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Abstract A new approach is proposed to investigate the propagation of a plane compressional wave in matrix
composite materials with high volume concentrations of particles. The theory of quasicrystalline approximation
and Waterman’s T matrix formalism are employed to treat the multiple scattering resulting from the particles in
composites. The addition theorem for spherical Bessel functions is used to accomplish the translation between
different coordinate systems. The Percus–Yevick correlation function widely applied in the molecular theory
of liquids is employed to analyze the interaction of the densely distributed particles. The analytical expression
for the Percus–Yevick correlation function is also given. The closed form solution for the effective propagation
constant is obtained in the low frequency limit. Only numerical solutions are obtained at higher frequencies.
Numerical examples show that the phase velocities in the composite materials with low volume concentration
are in good agreement with those in previous literatures. The effects of the incident wave number, the volume
fraction and the material properties of the particles and matrix on the phase velocity are also examined.

Keywords Particle-reinforced composite materials · High volume concentration · Multiple scattering of
elastic waves · Quasicrystalline approximation · Percus–Yevick correlation function

1 Introduction

The study of wave propagation in random medium is interesting both theoretically and from the experimental
point of view due to its numerical practical applications [1–4]. With the advent of composite materials, the
multiple scattering of waves in composites with randomly distributed inclusions has been studied extensively
[5–11].

When the elastic waves propagate in composite materials, it is inevitable that the multiple scattering from
discrete inhomogeneities and the dispersion and attenuation of elastic waves occur. Differing from the static
dynamic effective properties under the static load, the effective properties of materials subjected to elastic waves
are defined as the dynamic effective properties. Through analyzing the relation between the phase velocity and
the microstructure of composite materials, one can provide the overall dynamic behavior of materials under
various loading conditions and optimize the microstructure through quantitative nondestructive evaluation.

To the author’s knowledge, up to present time most research has mainly focused on the multiple scattering
of fibers and particles in materials with low volume concentration, and no direct interactions between inclusions
are taken into consideration. Self-consistent theory was often applied to solve the problem of wave propagation
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in composite materials. Yang and Mal [5] implemented the multiple scattering theory of Waterman and Truell
in the framework of self-consistent theory and obtained the formulae for the dynamic effective medium in
a self-consistent form. Subsequently, Kim [6,7] employed the self-consistent theory to solve the effective
properties of composite materials. Recently, Kanaun and Levin further developed the self-consistent theory
and investigated the elastic wave propagation in fiber [8] and particle [9] reinforced composites, and the effective
propagation wave number and attenuation of waves were also analyzed. In addition, Foldy’s approximation
theory was also applied to analyze the dynamic behavior of composite materials [10,11].

However, when elastic waves propagate in composite materials with high volume concentration, the inter-
action among inclusions makes the scattered field more complex. In such situations, the self-consistent theory
and Foldy’s theory noticeably break down. By using a micromechanics model, Zhou et al. [12] ever analyzed
the mesofracture of metal matrix composites reinforced by particles of large volume fraction. In order to solve
accurately the multiple scattering of elastic waves in composite materials with high volume concentration, it is
necessary to introduce a pair distribution function to describe the direct interactions between inclusions. The
study of pair distribution is a subject of interest in statistical mechanics and various integral equations have been
proposed. The simplest and, on basis of comparisons, the most satisfactory of these is the Percus–Yevick (PY)
equation. Tang and Kong [13] have successfully applied it to study the multiple scattering of electromagnetic
waves by random distribution of dielectric scatterers with high volume concentration. Recently, Kanaun [14]
calculated the dielectric properties of matrix composite materials with high volume concentration of inclusions
by using the Percus–Yevick correction function together with the effective field approach.

