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Abstract

The generalized Gause model of Predator-Prey system is proposed with an introduc-
tion of viral infection on prey population and anorexia response on predator popula-
tion. By using the comparison theorem and constructing suitable Lyapunov function,
we study such modified Predator—Prey system with almost periodic coefficients. Some
sufficient conditions are obtained for the existence of a unique almost periodic solution.
Numerical simulations of Predator—Prey system with anorexia response and the one
without anorexia response are performed. Our observations suggest that anorexia
response on predator population has a destabilizing effect on the persistence of such
eco-epidemiological Predator—Prey system.
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1. Introduction

After the seminal models of Vito Volterra and Alfred James Lotka in the mid
1920s for Predator—Prey interactions, mutualist and competitive mechanisms
have been studied extensively in the recent years by researchers. The Preda-
tor-Prey system becomes an important field of study in mathematical ecology
and has been studied in [1]. Similarly, epidemiological models have also been re-
ceived much attention from scientists. Relevant references are vast, we can see
the book [2]. Both mathematical ecology and mathematical epidemiology are
major fields of study in their own right. The study including ecology and epide-
miology is now termed as eco-epidemiology. The study of eco-epidemiology has
great ecological significance. Scientists have paid lots of attention to theoretical
studies. Many good results can predict useful implications in both dynamics and
control, we can refer to the book [3] and the references cited therein.

The importance of transmissible disease in Predator-Prey system arouses
the interest of scientists. Theoretical studies have been carried out in eco-epide-
miology where the effect of viral infection has been explored. Lots of good re-
sults have already been obtained (see [4-7] and the references therein). In [4],
the authors studied the following eco-epidemiological system

X1(2) = r(x 4+ x2) (1 —222) — bxyxy — 70y (x1)y,
X2(t) = bx1xs — p(x2)y — cxa,
() = y(ep(x2) + endi(x1) — d).

In the above eco-epidemiological system, the authors assume that the sound
prey population grows according to a logistic law involving the whole prey
population (sound and infected). The disease is spread among the prey popu-
lation only and that disease is not genetically inherited. The infected popula-
tion does not recover or becomes immune. The predator population predates
mostly the infective prey and the functional response is of Holling-type II. Per-
sistence and extinction conditions of the system are obtained.

In Predator-Prey theory and related topics in mathematical ecology, an
important and ubiquitous problem concerns the long term coexistence of spe-
cies. The Predator-Prey system has been studied extensively in [8-13] and the
references therein. In their literature, the following Predator-Prey system with
linear growth was considered,

X1 (8) = x1()[b1(1) — an(H)x1 (1) — ana(t)x2(t) — e (Hy(1)],
X2 (t) = x2(2)[b2(t) — a1 ()x1(2) — an(t)x2(t) — e ()y(1)], (1.1)
(&) = y(O[=ri(t) + dii()x1(2) + dia(t)xa2(2) — enr (1)y(2)].
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Some sufficient conditions were obtained for the uniform persistence and exis-
tence of a unique globally attractive periodic (almost periodic) solution for the
Predator—Prey system (1.1).

According to the culture figure that obtained by Ayala on the studying of D.
Psendoobscura and D. Serrata, the growth rate of species doesn’t correspond
with that of the Lotka—Volterra model (see Chen [1]). The reason is due to
the linearize in mathematics and the linearize makes many important factors
neglected, such as the effect of toxic (see [14,15]), the age-structure of a popu-
lation (see [16]) and anorexia response (see [17]). And now lots of literature
consider feedback controls and fuzzy control, we can refer to [18-24]. If these
important factors are to be considered, then more complex models should be
introduced. In 1975, Dubois introduced the following autonomous anorexia
system,

x = kix[l — ox] — k(x)y,
1.2
Utk A0 -2
where
kyx, x <1,
k) = {kzr, x> T,

Later, Yang [17] considered the following anorexia system,

¢ — by
x—x[(a bx) 1+wx+ﬁx2} G,
. + kox

y=yime 1 + wx + px2|’

where anorexia response function ¢(x) = T2 It then naturally leads one to

incorporate the anorexia response into Predator—Prey system.

In Predator-Prey system, when a certain virus comes, infected prey may
died, but it also can survive and give birth to next generation (see [4]). As pred-
ator, it eats all the prey, including sound prey(susceptible) and infected
prey(infective). The infection weakens the prey, it also does harm to the pred-
ator and makes the predator feel uncomfortable with the infected prey. It
means that the more infected prey, the less it wants to eat. When the density
of infected prey amounts to a certain degree, the quantity of the preyed de-
creases. It is so-called anorexia response. We can take anorexia response func-
tion (see [25]) as




1458 Z. Huang et al. | Appl. Math. Comput. 175 (2006) 1455-1483

For more background and biological adjustment, one can refer to [17,25] and
the references cited therein.

However, most of works concern about Predator—Prey system with con-
stant coefficients or periodic coefficients with a common period. If the various
constituent components of the temporally nonuniform environment are
with incommensurable (nonintegral multiples) periods, then one has to con-
sider the environment to be periodic or almost periodic since there is no a priori
reason to expect the existence of constant circumstance. If we want to make
the models suitable to the environment and reality, the assumption of period-
icity or almost periodicity of parameters is realistic and important (e.g.
seasonal effects of weather, food supplies, mating habits, harvesting etc.).
In this paper, we consider a Predator-Prey system with almost periodic
coefficients.

Stimulated by system (1.1) and (1.2) and works [4-7,17,25] and the refer-
ences cited therein, We introduce the following modified Predator—Prey model.

1.1. The modified Predator—Prey model

Let us consider a generalized Gause Model (see [26]) for Predator-Prey
interactions, e.g.,

& o) — ),

Y ),

where g(x) is the specific growth rate of the prey in the absence of any predator
and p(x) is the predator response function for the predator with respect to that
particular prey. But the role of disease in such systems cannot be ignored and
we like to build the Gause type Predator—Prey model with viral infection on
prey population only. We shall now modify the Gause Predator-Prey model
by introducing infection on prey population (see [7]) and replacing p(x) with
anorexia response function /(x).

