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Abstract

We find that classical similarity transformations in the coherent state representation projects onto the similarity
transformation operators (STO), these operators constitute a loyal representation of symplectic group. Remarkably,
the multiplication rule of the STOs naturally leads to the quantum optical generalized 4BCD law, which is the
quantum mechanical correspondence of the classical optical ABCD law. Throughout the whole derivation, the
technique of integration within an ordered product (I/WOP) of operators is employed.
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1. Introduction

In classical optics, ray-transfer matrices, M =
4 B), AD — BC =1, have been used to describe the
geometrical formation of images by a centred lens
system. For an optical ray (a centred spherical
wavefront) passing through optical instruments there is
a famous law, i.e. the ABCD law [1,2], governing the
relation between input ray (rj,;) and output
ray (r, o), 1.e.
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where r; is the ray height from the optical axis, and «; is
named the optical direction-cosine, r;/a; = R, specifies
the ray’s wavefront shape. Eq. (1) implies
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This law is the core of matrix optics, since it tells us how
the curvature of a centred spherical wavefront changes
from one reference plane to the next. There are several
literatures dealing with 4BCD optical systems and the
ABCD law is used in wild areas [3-9]. In addition, the
multiplication rule of matrix optics implies that if the
ray-transfer matrices of the n optical components are
My, M,, M5, ..., M,, respectively, then the whole sys-
tem is determined by a matrix M = M\M,M5...M,.
One of the remarkable things of modern optics is the
case with which geometrical ray-transfer methods,
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constituting the matrix optics, can be adapted to
describe the generation and propagation of laser beams.
In 1965 Kogelnik [10] pointed out that propagation of
Gaussian beam also obeys the ABCD law via optical
diffraction integration, i.e. the input light field f(x;) and
the output light field g(x,) are related to each other by
the so-called Fresnel integration [11,12]

gx2) = / " (A, B, o) () dn, 3)

o0

where

K(A4,B,C; x>, x =
( 2:%1) 2niB

4)

The ABCD law for Gaussian beam passing through an
optical system is [13,14]
Aq] + B
4> = qu + Ds (5)
where ¢, (g,) represents the complex curvature of the
input (output) Gaussian beam, Eq. (5) has the form
similar to Eq. (2). Thus an interesting and important
question naturally arises: Dose ABCD law also exhibit
in quantum optics? Since classical similarity transform
should have its quantum optical counterpart (we name it
the similarity transformation operator (STO) [15]), this
question also challenges us if there exist corresponding
multiplication rule of the STO which corresponds to
M=MMMs...M,?

2. The multiplication rule for similarity
transformation operator in the coherent state
representation

In the following we derive the generalized ABCD law
in quantum optics by introducing the appropriate STO
and exhibiting its multiplication rule. We begin with
mapping the symplectic transform in complex (z,z*)
space (z,z*) — (1z — vz*, uz* — 6z) onto operator W by
virtue of the coherent state representation [16—18]

T

(L)
(m )

= exp|[(tz — vz*)a" — (uz* — 02)a]|0), (7
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and u,v,o and 7 are complex numbers satisfying the
unimodularity condition

ut —ov =1, (®)

a’ is the Bose creation operator, [a,a'] = 1. Using the
vacuum projector |0)(0] in normal ordering of boson
operators

.

0)(0] =277, )

and the technique of integration within an ordered
product (/WOP) of operators [19-21] we can directly
perform the integration in Eq. (6) and obtain
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which is named the STO. We can easily verify that W
generates the general linear similarity transformation of
a and af

gJr =Wd W' =6a+ 1.
(11)

d= WaW™" = pa+vd,

It is easily seen that the similarity transformation W
preserves the commutator [d, g'] = 1 even though d and
g' are not generally Hermitian conjugates. Using the
overlap

2 72
N (12)
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and the IWOP technique as well as the formula
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where the convergent condition is either

41y
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we can calculate
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in the last step we have set

M// — M/’u + (TV/, V= 'u/v + V/‘C,

whose matrix form is
,L.// _v// T —y ,L./ _V/

( 1t 4+ vo’ —(v' + vu’))

—(ot' +po’) oV +
from (8) and (18) we see

i " 1

W —v'e" = (1t +va') oV + pu)
— (v +v)(ot + pue’) = 1.