The main objective of this paper is to investigate the propagation of a plane compressional wave in matrix
composite materials with high volume concentrations of particles by using a combination of quasicrystalline
approximation and Percus–Yevick correlation function. Modeling of this problem is presented in Sect. 2. In
Sect. 3, the conditional probability density function for particle distribution is discussed, and the analytical
expression of the Percus–Yevick correlation function is given. In Sect. 4, the quasicrystalline approximation
and Waterman’s transfer matrix formalism are applied to treat the multiple scattering problem. The addition
theorem for spherical Bessel functions is used to accomplish the translation between different coordinate
systems. In Sect. 5, according to the approximation theory in the low frequency limit, closed form solutions
for the effective propagation constants and dynamic elastic modulus are obtained. The numerical solutions
at higher frequencies are constructed in Sect. 6. Numerical examples of phase velocity and effective elastic
modulus are presented in Sect. 7, and comparisons with other existing theories are also given. Finally, the
conclusions are presented.

2 Formulation of this problem

Consider a semi-infinite matrix composite material with randomly distributed particles, as depicted in Fig. 1.
Let E0, v0 and ρ0 be the elastic modulus, Poisson ratio and density of the matrix, and E , v, ρ those of the

Fig. 1 Schematic of the incidence of elastic waves on a semi-infinite matrix composite material with randomly distributed particles
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particles. The volume fraction of particles in materials is denoted by f . For simplicity, all particles are assumed
to be identical ones fully bonded to the matrix. The particles of radius a are distributed discretely and randomly
in the matrix. Suppose that a plane compressional wave of frequency ω is incident on the semi-infinite edge
of the material structure. Due to the mutual interference of the particles and the multiple scattering from the
edge, the propagation wave number will change. The propagation wave number is denoted as the effective
wave number.

3 Conditional probability density function for particle distribution

To apply the quasicrystalline approximation to the multiple scattering of elastic waves by a random distribution
of particles, the conditional probability density function for particle distribution must be specified. The position
vector of the center of the i th particle is denoted by ri and the probability density of the random variable
(r1, r2, . . . , rN ) by p(r1, r2, . . . , rN ), then due to the indistinguishability of the spherical particles, it is
symmetric in its arguments and we have

p(r1, r2, . . . , rN ) = p(ri )p(r1, r2, . . . ,
′ , . . . , rN |ri )

= p(ri )p(r j |ri )p(r1, r2, . . . ,
′ , . . . ,′ . . . , rN |r j |ri ),

p(ri ) = p(r1), p(r j |ri ) = p(r2|r1), i �= j, (1)

where the probabilities with the vertical bar in their argument denote the customary conditional probabilities.
A prime in the first part of Eq. (1) means ri is absent, while two primes in the second part of Eq. (1) mean both
ri and r j are absent. For a uniform composite material, the positions of a single spherical particle are equally
probable within a large region V of the material and, hence, its distribution is uniform with density

p(ri ) = 1/V, if ri ∈ V, p(ri ) = 0, if ri /∈ V . (2)

If the center of the i th particle, well within V , is held fixed, the distribution of the spherical particles around it
will be spherically symmetrical. Thus, the conditional probability density function p(r j |ri ) is usually expressed
in term of the pair correlation function g(r̄), i.e.,

p
(
r j |ri

) = 1

V
g
(|r j − ri |

)
. (3)

Function g(r̄) satisfies the following conditions

g(r̄) = 0 if r̄ < b; lim
r̄→∞g(r̄) = 1. (4)

where b = 2a is the diameter of particles. The first of these conditions holds for non-overlapping sets of
spherical particles. The second condition is correct if the correlation in spatial positions of the particles
disappears when the distance between their centers tends to infinity.

For a random set of non-overlapping spherical particles, the most reliable two-point correlation function is
the solution of the so-called Percus–Yevick equation proposed in the molecular theory of liquids [15]. In the
three-dimensional case, the closed form solution of the PY equation has been found, and is expressed in term
of inverse Laplace transforms [16]

g(x) =
∞∑

n=1

gn(x), (5)

where

gn(x) = (−1)n+1

2π i f x

δ+i∞∫

δ−i∞
tet (x−n)

(
L(t)

S(t)

)n

dt, x = r/b, L(t)

= 12 f

[(
1 + f

2

)
t + (

1 + 2 f
)
]
,

S(t) = (1 − f )2t3 + 6 f (1 − f )t2 + 18 f 2t − 12 f (1 + 2 f ).
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Fig. 2 Two-point Percus–Yevick correlation function as a function of r̄

Note that f = 4πa3n0/3 is the volume fraction of particles in materials, and n0 is the number of particles per
unit volume.