The following basic assumptions are made:

(1) In the presence of viral infection, the prey population is divided into two
classes, namely, susceptible prey, denoted by x(#) and the infected prey,
denoted by x,(f). The prey population grows according to a logistic law
involving the whole prey population(susceptible and infected). But the
disease is genetically inherited.

(2) The transmission rate among the sound prey population and the infected
prey population follows the simple law of mass action, that is
b(t)x1(1)x,(t), where b(¢) is the transmission rate. The infected prey does
not recover or becomes immune, the death rate of infected prey is d>(¢).



Z. Huang et al. | Appl. Math. Comput. 175 (2006) 1455-1483 1459

And the virus weakens the prey, but it does not cause the predator to
have any disease. Denote the predator by y(z).

(3) The predator eats the whole prey, including sound prey and the infected
prey. The predator population predates the sound prey according to Hol-
ling-type II (see [27]), predates the infected prey with Anorexia response
(see [25]).

Based on the above assumptions, the modified Gause model can be written

as:
X1 (¢) = x1(¢)(@r0(t) — an(t)x1(¢)) — b(t)x1(t)xa(2)
B c1(H)x;(¢) (t)éFl(t X)
di(6) +x(0)” Y
%2 (t) = x2(t) (@20 () — @ (t)xa2(2)) + b(t)x:1(t)x2(2)
—h(x2)y(t) — da(t)x2(t) = F5(t,X),
50 =) (=a0) = a0 + k)75 k(b))
=G(t,X),
(E)
where

ar(t)xa(t), x(t) <7,

. x>

x1(2) is the density of sound prey species, x»(7) is the density of infected prey
species, y(?) is the density of predator species, predator anorexia response func-
tion is /(x,) and index t denotes the anorexia degree of the predator y(¢) to the
infected prey x,(z), X(¢) = (x(¢),x2(2),y(¢)). If we consider the effects of the
instinct factors, the assumption of anorexia response is more realistic, more
important and more general. To the best of the author’s knowledge, this is
the first paper considering the almost periodic solutions of the Predator—Prey
system with infection and anorexia response. By using the comparison theorem
and constructing suitable Lyapunov function, some sufficient conditions are
obtained for the existence of a unique almost periodic solution of system (E).

This paper is organized as follows. In next section, by using comparison the-
orem, we shall obtain that there exists a bounded solution of system (E) on R.
In Section 3, by constructing a suitable Lyapunov function, some sufficient
conditions are obtained for the existence of a unique almost periodic solution
of system (E). In Section 4, to illustrate the generality of our results, we shall
further our discussion for the value of anorexia index 7. Finally, a suitable
example is given to perform numerical simulations of Predator—Prey system.
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Our observations lead one to value the effect of anorexia response and viral
infection on persistence of eco-epidemiological Predator—Prey system.

Throughout this paper, we shall use the following notations, unless other-
wise stated:

e Wealwaysusei=1,2,3,j=1, 2.
o If f{¢) is an almost periodic function defined on (—oo, +00), we set

fi= of )f(t)7 fr=sup  f(1).

1€(—00,+00 te(—00,+00)

e Moreover, we set

L L -1 1
_ ﬁ _ b + b'p, _ Kyehp, + kicip, (di) — 4y
pl - 1 p2 - f ) q= )
an a3 az
_ay —b'py— le‘](d{)il ay —dy + b'oy — Czq
o = m , Oy =
an ay
Koy kcha
ﬂZ(a“)l<11 + 22—a“).
. di +p D2 »
e Denote mean value m(f(¢)) = limr_ + fo t)dz. When f{7) is a w-periodic

function, then m(f (1)) =21 [" f(r)dr.

Throughout this paper, we suppose that the following conditions are
satisfied:

o (Hy): b(1), dft), k(t), ap(1), ax(t), c(t) are all nonnegative almost periodic
functions defined on ¢ € (—o0, +00).
e (H,): We always assume ai; > 0, d} > 0 and m(a,o(z)) > 0

2. Existence of bounded solutions

First, we consider that anorexia index satisfies oy <t < p,. In the following,
we will state some lemmas which will be used in the proving of Theorem 2.1.
For any given initial condition of system (E)

xj0 =x;(0) >0, y,=y(0) >0,

it is not difficult to see that the corresponding solution X(¢) = (x(2), x2(2), ¥(?))
exists for all > 0 and satisfies

x;(t) >0, y(t)>0, fort=0.
Now we consider the almost periodic Logistic equation

#(t) = x(0)B(1) — a(t)x(1)], (2.1)
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where b(¢) and a(t) are continuous almost periodic functions with &' > 0 and
m(b(t)) > 0.
We introduce Lemma 2.1 which improves Theorem 1 in [28].

Lemma 2.1. If a' > 0 and m(b(t)) > 0, then system (2.1) has a unique globally

attractive positive almost periodic solution (t) with X(t) < 2. Moreover, let
Xi(1),(i=1,2) be the unique positive almost periodic solution of (2.1) with
b(t) = b(t), a(t) = a(t), (i= 1, 2), respectively. If by(t) > bi(t) and ax(t) < ay(?),

then %,(t) > X1 (¢).

Lemma 2.2 (Fink [29], Theorem 6.2). Let x = f(¢,x) have a solution ¢ which is
bounded on [ty, 00). If f(t,x) is almost periodic in t uniformly for
x e K ={op(t) :t = to}, then there is a solution of the equation on all of R with
values in K.

