performance of regular PLS and cPLS for modeling the

moisture, oil, protein, and starch content of the corn samples based on the

NIR spectra, 80 samples were arbitrarily divided into two sets, with 60

samples used for model development and the remaining 20 used as an

external validation set to challenge the model. A regular PLS model and a

cPLS model were developed from the 60-samples training set, respectively.

For the regular PLS, the number of principal components included in the

PLS model was determined through the leave-one-out cross-validation

based on the 60-samples training set. For the cPLS, the moisture content

was used to determine the parameters Nt and Nm (Figures 2A and 2B). The

optimal values for Nt and Nm are 10 and 100, respectively. Then 50 of 60

samples were randomly selected for member model development and the

model was then assessed through predicting the remaining 10 samples (Nt is

equal to 10). Thus, the number of samples used for development of member

Figure 4. Comparison in prediction accuracy (RMSEP) between PLS and cPLS for

the contents of moisture, oil, protein and starch. In this comparison, 80 corn samples

were randomly divided into two sets, with 60 samples used for model development

and 20 samples used as an external test set. The process was repeated 100 times and

the prediction accuracy of the 100 runs was plotted for four endpoints.
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models of cPLS (i.e., 50 samples) is actually less than that used for

development of regular PLS (i.e., 60 samples). Both PLS and cPLS models

were then evaluated by predicting the 20 samples not used for model cali-

bration. The process was repeated 100 times and the prediction results are

summarized in Figure 4, Table 1, and Table 2.

Figure 4 compares RMSEP between cPLS and regular PLS in predicting

the external validation sets. For moisture and oil, it is clear that the majority of

RMSEPs for cPLS is smaller than those for regular PLS, but for protein and

starch, the RMSEPs for both models are almost identical. Table 1 lists the

averages and standard deviations of RMSEPs for both cPLS and PLS over

100-times external validations on moisture, oil, protein, and starch. Both

averages and standard deviations of RMSEPs for the cPLS are consistently

smaller than those for regular PLS, indicating that the cPLS was more

accurate and robust than regular PLS. To validate whether the calculated

difference between cPLS and regular PLS is significant or not, a student t-

test on the RMSEP results based on the 100-times external validations was

conducted. Table 2 shows that the p values are extremely minute for

moisture, oil, and protein, and that the largest p value for starch is also less

than 0.05, the most commonly used level of statistical significance.

In this paper, the utility of the cPLS was demonstrated by comparing

cPLS predictions of corn samples content based on NIR spectra with corre-

sponding predictions from a regular, single PLS model. The results

Table 1. Comparison between cPLS and PLS in terms of RMSEP based on averaging

of 100 runs of predicting the external test set

Method Moisture Oil Protein Starch

Mean PLS 0.159 0.107 0.150 0.370

cPLS 0.139 0.0948 0.145 0.358

Standard

deviation

PLS 0.025 0.024 0.026 0.098

cPLS 0.021 0.018 0.024 0.068

Table 2. Statistical significance in

a Student t-test by comparing the

RMSEP values derived from cPLS

with those from regular PLS in 100

runs of prediction

p value

Moisture 3.6 � 10221

Oil 1.4 � 10214

Protein 0.00017

Starch 0.045
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suggested that the modeling power of PLS was further enhanced by adopting

the consensus approach described in this paper. Moreover, consensus

modeling offered a generically effective means to obtain more accurate and

robust regression models based on complex spectral data. This approach

should be extensible to other fields when chemometric methods are used for

predictive models.
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