In Fig. 2, the PY correlation function has been evaluated for f = 0.2,0.4 and 0.6. It can be seen that the
maximum value of the correlation function is at the position of r̄ = b. The value of the correlation function
oscillates as a function of r̄ and the extent of oscillation increases with f .

For low frequency scattering, one is only required to know the expression n0
∫ [g(r̄) − 1]dr̄ rather than

the detailed solution of g(r̄) as a function of r̄ . Making use of the Ornstein–Zernike equation [17], it can be
shown that

n0

∫ [
g(r̄) − 1

]
dr̄ = (1 − f )4

(1 + 2 f )2 − 1. (6)

4 Solution of the integral equation: quasicrystalline approximation and Percus–Yevick correlation
function (QA-PY)

Under the quasicrystalline approximation and Waterman’s T matrix formalism, the integral equation for the
configurational average of exciting field

〈
U E (r/r1)

〉
at field point r acting on a scatterer at r1 is expressed as

〈
U E (r/r1)

〉
= Ui (r) + n0

∫

τ

g(r2 − r1)T (r2)
〈
U E (r/r2)

〉
dτ2, (7)

where Ui (r) is the incident field in the composite materials, and T (r2)
〈
U E (r/r2)

〉
is the field scattered by a

single scatterer at r2 when excited by
〈
U E (r/r2)

〉
. It should be noted that the integral is taken over the whole

volume τ accessible to particles.
Consider a plane compressional wave being normally incident on the edge of the semi-infinite composite

material, as shown in Fig. 1. Then, the incident field can be expanded using spherical wave function as

Ui = U0eik0z = U0eik0z1eik0(z−z1)

= U0eik0z1

∞∑

n=0

(2n + 1)in jn(k0|r − r1|)Pn(cos θrr1), (8)

where k0 = ω/c0 with c0 = √[(1 − v0)E0]/(1 + v0)(1 − 2v0)ρ0, U0 is the amplitude of the incident waves,
jn(·) is the nth spherical Bessel function of the first kind, and Pn(·) is the associate Legendre polynomial. It
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should be noted that all field quantities have the same time variation eiωt which is suppressed in all represen-
tations for notational convenience.

To solve Eq. (7), the scattered field is expanded as

T (r2)
〈
U E (r/r2)

〉
=

∞∑

n=0

in(2n + 1)An(z2)Tnhn
(
k0|r − r2|

)
Pn

(
cos θrr2

)
, (9)

where An(z2) is the expanded coefficients, hn(·) is the nth spherical Hankel function of the first kind, and Tn
is the scattering coefficient. For spherical particles, the scattering coefficient can be obtained by satisfying the
continuous boundary conditions of particles, and is written as

Tn = ρ0c0 jn(k0a) j ′n(ka) − ρcj ′n(k0a) jn(ka)

ρ0c0hn(k0a) j ′n(ka) − ρch′
n(k0a) jn(ka)

. (10)

Here the prime (′) denotes the differentiation of the spherical Bessel or Hankel functions with respect to their
arguments, k denotes the wave numbers in materials, and c = √[(1 − v)E]/(1 + v)(1 − 2v)ρ.

Likewise, the exciting field
〈
U E (r/r1)

〉
is expressed as

〈
U E (r/r1)

〉
=

∞∑

n=0

(2n + 1)in An(z1) jn
(
k0rq

)
Pn

(
cos θq

)
. (11)

To make computation tractable, the expression of a scattered field is translated to the coordinate system with
origin at r1. According to the addition theorem for spherical wave function [18,19], the following can be
obtained

h j
(
k0|r − r2|

)
Pj

(
cos θrr2

) =
∞∑

n=0

in(2n + 1) jn
(
k0|r − r1|

)
Pn(cos θrr1)

×
∑

p

(- i)pa(0, j, 0, n, p)h p(k0|r2 − r1|)

×Pp(cos θr2r1)e
i( j−p)φr1r2 , (12)

where p = | j − n|, j + n + 2, . . . , j + n, and

a(0, j, 0, n, p) = (2p + 1)
( j + n − p)!( j + p − n)!(n + p − j)!