We shall make some preparations before stating our Theorem 2.1.
If (H,) and (H>) hold, from Lemma 2.1, we know

X1 (#) = x1(#)[ar (1) — an (H)x:1(1)]

has a unique positive globally attractive almost periodic solution x}(¢) with
0 <xj(1) < pr-

If (Hl): (Hz) and
(H3): m(az()(t) + b(t)xf(t)) >0,

from Lemma 2.1, we know

(t) = xa(1) [an (1) — @z ()x2(t) + b(2)x;(1)]

has a unique positive globally attractive almost periodic solution x4(f) with
0 <x3(t) < po

If (H,), (H) and
(H.): m(—a30(t) (1) 200 kz(t)cz(t)x’z‘(t)) >0,

from Lemma 2.1, we know

y(t) = y() [_QSO(I) — a3 (0)y(1) + ki (1) %ﬁ)(t)

has a unique positive globally attractive almost periodic solution y*(¢) with
0<y*(1)<q.

T ka(t)ea(0x3(0)

If (H,), (H,) and
(Hs): m( () = b(Ox3(0) = £ (1) > 0.
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from Lemma 2.1, we know

() =000 (o) ~ an(0n() = 503500 - 1050

has a unique positive globally attractive almost periodic solution x,;(z) with
X*l(l‘) = il’lfleRX*l(t) = o > 0.

If (H,), (H>) and
(He): m(axo(1)—dx(1)—ca()y* (1) + b(t)x.(1)) > 0,

from Lemma 2.1, we know
%2 (8) = xa(t)[az (1) — da(t) — c2(0)y™ () + b(£)x1 (1) — @z ()xa(1)]

has a unique positive globally attractive almost periodic solution x.,(#) with
x*z(l) = inf,eRx*z(t) = op > 0.

If (Hy), (H,) and

. cp(t)x, o ()2
(H): m(=ano(t) + (1) 50580+ o) 272 >0,

from Lemma 2.1, we know

a@ra) ,opedd o0

50 =300 [t )G 0 2

has a unique positive globally attractive almost periodic solution y.(f) with
y.(1) = infiepy. (1) = f> 0.
Let

mj:inlgx*j(tL f:mfy*(t), M/:Supx;(t)v W:SUPy*(t)~
g R .

1erR teR 1€R

Clearly, m; >0, ¢> 0, M;> 0, n> 0.
Denote

S = {1 (0),x2(0), y(O)lm; < x;(6) <M, &< y(B) <}

Theorem 2.1. If (H|)—(H;) hold, then system (E) has at least one positive
(componentwise) solution defined on R with value in S.

Proof. It is obviously that /(x,) < ¢a(?)xo(7). If x5(¢) < 7, one obtains
%

h(X2) = Cz(l))Cz(t) = Cz(f)OCz = Cz(f)pz
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If x,(¢) > 1, one obtains
2
o
> > (1) 2.
X))~ x() P
From the above simple comparison, one obtains
2

h(x2) =

o
Cz(l‘)p—z < h(X2) < Cz(t))Cz(l). (22)
)
From the first equation of system (E), one obtains
).Cl(t) <x1(t)[a10(t) —all(t)xl(t)]. (23)
From (H>), using comparison theorem on (2.3), we have
0 <x(r) <xj(t), fort=0. (2.4)

where x(7) is a solution of system (E) which satisfies 0 < x;(0) < x;(0).
From the second equation of system (E) and (2.4), one obtains

(1) < x2(1) [ano (1) — o1 (1)x2(1) + b(1)x;(2)]. (2.5)
From (H3), using comparison theorem on (2.5), we have
0 <x(t) <x5(¢), fore¢ = 0. (2.6)

where x,(¢) is a solution of system (E) which satisfies 0 < x,(0) < x5(0).
From the third equation of system (E), (2.2), (2.4) and (2.6), one obtains

50 <0)|~an(t) = an(030) + 1) P9 1 o). @)
From (H,), using comparison theorem on (2.7), we have

0<y(t) <y(t), fort=0, (2.8)

where y(¢) is a solution of system (E) which satisfies 0 < y(0) < y*(0).
The first equation of system (E), (2.6) and (2.8) imply that

(0 > (0 [an() — an () - b0 - 0370 (2.9)
From (Hs), using comparison theorem on (2.9), we have
x1(¢) = x.q(t), fort =0, (2.10)

where x;(7) is a solution of system (E) which satisfies x1(0) = x.,(0) > 0.
The second equation of system (E), (2.2), (2.8) and (2.10) imply that

Xz(l‘) = Xz(l) [azo(t) - dz(f) — Cz(l)y*(l) + b(t)x*l(t) — dn (I)XZ(Z‘)}. (21 1)
From (Hg), using comparison theorem on (2.11), we have
x(t) = x,(t), fort =0, (2.12)

where x,(7) is a solution of system (E) which satisfies x,(0) > x.,(0) > 0.
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The third equation of system (E), (2.2), (2.4) and (2.10) imply that

: c1(6)x,a (1) ex(t)o3
> — SR =2 :
(2.13)
From (H), using comparison theorem on (2.13), we have
y(t) =2 »,(t), fort =0, (2.14)

where y(7) is a solution of system (E) which satisfies y(0) > y.(0) > 0.

Therefore system (E) has a bounded solution X(7) = (x(¢), x2(¢), y(t)) C S
for t > 0. Since Fjt, X), G(t, X) (defined in (E)) are almost periodic in ¢
uniformly for X(7) = (x(¢), x»(¢), ¥(¢)) C S. Hence, by Lemma 2.2, system (E)
has at least one bounded solution Y(¢) = (u(?), uo(t), v(¢)) C S for all 1 € R.
This completes the proof of Theorem 2.1. [

3. Existence of a unique almost periodic solution

Now we state a definition and a lemma which will be used in the proving of
our main results.

Definition 3.1. A bounded positive solution Y(#) = (u,(¢), ux(?), v(t)) of system
(E) with Y(0) >0 is said to be globally attractive, if for any other solution
X(t) = (x1(2), x2(2), y(1)) of system (E) with X(0) > 0, we have

Jim (1) ()] =0, Tim () — o(0) = 0.

A consequence of such a global attractivity of a bounded positive (compo-
nentwise) solution of system (E) on R is that there cannot be another positive
(componentwise) bounded solution of system (E) on R.