Thus we can conclude that

1 v’ 1 . a’
! . 2 i
Ww' = —W'GXP{_ZM//a + <_,u” - 1>a a-+ oG
=w,

/1/2

(16)

(17)

(18)

(19)

S.-g. Liu, H.-y. Fan / Optik 121 (2010) 1600-1604

which coincides with
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This is the new product rule of the STO in the coherent
state representation, which manifestly exhibits that
W constitutes a loyal group representation of the
symplectic group. To see the generalized ABCD law
more explicitly, we make the identification z =

(1/3/2)(q + ip),

q
lz) = ’ <p> > = expli(pQ — ¢P)]|0)

1 + i
_ exp{—(p2+q2) Qﬁp

10),

N
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and
t=44+D—iB- ),
p=3A+D+iB-O),
v=—A4-D+iB+ ),
o=—-A-D—iB+ Q) (23)

where the unimodularity condition ut — ov = 1 becomes
AD — BC =1, which guarantees the classical Poisson
bracket invariant. The reverse relation of (23) is

=it +u—v-ol,
B=Z[t+o—p—l
C=—tbtr-n—a

=3+ u+v+ol,

note that they are complex in general. Accordingly, Eq.
(6) can be put into the form

W \/A+D—z(B C)/dpdq

(2N maner o
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and (10) becomes

2
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which implies that the classical symplectic transforma-
tion in matrix form in the coherent state basis

<Z> ~ (e b) (Z) - (Z) 26)

maps onto W(A4, B, C). The multiplication rule for W is
W(A',B,CYW(A,B,C)= W(A",B",C"), where

A" B’ A B A B
7 i = ’ / . (27)

" D (O )) C D
Eq. (24) clearly reveals the intrinsic relationship between

classical symplectic transformation and quantum simi-
larity transformation.

3. Generalized ABCD law in quantum optics

Now we can directly use the STO to derive the
generalized ABCD law in quantum optics. From (25) we
see that the STO generates

2
W(A, B, C)|0) = \/A +iB—i(C +iD)
A-D+iB+C) 4
x eXp{2[A +D+iB-C)" 028)
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Let W(A, B, C)|0) expressed by (30) be an input state for

an optical system which is characterized by parameters
A B, C',D', then the quantum optical generalized
ABCD law states that the output state is

W(A',B,C"YW(4,B, C)|0)

_ | 2/(C"+iD") 90— +2}
B nri {2(% ¢ 2

which has the similar form to (30), where (C”,D") is

determined by (27), and

. Aq+B
=, §;=-¢q (i=1,2 33

h=ggyp =74 ( ) (33)

which resembles (5), so Eq. (33) indicates the generalized

ABCD law in the context of quantum optics. Especially,

when we take ¢ = 7* and ¢ = v* it reduce to the special
case in Ref. [22].

Proof. According to the multiplication rule of two STOs
and Egs. (25) and (27) we have

W', B,CYW(4,B,C)|0)
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Using (31) we can find (2/(C+iD))/(C'q; — D)=
—2/(C" 4+ iD") together with (33), we can reach (32),
thus the law is proven. Using (31) we can rewrite (33) as
_ A'(A+iB)+ B(C+iD) B A" +iB"
=T CUriB+D(C+iD) ' +iD"
which is consistent with (31). Eqs. (30)—(35) are there-
fore self-consistent. [

(35)

In summary, based on the IWOP technique, which
exhibits the mapping from classical symplectic transfor-
mation to quantum operators in a transparent fashion,
we have shown that classical similarity transformations
in the coherent state representation projects onto the
similarity transformation operators, these operators
constitute a loyal group representation of symplectic
group. Remarkably, the multiplication rule of the STOs
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naturally leads to the quantum optical generalized
ABCD law, which is the quantum mechanical corre-
spondence of the classical optical ABCD law. Therefore,
the ABCD law exists not only in classical optics but also
in quantum optics, this is a new resemblance between
the two fields.
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