( j + n + p − 1)!

×
[ [ 1

2 ( j + n + p)
]!

[ 1
2 ( j + n − p)

]! [ 1
2 ( j + p − n)

]! [ 1
2 (n + p − j)

]!

]2

. (13)

Eqs. (8)–(11) can be substituted into Eq. (7). Owing to the axial symmetry of the volume of the integra-
tion, only terms independent of the azimuthal angle φr1r2 contribute. Then the wave function (2n + 1)in

× jn(k0|r − r1|)Pn(cos θrr1) is factored out of the three terms of Eq. (7) and each coefficient in this sum is set
to be equal to zero, because of the orthogonality of these functions on a spherical surface with center at r1. As
a result, the infinite set of coupled integral equation are obtained as

An(z1) = eik0z1 + n0

∞∑

j=0

(2 j + 1)Tj

∑

p

(−i)pa(0, j, 0, n, p)

×
∫

τ

g
(
r2 − r1

)
A j (z2)h p

(
k0|r2 − r1|

)
Pp(cos θr2r1)dτ2, n = 0, 1, 2 . . . (14)

Note that the volume of integration of Eq. (14) consists of the semi-infinite space z > 0 less a sphere of radius
b centered at the point r1.
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In order to solve the set of equations (14), it is assumed that all coefficients An(z1) may be expressible in
term of the same function G(z1), which satisfies the wave motion equation

(∇2 + K 2)G(z1) = 0, (15)

where K is a constant to be determined. It can be seen that the exciting field
〈
U E (r̄/r̄1)

〉
consists of two

functions satisfying the wave motion equation for K and k0.
From Eq. (15), one can obtain

An(z1) = A0
neiK z1 . (16)

Here A0
n are the constants to be determined.

Substitution of Eq. (16) into (14) yields the following equation

A0
neiK z1 = eik0z1 + n0eiK z1

∞∑

j=0

(2 j + 1)Tj A0
j

∑

p

(−i)pa(0, j, 0, n, p)

×
∫

τ

g(r2 − r1)e
iK zh p(k0|r2 − r1|)Pp(cos θr2r1)dτ2. (17)

Let us write g(r2 − r1) as follows:

g(r2 − r1) = 1 + [
g(r2 − r1) − 1

]
. (18)

The first term in Eq. (18), when substituted into Eq. (17), produces two waves with propagation constant K
and k0. Then, Eq. (17) is rewritten as

A0
neiK z1 = eik0z1 + n0eiK z1

∞∑

j=0

(2 j + 1)Tj A0
j

∑

p

(−i)pa(0, j, 0, n, p)

×
∫

τ

eiK zh p
(
k0|r2 − r1|

)
Pp(cos θr2r1)dτ2. (19)

Note that the derivation of
∫
τ

eiK zh p(k0|r2 − r1|)Pp(cos θr2r1)dτ2 is shown in Appendix 1.
By making use of the derivation in Appendix 1, and balancing terms with wave number k0, the following

can be obtained

K = k0 + 2πn0

ik2
0

∞∑

j=0

(2 j + 1)Tj A0
j . (20)

Note that the convergence condition of the series in Eq. (20) is that the wave number is not too large.
In view of the results in Fig. 2, it can be seen that the second term of Eq. (18) vanishes for |r2r1| larger than

a few b‘s. Thus, if the point r1 is several diameters deep in the semi-infinite composite material, the volume
of integration in Eq. (19) can be extended to the infinite space giving rise to a wave with propagation constant
K . Balancing terms with propagation constant K in Eq. (19) leads to the following equations:

A0
n = n0

∞∑

j=0

(2 j + 1)Tj A0
j

∑

p

(−i)pa(0, j, 0, n, p)
[
L p(k0, K , b) + Mp(k0, K , b)

]
,

(21)

where

L p(k0, K , b) = Dp(k0, K , b)i−p/4π. (22)

Mp(k0, K , b) =
∞∫

b

r2[g(r) − 1]h p(k0r) jp(Kr)dr. (23)

Note that Dp(k0, K , b) is shown in Appendix 1.
The set of equations (21) consists of an infinite number of homogeneous linear equations determining the

coefficients A0
n . For a nontrivial solution of A0

n , the determinant must vanish, and this leads to the equation for
the effective wave number K . Then A0

n are determined by using Eq. (20).
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5 The phase velocity in the low frequency limit

A closed form solution can be obtained for the effective propagation wave number K in the low frequency
limit. In such a case, because |k0a| � 1.0, only the first and second terms contribute in Eq. (21).