Lemma 3.1 (Fink [29], Theorem 10.1). Consider system x = f(t,x), suppose
ft, x) is almost periodic in t uniformly for x in K, K compact in E". If each
equation x = g(t,x), g € H(f) (where H(f) is the hull of f) has a unique solution
on R with values in K, then these solutions are almost periodic with module
contained in mod(f).

Theorem 3.1. If system (E) satisfies

(H)—(H7) and
(Hs): There exist positive constants s;, » and ¢;, 6 such that
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wk1 (I)Cl (t) c

TN - A -1

dl(t)—|—x*1(t) ’

s2c2(1)y*(2)
X*Q(t)

san () > sic1(8)y*(1)
“(di(t) + xa()dy (1)

+52b(2) +

S2ar1 (t) = Slb(t) + 2wk2(t)cz(t) + 2 + &,
slcl(t)
di(?)
Then system (E) has a unique positive bounded solution X(t) = (x(1), x»(2),
y(1)) C S on R, which is globally attractive.

was; ([) = -+ Szcz(t) + 6.

Proof. From Theorem 2.1, system (E) has at least one solution X(¢) = (x(¢),
xx(2), ¥(2)) € S for all £ € R. Let Y(¢) = (uy(¢), uo(?),v(¢)) be any other solution
of system (E) with Y(0) > 0.

Consider the following Lyapunov function

V(t)= Zzzsk\ Inx (1) —Inu ()| + o|Iny(¢) —Inov(?)|, ¢€R.

Denote

A=min{s;,w}, A= max{s;, o}.
J J ’

Calculating the upper right derivative D™ V(¢) of ¥(t) along the solution of (E),
one obtains

D'V (1) = iskDﬂ Inx;(¢) — Inw(¢)| + ©D" | Iny() — Inv(¢)]
= sisgn{x;(¢) —ui (1)} [—011(1)(?61@) —uy(2)) — b(t)(x2(t) — ua(2))

1 ()y(1) c1(t)v(?)
B <d1<f> +x () di(0) + ul(t)ﬂ +sasgn{xa(t) — (1)}

X {—021 (1) (x2(t) — ua(t)) + b(2) (x1 (£) — (1))
h(x2)y(t) | h(uz)o(t)

xz(t) uz(t)

] T osgn (1) — o))

kl (t)Cl (t)x1
di (1) +xi (

(1) ki(t)er(t)u (f)}
t
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From simple calculation,we have

h(us) h(xy)  h(uz)
0% %0 " wn
Q) el
di(t) +xi(t)  di(t) +wu(r)

X1 (I) — U ([)
(di(t) +w (1)) (di(6) +x1 ()

Denote
h(uz) — h(x2)
Uy (l) X2 (t) ’

Then there are four cases for us to compare x,(¢) and u,(¢) with anorexia re-
sponse index <.

A] = h(X2) — h(uz), A2 =

(1) If x»(7) < v and uy(¢) < 7, one obtains
(41| = (D) x2(t) —wa(1)], | 42| = 0.

(2) If x5(¢) < 7 and uy(¢) > 1, one obtains

e ()xa (1) —

Cz(t)

o ()?

= (D)

[t(ua(t) — 7) + ua(2) (x2 — 7))

N
[\
)
[S)
—~
~
=
=
()
—~
~
|
<
S
—~
~
=
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(3) If x5(7) > 7 and u,(¢) < 1, one obtains

4= (205~ c(usty
o[z e) Z:)(r)(r x(1)
< e T i)

< 26:(8) %2 (1) — ua(2)],

(4) If x5(f) > 7 and u,(¢) > 7, one obtains

41| = e5(t) SO0
B o ()? () — u
uz(t)xz(f)| 2(t) — ua(2)]
< e (t)xa(t) — ua(2)]
|42] = e2(0)7? u;(t) - )ﬁ

T T 1 1
<0\ m xz<z>> (Uz(f) B xz(f)) ‘
2t
X CZ(t) )Cz(l)uz(l) | 2(t) - uz(t)|
<220 1y — o)

From (1)—(4), one obtains
[A1] = [h(x2) = h(ua)| < 2e2(0) [xa(2) — ua(1)],
h(uz) — h(x2)

S Rl P )

|
CZ(I) X u
<20 k() — (o)

1467
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By simplifying, we have
DV (1) < =sian () |x1(t) — ()| +516(0)[x2(2) —ua ()| + 511 ()
(@) +x (0) () = v(O)| +y(0) i (1) = (1)

— 82A» (t)

(@) + 7 ) (0 + 1a(0)
< bealt) = 0)| 52601 (1)~ 1 0]+ 5265 (O1(0) ()
#2022 ealt) = ()] — 0 (OD0) ()

L ki (@er(D)dy (f)\xl() Uy
(di(t) +x1(2))(d1(2) + o (
0y
)

< {—Smu(f) +

(l)kl (I)Cl (l‘)
b0+ 7T m(r)]

Szcz(f)y*(l)}

x*z(t)

di (1) (dy (1) +x.1 (7))

X |X1 (t) — ul(t)| -+ |:Slb([) —Szazl(f) +2wk2(f)02([) +2

ra0) = 0] + [0+ a0 - 0 )| o)~ o00)

< e (1) = (0)] = ealxa (1) —ua(1)| = Oly () — v (1)

<-y (Z i (1) = wi(6)] + [y (2) — v(2) |> ;

where

. sier (0)y*(¢) iy _ wki(1)ei (1)
_ltg{sla”(t)_dl(t)(dl(t)—&-x*l(t)) 2b(?) dl(t)+x*1(t)}’

& = 1}3{ {521121(1) —51b(t) — 2wk, (t)ey(t) — QM},

x*z(l)
0= mf {wa31( ) — S:;l](g) — szcz(t)}, y = min{e;, &, 0}.

Then (1) is decreasing on [0,00), thus 0 < W(¢) < 1(0), and lim,_. ..V (¢) =
V* = 0.