When |x | � 1.0, one can obtain

jn(x) ≈ 2nn!xn

(2n + 1)! , hn(x) ≈ − i(2n)!
2nn!xn+1 . (24)

According to Eqs. (10) and (24), the following can be obtained

T0 ≈ i(k0a)3

3

(
E0

E
− 1

)
, T1 ≈ i(k0a)3

3

ρ0 − ρ

ρ0 + 2ρ
. (25)

In this case, one can also have

L p(k0, K , b) ≈ − i

k0(K 2 − k2
0)

(
K

k0

)p

− δp0
b3

3
. (26)

Only the p = 0 term in L p has a real part, because if p ≥ 1, the real part is of an order smaller than O(k3
0a3)

of the imaginary part.
Similarly,

Mp(k0, K , b) = δp0

∞∫

b

r2[g(r) − 1
]
dr. (27)

Only the real part of Mp(k0, K , b) for p = 0 contributes. Other real and imaginary terms are smaller than the
corresponding real and imaginary terms of L p(k0, K , b). Thus, in the low frequency limit, only the knowledge
of an integral of g(r) − 1 is required, rather than a detailed behavior of the correlation function as a function
of r . According to Eq. (6), one can obtain

Mp(k0, K , b) = δp0

4πn0

[
(1 − f )4

(1 + 2 f )2 + 8 f − 1

]
. (28)

Substituting Eqs. (26) and (28) into Eq. (21), the following can be obtained

A0
0 = 4πn0

ik0(K 2 − k2
0)

{
T0 A0

0
1

4πn0

[
(1 − f )4

(1 + 2 f )2 +8 f − 1

]
+3T1 A0

1(K/k0)

}
. (29)

A0
1 = 4πn0

ik0(K 2 − k2
0)

{
T0 A0

0(K/k0) + T1 A0
1

{
1

4πn0

[
(1 − f )4

(1 + 2 f )2 + 8 f − 1

]
+ 2K 2/k2

0)

}}
.

(30)

ik2
0(K − k0)/2πn0 = T0 A0

0 + 3T1 A0
1. (31)

Let the determinant of Eqs. (29) and (30) be zero, the relation between K and k0 can be obtained as follows:

(
K

k0

)2

=
[
1 + 3T0S/i(k0a)3

][
1 − 3T1S/i(k0a)3

]

1 + 6T1 f/i(k0a)3 . (32)

where S = (1− f )4

(1+2 f )2 + 8 f − 1.
Equation (32) is the closed form solution for the effective propagation wave number K . The phase velocity

V ∗ of the elastic waves in composite materials is connected with the effective wave number K by the equation

V ∗ = k0

Re(K )
. (33)

Here Re(K ) denotes the real part of K .
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The dynamic effective elastic modulus can be easily obtained from the phase velocity V ∗ as follows:

Ee = E0(ρ
e/ρ0)(V ∗)2, (34)

where the average mass density ρe is written as

ρe = ρ0(1 − f ) + ρ f. (35)

6 The phase velocity at higher frequencies

In the region of higher frequencies, closed form solutions are not accessible. Equation (21) has to be solved
numerically. A moderately wide range of frequencies k0a from 0.05 to 2.5 is considered. The range of f is
0 to 0.6. For these values of k0a and f , the determinant of the coefficient of A0

n is computed numerically by
retaining a maximum of 8 simultaneous homogeneous complex equations for A0, A1, A2, A3 and A4. The
elements of Fp(k0, K , b) for p = 0, 1, 2, . . . , 7, 8 are computed by numerically evaluating the integral in
Eq. (23) for r ∈ [b, 6b]. As can be seen from Fig. 2 that for f between 0 and 0.6, the value of g(r) − 1 is
practically zero for r larger than 6b.

For given values of k0a and f , the roots of the determinant are searched in the complex K plane (Kr + iKi )
using Mueller’s method. There are two good initial guesses. One is provided by Eq. (32) at low values of k0a.
The other is the result under Foldy’s approximation, i.e.,

K F = k0 − iπn0

k2
0

∞∑

n=0

(2n + 1)T0 A0
0, (36)

where K F denotes effective propagation constant under Foldy’s approximation. These two guesses can be
applied systematically to obtain the quick convergence of roots at increasing values of k0a.

7 Numerical examples and discussion

To validate the present method, the numerical examples are given. In the following analysis, it is convenient
to make the variables dimensionless. To accomplish this step, we may introduce a representative length scale
a, where a is the radius of the reinforcing particles. The following dimensionless variables and quantities have
been chosen for computation: k0a = 0.05 − 2.5, E/E0 = 0.1 − 5.0, ρ/ρ0 = 0.1 − 2.0, v = v0 = 0.3.

Ph
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ty
 V

*

Volume fraction f

Fig. 3 Phase velocity of elastic waves as a function of the volume fraction of particles (k0a = 0.1, E/E0 = 5.0, ρ/ρ0 =
2.0, v/v0 = 1.0)
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Fig. 4 Dynamic effective elastic modulus as a function of the volume fraction of particles (k0a = 0.1, v/v0 = 1.0)
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Fig. 5 Phase velocity of elastic waves as a function of the volume fraction of particles (E/E0 = 5.0, ρ/ρ0 = 2.0, v/v0 = 1.0)

Figure 3 illustrates the phase velocity V ∗ of the compressional wave as a function of the volume fraction
f with parameters: k0a = 0.1, E/E0 = 5.0, ρ/ρ0 = 2.0 and v/v0 = 1.0. It can be seen that when the volume
fraction f is less than 0.3, the results obtained by the method in this paper are in good agreement with those
obtained from effective medium method [9]. However, when the volume fraction is greater than 0.3, the phase
velocities are greater than those obtained by using effective medium method. It is known from Ref. [10] that
the numerical results are more accurate than those obtained from Foldy’s theory and effective medium method.

To examine the effect of the material properties on the dynamic effective elastic modulus, we show the
dynamic effective elastic modulus as a function of the volume fraction with parameters: k0a = 0.1, v/v0 = 1.0
in Fig. 4. It can be seen that when the material properties contrast ratios E∗ and ρ∗ are greater than 1, the
dynamic effective elastic modulus increases with the increase of the volume fraction. However, if the material
properties contrast ratios E∗ and ρ∗ are smaller than 1, the dynamic effective elastic modulus decreases with
the increase of the volume fraction.

Figure 5 presents the phase velocity as a function of the volume fraction with parameters: E/E0 =
5.0, ρ/ρ0 = 2.0, v/v0 = 1.0. It is observed that in the low frequency region, when the volume fraction is
small, the phase velocity nearly expresses no variation with the volume fraction; when the volume fraction
is great, the variation of the phase velocity with the volume fraction is great. However, in the high frequency



186 C. Hu et al.

Ph
as

e 
ve

lo
ci

ty
 V

*

Dimensionless wave number k0a

Fig. 6 Phase velocity of elastic waves as a function of dimensionless wave number (ρ/ρ0 = 2.0, v/v0 = 1.0, f = 0.2)
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Fig. 7 Phase velocity of elastic waves as a function of dimensionless wave number (ρ/ρ0 = 2.0, v/v0 = 1.0, f = 0.6)

region, the variation of the phase velocity with the volume fraction is great over the full range of volume
fraction.

Figure 6 illustrates the phase velocity as a function of dimensionless wave number with parameters:
ρ/ρ0 = 2.0, v/v0 = 1.0, f = 0.2. It can be seen that the phase velocity first increases with wave number, then
saturates and tends to be invariable as wave number further increases. When the elastic modulus contrast ratio
E∗ is small, the variation of the phase velocity with dimensionless wave number is little. The dimensionless
wave number corresponding to the maximum phase velocity increases with the increase of the elastic modulus
contrast ratio E∗.