Now we prove that V* =0 and X(¢) is globally attractive. Since X(¢) C S
then Inx(7), Iny(7) are bounded. As

1
[y (0)] < [ a(0) = Inxy(0) + I (0)] <V (0) + |03, 0),

J

gl

[ Ino(0)] < [Ino(s) = Iny(@)] + [Iny(r)] < =V(2) + [In y(7)|.

So, uft), v(#) are bounded. Hence, Y(7) = (u;(¢), us(?), v(#)) is bounded. From
the mean-value theorem, there are positive constants p;, p, such that
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N
=
N

> %mm e +%|y<t> ()]

Take p; = max{Z,2}, p, = min{% 2}, we have

(1) = u (1) + (1) = v(0)]

|~
1
=

-

1
<

= Py

D balt) = w (1)) + (1) — v(t)I] ; (3.1)

k=1

thus DY I(1) < —ypa V(7). We claim 7* = 0. Otherwise V* >0, and we have
V(1) = V*>0, it follows D" 1(t) < —yp4V*, which implies

V() S V(0) = 9psV't — —o0, (1 — o0).
This contradicts with the positivity of V(¢), so V* =0. From (3.1), we have

< 1 =
t—+00 =l = tll}ggo p3 V(t) O’

0< lim [Z e (8) — wie ()] + [y(2) — v(2)|

which implies

tlj& Ix;(£) —u;(¢)] =0, lim |p() — v(z)] = 0.

t—+00

Thus X(¢) = (x1(2), x2(2), ¥(2)) is the unique positive bounded solution of system
(E) contained in S for all 7 € R, which is globally attractive. This completes the
proof of Theorem 3.1. [

Now we consider the system

810 =0) a1 = a1 (0 (9) = (0 (o) = N,
() = B x50,

510) = 510)(—a ) = i, (000) + 50 7 o () ).
(E)
where
{czmxz(z), w() <+,
B (x2) = ¢ c3(8)7? . .
o 20>
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For some sequence {7,} with 7, — oo as v — oo, one has
dii+10) = di(0), anlt+1) = ay(0), an(i+1) — a0,
kit +6) = ki(t), ct+t)—ct), x(t+t)— @),
V() = U0, xglt+0) = @0, b(t+1)— b(0),

uniformly for all 7€ R, asv— oo,

where x;(#), x,;(t), y*(¢) are defined in Section 2. It is not difficult to obtain

that

Tim {az (¢ +8,) +b(t+1)x] (t+ 1) } = ax (0) + 5" ()i (1),

a(t+6)xi(t+t)
di(t+t,)

+h5 (0395 (1),

lim {—a30(t +t)+ki(t+¢t,)

i(0ei(0)
d(1)

+ha(t+t,)ea(t+4,)x5(t+1,) }

= — a3 (1) + K, (1)

C1 (l+ l‘v) ‘
dl(t+t‘,)y (H_t")}

lim {alo(H—tV) —b(t+t,)x5(t+1,)—

V—00
(1)

=ajy(1) = b" ()3 (1) — ) ¥ (1),
lim {ax(t +1,) = dy(t+1,) = ca(t+ 1)y (4 1) +b(t+ t)xa (t44)}

=ay (1) —d5(t) = (Y (1) + b7 (1)@ (1),
a(t+6)xa(t+1,) e (t+t,)a
dy(t+1,)+x(t+1,) Hha(t+t) P,

lim {—a;o(H— L) +ki(t+1,)

_ * * CT(I)(p*l(t> * C;([)dz
__aBO(Z)+k1(l)d’l‘(l)+(/)yf(l)+k2(t) 75 .

Note that k:(1), ay(t), @ (1), ¢;(t), 9., (1), di(0), ¥'(1), (1), b'(1) are also

almost periodic in .

Lemma 3.2. Suppose (H,)—(Hyg) hold, then system (E*) has a unique bounded

solution (1) = (¢ (1), P2(2), Y(1)) € S on R, which is globally attractive.

Proof. By the definition of mean value, the assumptions (H,)—(H) and (3.2)—

(3.6), it follows that m(ao(z)) = m(a;y(t)),

m(ax (1) + b(1)x1(1)) = m(ax(t) + b (0)91(1)),
¢ (X1 (1)

m (—a30(t) + k] (f) T(Z‘) + kz(t)Cz(l)x;(l))

—m <—a;0(t) R % + k;(t)cZ(t)wZ(t)) ,
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() = b(0530) () 510 )
= (a0 = 5 0300~ W O L)

mlan(t) — da(t) — ex(y* (1) + b(Ba (1)
— mla(t) — d (1) — (O (1) + B (D1 (1),
C](l‘)x*l(t) Cz(l)O(%
(a0 0 G 0 2,5)
(Doal) . (0
Dt 0=, )

(aioe) + 500 71

And (Hyg) leads to
(Hg) There exist positive constants s;, @ and ¢;, 6 such that

i (Y (1) ok (i)
di()(d} (1) + .. (1)) di() +ea()

. . (N () 42263 (1)
Szazl(t) = s1b (t) + 2a)k2(t)cz(l) + 27@
§1€) 1)

di(1)
From Theorem 3.1, ¢(z) = (¢1(1), ¢2(2), Y(£)) C S is the unique bounded solu-

tion of system (E*) on R, which is globally attractive. This completes the proof
Lemma 3.2. [

By Lemma 3.2, it follows that for each A(z, X) € H(f(z, X)), the hull equation
X = h(t,X)

siay, () = + 520" (t) +

+82>

was, (1) = +5263(1) + 0.

has a unique bounded solution on R with value in S. Hence, from Lemma 3.1,
these unique solutions are all almost periodic. Therefore, by the global attrac-
tivity, X(¢) is the unique almost periodic solution of system (E) contained in S.
Thus our main results follows:

Theorem 3.2. Suppose (H;)—(Hg) hold, then system (E) has a unique positive

(componentwise) almost periodic solution X(t)= (x,(t), x»(?), y(£)) C S on R,
which is globally attractive.

Corollary 3.1. In addition to (H,), if system (E) satisfies

(Ho): ajy >0,d, >0, >0 and o;> 0.
(Hyo): There exist positive constants s;, w and ¢;, 6 such that
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S1C1 (t)q (,l)kl(l)Cl (l) +
d](l)(d](l)‘FO(]) d](l‘)—f—o(l

saa (1) = s1b(t) + 20k (£)ea(r) + 22204 4 4y,

sian(t) = + 526(8) +

S1C1 (t)
dl (t)

Then system (E) has a unique almost periodic solution Y(t) = (u (1), uy(?),
v(t)) C S on R, which is globally attractive.

(l)agl(t) = + Szcz(t) + 0.

Proof. From (H,o), we have a}, > 0. From the discussion in Section 2, we have
a; < x;(t) < p; and B < y*(7) < ¢, which imply

m (Cllo(t) — b0 (1) < Sl)iv*)(t)
m(ax(t) — dx(t) — c2()y" (1) + b(1)x.1 (1))

> ay, —dy — chg+b'ay =abjon >0,

L
>a10—bp2—d—,:a“oc1>0,
1

crt)xq(t X 1
m(—aso() + 1 (0 L L esox(0)) = —aty + D+ ke,
di(1) d!
> a30+k1dfj‘1 1+k’C;22 diyf >0,
e (1)xa () Cz(f)a§>
m| —a +k ~+ ko (t
(owto + 00 7 e+ 0%
2
> a30+kldf1°” +le;2‘2 aiy > 0.

Since m(ay(t)) = ajy > 0 and m(ax(1) + b(1)x;(t)) = aby + b'ay > 0, it is obvi-
ously that (Hy) and (H,) lead to (H»)—-(Hg), by Theorem 3.2, Corollary 3.1
holds. O

Now consider system (E) with periodic coefficients, i.e, b(1), k{t), dft), aj(t),
clt), a;(t) are nonnegative w-periodic functions defined on R with
al, >0,d; > 0.

Theorem 3.3. If system (E) satisfies
Hll) f a10 dt > 0 fO (12() l b(t)x ( ))dt >0,
(Hpw): [y ( a(t) + ki (¢ ) + ko (t)ea () x5 (¢ )) de >0,

(Hy3): f (alo — b(t)x5(¢) ;1]((1[ Y (1) )dt >0,
(Hua): [§ (ax(t) = da(t) = ea(t)y™ (1) + b(t)x. (¢)) dt > 0,
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(H15) ﬁ) ( a%O +k1()c x*l r)+k2() )dl>0

(Hi6): There exist positive constants s;, @ and g, 0 such that

san() > SO ke
= di()(d () +xa(0) d(t) tan() "

sra21(t) = s1b(t) + 20k, (t)ex(t) + 2S2c)2€(t)<);;(t)

+ 52b(8) +
+ &,

was; ([) =

+ s202(¢) + 0.

Then system (E) has a unique w-periodic solution in S, which is globally
attractive.

Proof. From the proof of Theorem 3.2, since b(1), k{1), d(1), a(t), c(t),aa(t)
are all w-periodic, we can take

sien () ()
Sltﬁﬂ%”“”m@wmwwmm

& = réBfu] {Széln(l‘) — Slb(t) — Zwkz(t)CZ(t) — 2SZC;E§)();)*(0 s
S1C1 (Z)
0= telftl)f(‘u {a}a31(1) — d; (t) — Szcz(l)}.

Let X(7) be the unique positive almost periodic solution of system (E), but in
the periodic case, X(¢ + w) is also an almost periodic solution of system (E).
By the uniqueness of almost periodic solution, it follows that X(7) = X(z + w)
for all ¢ € R. This completes the proof of Theorem 3.3. [

Take similar proof as Corollary 3.1, from Theorem 3.3, one obtains

Corollary 3.2. In addition to (Hy,)—(H,s), if system (E) satisfies
(H\7): There exist positive constants s;, o such that

sia (l) S S1C](t)q Cl)k](t)cl(l)
P d () (di (1) + o) dy(t) o

t
saao1 (1) = $16(¢) + 20k (1)er(1) + 2”C;J,
2

+ Szb(t) +

Slcl(t)

di(1)

Then system (E) has a unique w-periodic solution in S, which is globally
attractive.

(,0031(1) = +S202(t).
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4. Further discussions

The modified Predator—Prey system is constructed by an introduction of vir-
al infection on the prey population and anorexia response on the predator pop-
ulation. Stability behavior of such modified system is carried out to observe the
dynamics of the system. Under the force of viral infection and instinct anorexia
response, the existence of almost periodic solutions supports the coexistence of
the complex system. But there are three cases for us to further discussion.

Discussion 4.1. In Sections 2 and 3, we only consider anorexia index satisfies
o, <1 < p,. If anorexia index 1 > p,, From the proof of Theorems 2.1, 3.1 and
3.2, it is easy for us to have the same results.

Theorem 4.1. If (H|)—(H7) hold, then system (E) has at least one positive (com-
ponentwise) solution defined on R with value in S.

Theorem 4.2. If system (E) satisfies (H,)—(H,) and
(Hy): There exist positive constants s;, o and &;, d such that

wkl (t)Cl (t)
+ Szb(l) + m + &1,

s2c2(8)y* (1)
2 x*2<l)

sian () > sicr(1)y*(t)
2 G0@ 1) +xa®)

Shds (l) = S]b(l‘) + 2wk2(t)cz(t) +

+827

S]Cl(t)
d](l)

(1)(131(t) = + Szcg(t) + d.

Then system (E) has a unique almost periodic solution X(t) = (x1(2), x5(2), y(1)) C
S on R, which is globally attractive.