Figure 7 illustrates the phase velocity as a function of dimensionless wave number with parameters:
ρ/ρ0 = 2.0, v/v0 = 1.0, f = 0.6. In contrast to Fig. 6, it is clear that the dimensionless wave number
corresponding to the maximum phase velocity increases with the increase of the volume fraction of the
particles. The effect of the elastic modulus contrast ratio E∗ on the phase velocity increases with an increase
of the volume fraction.

The variation of the phase velocity with the dimensionless wave number for E/E0 = 5.0, ρ/ρ0 =
2.0, v/v0 = 1.0 is shown in Fig. 8. It can be seen that the variation of the phase velocity is little if the
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Fig. 8 Phase velocity of elastic waves as a function of dimensionless wave number (E/E0 = 5.0, ρ/ρ0 = 2.0, v/v0 = 1.0)
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Fig. 9 Effective elastic modulus as a function of the volume fraction of particles (k0a = 0.0, E/E0 = 5.5, ρ/ρ0 = 2.0, v/v0 =
1.0)

volume fraction and the dimension wave number are small. The variation of the phase velocity with wave
number increases with the increase of the volume fraction.

Finally, we consider the static effective elastic modulus of materials. As k0a → 0, the dynamic effective
elastic modulus tends to be the static solutions. The expression for the static effective elastic modulus of
composites is given in Appendix 2. Figure 9 shows the variation of the static effective elastic modulus with
the volume fraction with k0a = 0.0, E/E0 = 5.5, ρ/ρ0 = 2.0, v/v0 = 1.0. A comparison with the static
effective elastic modulus obtained from Eshelby method [20] is made. It should be emphasized that the results
agree well with those from Eshelby method over the full range of the volume fraction.

8 Conclusion

In this study, a new and simple method (QA–PY) is presented to analyze the propagation of a plane compres-
sional wave in matrix composite materials with high volume concentrations of particles. An analytical solution
for effective wave number in the low frequency limit is derived. At higher frequencies, numerical solutions
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are constructed. Numerical examples show that the phase velocities in composite materials with low volume
fractions obtained from this method are in good agreement with those in previous literatures. The accuracy in
the case of high volume concentration increases greatly. So the efficacy of the quasicrystalline approximation
increases greatly when combing with the Percus–Yevick correlation function.

It has been found that the phase velocity in materials is dependent on the incident wave number, the material
properties contrast ratios and the volume fraction of particles, which is consistent with the result in Refs. [3,4].
The phase velocity increases with the increase of the incident wave number, the volume fraction of particles and
the material properties contrast ratios of the particles and matrix. The greater the volume fraction of particles
and the incident wave number, the greater the effect of the material properties contrast ratios on the phase
velocity and the dynamic effective elastic modulus.
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Appendix 1

The derivation of
∫
τ−τe

eiK zh p(k0|r2 − r1|)Pp(cos θr2r1 )dτ2 is given by
Making the change of variable r2 − r1 = r inside the integral yields the following

∫

τ

eiK zh p(k0|r2 − r1|)Pp(cos θr2r1 )dτ2 =
∫

τ−τe

eiK zwp(k0r)dτ . (1)

where wp(k0r) = h p(k0r)Pp(cos θ) = (−i)p Ppzh0(k0r).
In the second equality, Kasterin’s representation is used to express the spherical waves with Ppz standing for Pp(1/ik0, ∂/∂z).