Note 1. To prove the Theorem 4.2, similarity to Theorem 3.1, If © > p,, we
only consider x,(f) < 7 and uy(?) < 7, or x5(¢) < 7 and uy(¢) > t. Thus the proof
is the same to that of Theorem 3.1.

Discussion 4.2. If anorexia index 1 < o, we have % < h(x) < ea(t)x2(t). We
take

(H): m <_a30(t) k(1) dfzf)ﬁfét()t) +kal2) czgz)r ) >0,

kicto kel t?

py—1 1€1%1 22 u
B—— a +—=———a .
( 31) (”lt | ) 30)
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From the proof of Theorems 2.1, 3.1 and 3.2, it is easy for us to have the same
results.

Theorem 4.3. If (H|)—(H7) hold, then system (E) has at least one positive (com-
ponentwise) solution defined on R with value in S.

Theorem 4.4. If system (E) satisfies (H,)—(H,) and
(Hyg): There exist positive constants s;, o and &;, é such that
1)y (¢t wki(t t
sian(t) > sicr(8)y" (1) 1(f)ei (1)
dy(t)(di (1) +x. (1)) dy(t) +x.4(1)
2S202(f)y*(f)
X*z(t)

+ 52b(8) +

&1,

s2a31 (1) = s1b(1) + 20ky(1)ea (1) + te,

S1C1 (I)
di(1)

Then system (E) has a unique almost periodic solution X(t) = (x1(t), x»(2), y(t)) C
S on R, which is globally attractive.

+ Szcz(t) + 5

wdas (t) =

Note 2. To prove the Theorem 4.4, similarity to Theorem 3.1, if 7 <a,, we
only consider x,(f) > 7 and uy(f) < t or x,(¢) > 7 and u,(¢) > 7. Thus the proof
is the same to that of Theorem 3.1.

Discussion 4.3. Now we consider anorexia index T = oo, that is, the predator
has no anorexia response, /(x,) = c,(?)x,(t), system (E) is reduce to

30 =510 ~au ) ~an (030 - (07

We shall make some preparations before stating our Theorem 4.3.
In the following, we suppose that (H;)—(H>) hold, Unless otherwise stated,
and we use the following notations:

iz i u I T =1 _
_ay _ay +b'p _ kychp, + Kicip,(d}) a3
P = MR 2 — ’ q= )
a a’ as
11 21 3l
1 I u -1 1 w 1 3
_alo—bpz_c1fl(d1) _ay—dy+bu — g
o = a# ) Oy = au 9
11 21

kicta

-1 1

ﬂ = (agl) (d'itliipl + klZCIZOCQ — ag‘o).
1
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From Lemma 2.1, we know

x1(t) = x1()[ar () — an()x (1)]
has a unique positive globally attractive almost periodic solution x}(¢) with
0 <xj(t) < py.

If (41): m(ax(t) + b(t)x(z)) >0,
from Lemma 2.1, we know
(1) = x2(1) [ax (t) — an (6)xa(2) + b(1)x; (1)]

has a unique positive globally attractive almost periodic solution x4(f) with
0 <x3(t) < po.

(X1 (1)

If (Az)i m(—a3o(t) + kq (I) < i (t> + kz(l)Cz(l‘)X;(l)) > 0,

from Lemma 2.1, we know

c1()x1 (1)
di(t)

has a unique positive globally attractive almost periodic solution y*(f) with
0<y*1)<gq.

1t (s (et - b0 - 0570 ) > 0

(1) = y(1) [—am(t) —ax (Oy(1) + k(1) + kz(t)Cz(t)XZ(t)}

from Lemma 2.1, we know
8100 =10 [an() = an () — B0 - 4070

has a unique positive globally attractive almost periodic solution xx;(z) with
x*l(t) = inf,eRx*l(t) = o > 0.

If (44): m(ax(t) — da(t) — c2(1)y"(£) + b(1)x.a (1)) > 0,
from Lemma 2.1, we know
%2(1) = x2(t)[ax (t) — da(t) — c2(0)y"(¢) + b(t)x1(2) — ax (t)x2(1)]

has a unique positive globally attractive almost periodic solution x.,(#) with
xa(t) = inf,cpxn(t) = o > 0.

e (8)x,1(2)

If (A5)Z m(—a30(t) + k] (l)m

+ kz(l‘)Cz(l‘)x*z(l)) > 07

from Lemma 2.1, we know

ﬂﬁzﬂﬂLmao+mm—i@%?—

H0+ @+bm@mm@—“wwﬂ
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has a unique positive globally attractive almost periodic solution y.(#) with
y.(1) = infiepy. (1) = > 0.
Let

m; =infx,(¢), ¢ =infy(¢), M;=supx;(t), n" =supy(¢).

teR ter t€R t€R
Clearly, m; >0, ¢ >0, M; >0, n* > 0. Denote
5 = {0 w0yl <50 < M;, & <y <}

Similar proof as Theorem 2.1, by using comparison theorem and Lemma 2.2,
we have the following results.

Theorem 4.5. If (A,)—(As) hold, then system (4.1) has at least one positive
(componentwise) solution defined on R with value in S*.

Construct the following Lyapunov function:
2
V()= silInx () — Inu(t)| + 0| Iny(t) = Inw(t)|, teR
k=1

Similar proof as Theorem 3.1, by calculating the upper right derivative D" ()
of V(t) along the solution of (4.1), one obtains

Theorem 4.6. If system (4.1) satisfies (A,)—(As) and (Ag): There exist positive
constants s;, @ and &, & such that

S]Cl(t)y*(t) wk1<t)01(t) )
sen(l) 2 G @) PO R e T
Sa2dr (l) = S1b(t) + a)kz(t)CZ(f) + &,
wa31(t) = i (t) +S2€2(f) + 0.

d](l‘)

Then system (4.1) has a unique positive bounded solution Y(t) = (u (1), uy(?),
v(?)) C S* on R, which is globally attractive.

By Lemma 3.2 and Theorem 4.6, we have
Theorem 4.7. If system (4.1) satisfies (A;)—(Ag), then system (4.1) has a unique

almost periodic solution Y(t) = (ui(?), ux(t), v(t)) C S* on R, which is globally
attractive.

Similarity to Corollary 3.1, we have the following theorem.

Theorem 4.8. If system (4.1) satisfies (A7): ajy > 0, dy >0, >0 and o; > 0.
And there exist positive constants s;, w and g;, 6 such that
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wkl(t)cl (t)
di(t) + o *

sici(t)q
di(t)(di(2) + o)

$2a21(t) = 51b(t) + wky(t)ex(t) + &2,

sian(t) = + 526(8) +

s1c1(t)
d1 (t)

Then system (4.1) has a unique almost periodic solution Y(t) = (u(1), uy(1),
v(1)) C S* on R, which is globally attractive.

(1)031(1‘) 2 + Szcz(t) + (3

Now we consider system (4.1) with periodic coefficients, i.e., b(?), c(?),
ajo(t), dft), kit), a;(t) are nonnegative w-periodic functions defined on R with
al; >0, d} > 0. Similar proof as Theorem 3.3, we have the following results.

Theorem 4.9. If system (4.1) satisfies

(i) [ ao(r)dr >0, (;u (azo( ) + b(0)x;(¢)) dr > 0.

(i) [y (—aslt) + ki (05 (Des(t)53(0)) de > 0.
(iii) [ (am — b)) — ;llg *(t))dt>0.
(iv) [ (ax(t) — da(t) — e2(8)y* (1) + b(t)x. (¢)) dt > 0.
v fy ( (1) + ki (1) GG + ha(0)e ()x*z(t))dt> 0.

(vi) There exist positive constants s;, w and ¢;, 6 such that

(Ukl ([)Cl(t)
dl (l) + oy +

sici(t)q
di(t)(di(t) + o)

Szazl(t) Z Slb(l) + (Dkz(l)CQ(t) + &2,

sian (t) = +52b(t) +

S1C1 (t)
di(?)
Then system (4.1) has a unique w-periodic solution in S*, which is globally
attractive.

(1)(131([) = +S202(1) + 6.

5. Example and remark

From the results obtained in Sections 3 and 4, we can see that conditions of
existence of almost periodic solutions in Corollary 3.1 are less easy to satisfy
than that of Theorem 4.8. Under circumstance of viral infection and anorexia
response, the persistence of Predator-Prey system is relatively difficult to ob-
tain. The following example will reveal the truth.
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Example. Consider the following Predator—Prey system with viral infection
and anorexia response.
X1 (t)

x1() =x1()[11 + cos 2t — 2x1(¢)] — x1 ()x2(¢) — T (t)y(t),
%2 (2) = x2(2)[11 + sin 52 — 2565 (¢)] + x1(2)x2(¢) — h(x2)p(¢) — x2(2),

(5.1)

1
in 20
350) =3(0) |~ g g~ 200

where anorexia response function is
1
gxz(t)7 x2(t) < T,
=<1
h(x2) 3 -
- t .
o)’ x(t) >
Corresponding to system (E), we have a;o(¢) = 11 +cos2t, ay(t) =11+
Sil’lSt, dl(t) :4, a“(t) = 021(1) = 2, a30(t) :HSTM, a31(t) :2, kl(f) :%, kz(t) =
oty =1, b(t) =ci(t) =dy(t) =1, T=0.1. It is easy to verify that system
(5.1) does not satisfy the results obtained in Section 3.
Without anorexia response, we consider the following reductive Predator—
Prey system.

X1(¢) = x1()[11 4 cos 2¢ — 2x; (¢)] — x1(£)x2(¢) — 4_T_l)(:l)(t)y(t),
. . 1
X2(8) = x2(2)[11 + sin 52 — 2x,(2)] + x1 (£)x2(2) — 5xz(t)y(t) —x(1),
L)
) 3+sin3r 3N 1
= — — -2 .
V(1) = (1) e 0 +gx() = (1)
(5.2)
In fact,
(I)pl :67 p2:97 q:§7 2 :ga a2:%~
(I) Take sy =5, =1, o =1, & =g, & =32, d =15 we have
C1 (t)q kl(t)cl(t) 315
=2 _— b(t ) = ——
siay (1) > 851 AOICAOET) + 52b( )erdl(t) To + & 633’

(
Sadr (t) =2> S]b(t) + Cl)kz(t)Cz(t) +é

C](l)
dl(f)

wa31(t) =2>4
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Thus by Theorem 4.8, there exists a unique positive almost periodic solution
of system (5.2). In fact, if we take x;(0) = x»(0) =1 and y(0) = 3, predator
population of system (5.1) is extinct, predator population of system (5.2)

Predator—Prey System With Anorexia Response

7 T T T T
~ N L " N Sound Prey Density
— - Infective prey Density
—— Predator Density
v N // N \\ , ‘\ // —
N/ ~

4 5 6 7 8 9 10

Fig. 1. The extinction of predator population.

Predator—Prey System With Anorexia Response

\ Sound Prey Density
\| = = Infective prey Density
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Fig. 2. The persistence of predator population.
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persists. we can see Figs. 1 and 2. If we take x1(0) = x»(0) = 1 and y(0) = 0.5,
dynamics of infective prey population and predator population are showed by
Figs. 3 and 4.
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Fig. 3. The dynamics of infective prey and predator population.
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Fig. 4. The dynamics of infective prey and predator population.
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Remark. In this paper, we investigate an eco-epidemiological Predator-Prey
system in which an important factor such as anorexia response of predator
is considered simultaneously. By constructing a suitable V-function, the
conditions which guarantee the existence of a unique almost periodic solution
(periodic solution) can be obtained and easy testified. To the same eco-
epidemiological Predator—Prey system, persistence does not always exist under
the effect of anorexia response on predator population. So our results about the
anorexia response are new, realistic, important. Hence the study with Preda-
tor-Prey system with anorexia response may be useful to have some insight
on realistic ecology.
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