Since (∇2 + k2
0)wp(k0r) = 0 and (∇2 + K 2)eiK z = 0, it is possible to obtain

eiK zwp(k0r) = 1

K 2 − k2
0

(
eiK z∇2wp − wp∇2eiK z). (2)

By using Green’s theorem, the volume integral in Eq. (1) can be transformed into the surface integrals, i.e.,
∫

τ

eiK zwp(k0r)dτ = 1

K 2 − k2
0

∫

S+Se

[
ei K z ∂wp

∂n′ − wp
∂ei K z

∂n′

]
ds, (3)

where S = lim
R→∞[S1(z1) + S2], Se is a complete spherical surface of radius b, and n′ is the normal outward unit vector. Note that

R → ∞ denotes the semi-infinite space.
The surface integral can be split into three integrals over S1, S2 and Se. The first can be calculated in cylindrical coordinate

r = (ρ2 + z2)1/2, and then the following is obtained

C p(k0, K ) = 1

K 2 − k2
0

∫

s1

[
ei K z ∂wp

∂n′ − wp
∂ei K z

∂n′

]
ds

= 2π

K 2 − k2
0

⎡

⎣ei K z

R∫

0

(
i Kwp − ∂wp

∂z

)
ρdρ

⎤

⎦

z=−z1

= − 2πe−iK z1

k2
0(K 2 − k2

0)
(−i)p

(
iK + ∂

∂z1

)
Pp,−z1

[
eik0(R2+z2

1)1/2 − eik0z1
]
.

(4)

When R → ∞, the oscillating term eik0(R2+z2
1)1/2

disappears. In addition, Pp,−z1 e−ik0z1 = Pp(−1)e−ik0z1 = (−1)pe−ik0z1 ,
therefore,

C p(k0, K )= 1

K 2 − k2
0

∫

s1

[
eiK z ∂wp

∂n′ − wp
∂eiK z

∂n′

]
ds = 2π i

k2
0(K − k0)

ipei(k0−K )z1 . (5)

The remaining integrals

Dp(k0, K , b) = −1

K 2 − k2
0

∫

se

[
eiK z ∂wp

∂n′ − wp
∂eiK z

∂n′

]
ds, (6)
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and

E p = 1

K 2 − k2
0

lim
R→∞

∫

s2

[
eiK z ∂wp

∂n′ − wp
∂eiK z

∂n′

]
ds, (7)

are independent of z1, and just constants depending on k0 and K . On the spherical surface r = b and x = cos θ , Eq. (6) can be
rewritten as

Dp(k0, K , b) = −2πb2

K 2 − k2
0

1∫

−1

eiK bx Pp(x)
[
k0h′

p(k0b) − h p(k0b)iK x
]
dx . (8)

By using the identities [21]

1∫

−1

eiyx Pp(x)dx = 2ip jp(y), (9)

1∫

−1

ixeiyx Pp(x)dx = 2ip j ′p(y), (10)

one can obtain

Dp(k0, K , b) = − 4π ipb2

K 2 − k2
0

[
k0h′

p(k0b) jp(K b) − K h p(k0b) j ′p(K b)
]
. (11)

While on S2, by employing h p(k0 R) ≈ ip(ik0 R)−1eik0 R for large R, Eq. (7) can be rewritten as

E p = 2π i−p

K 2 − k2
0

lim
R→∞

⎡

⎣Reik0 R

1∫

0

eik0 Rx Pp(x)(1 − (K/k0)x)dx

⎤

⎦. (12)

In Eq. (12), Pp(x)[1 − (K/k0)x] = Q(x) is a polynomial function of p + 1 degree. Repeating integrations by parts yields the
following

E p = 2π i−p

K 2 − k2
0

lim
R→∞Reik0 R

[
eiK R Q(1) − Q(0)

iK R
+ eiK R Q′(1) − Q′(0)

(K R)2 + · · ·
]

= 2π i−p

K 2 − k2
0

lim
R→∞

eik0 R

iK

[
eiK R Q(1) − Q(0)

]
= 0. (13)

From Eqs. (5), (11) and (13), the following can be obtained
∫

τ

eiK zh p(k0|r2 − r1|)Pp(cos θr2r1 )dτ2 = C p(k0, K ) + Dp(k0, K , b). (14)

Appendix 2

Using the Eshelby method, the effective elastic modulus is written as [20]

Ee = (1 − f )E0 + f E + f (1 − f )
(E − E0)(1/E − 1/E0)

(1 − f )/E0 + f/E + 4µ0/3E E0
, (15)

where µ0 = E0
2(1+ν0)

is the bulk modulus of the matrix.
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