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Abstract
In this paper, the geometric and dynamic phase components of the overall phase induced by
2π hyperbolic secant pulses in a quantum dot are analysed. The dependence of two phase
components on the ratio of the Rabi frequency to the detuning is investigated. Numerical
results indicate that only for one resonant pulse the induced overall phase is purely the
geometric phase. With other values of the ratio the overall phase consists of a nonzero
dynamic part. The effect of spin precession to decrease the dynamic phase is characterized and
discussed by analytical and numerical techniques. Utilizing the symmetry relations of the
phases, a scheme to eliminate the dynamic phase by multipulse control is proposed. By
choosing the proper parameter for each pulse, the dynamic phases induced by different pulses
cancel out. The total pure geometric phase varies from −π to π , which realizes the arbitrary
geometric rotation of spin. Average fidelity is calculated and the effects of the magnetic field
and decay of the trion state are compared and discussed. The results show the crucial role of
the weak magnetic field for high fidelity (above 99.3%).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Optical control of a single-electron spin in a quantum dot (QD)
is a key ingredient for implementing quantum information
processing (QIP) in a scalable solid-state system [1]. In
recent years, great efforts have been made towards the physical
implementation of such an optical approach. This has been
experimentally demonstrated using an oscillating magnetic
field generated by radio-frequency (RF) pulses on timescales
of nanoseconds [2, 3]. However, the ultrafast optical technique
is more attractive due to its ability of enabling spin rotations to
be completed on a picosecond timescale which is much shorter
than spin coherent times [4], leading to abundant theoretical
proposals [5–13] and several experimental achievements
[14–18].

The proposal T proposed by Economou et al [10, 11] is
based on the attractive feature of the fast laser pulse with
a hyperbolic secant temporal envelope [19]. After a 2π

sec pulse, the two-level system of a QD completes a Rabi

oscillation and the population returns to its initiate state while
having acquired an overall phase. This initiate state with
the overall phase and a third state which does not couple to
the laser pulse span the qubit space. The fast spin rotations
about the optical axis are thus achieved, and the rotation
angle is determined by the ratio of the Rabi frequency to the
detuning, �/� [10]. In general, the 2π Rabi oscillation may
be considered as a nonadiabatic cyclic evolution; therefore,
the overall phase consists of a dynamic component and a
geometric component defined by Aharonov and Anandan [20].
Particularly, when the rotation angle φ = π (�/� → ∞),
i.e. the resonant case, the dynamic phase component is zero
and the overall phase is exactly equal to the geometric phase
component. The geometric phase depends only on some global
geometric features, e.g. the curve in the parameter space, not
on the duration of interaction. Besides, geometric phases may
be robust against dephasing. Although this property is not
predicted in general systems [21], it manifests in particular
open systems where precession is in the equatorial plane of
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the Bloch sphere [22]. Therefore quantum computation based
on the pure geometric phase, so-called geometric quantum
computing (GQC) [23], may have an inherent error-resilient
advantage. The proposal T is thus one of the methods
to physically implement GQC. However, the cycle-averaged
expectation value of the Hamiltonian is not always zero with
various values of the ratio �/�, leading to a nonzero dynamic
component and a diverse geometric component. In this paper,
we will analyse the geometric and dynamic phase components
induced by the 2π sec pulse in detail, through investigating
the dependence of the two components on the spin rotation
angle and on the ratio �/�. Two methods are utilized: one
is to calculate the phase components by substituting the state
vector with analytic solutions of [10] in intermediate steps, the
other is full numerical simulation. Besides, the discrepancy of
two results is discussed and the effect of the other interaction
mechanism within the system, i.e. the spin precession, is
demonstrated.

To generalize the proposal T to universal nonadiabatic
geometric quantum gates, e.g. the arbitrary angle rotation
about an axis is purely the geometric phase, one needs to avoid
or remove the dynamic component when φ �= π (�/� � ∞).
In previous studies [24–28], one method is to choose the
dark states as the cyclic states; thus, the dynamic phase
component is always zero. This scheme has been proposed for
nonadiabatic GQC with NMR [24], Josephson junctions [25],
trapped ions [26] and QD systems [27]. The other method is
the multiloop scheme generalized from the adiabatic evolution
case [29, 30]. Let the system undergo evolution along
several closed loops; thus, the dynamic phases accumulated in
different loops may be cancelled, while the geometric phase is
being added. This scheme has been demonstrated in Josephson
junctions and NMR systems [28]. In this paper, we propose
a scheme to eliminate the dynamic phases in the QD system.
Though being similar with the multiloop method, we do not
employ the RF pulses to generate the oscillating magnetic
field in our scheme, but employ several picosecond sec pulses
proposed in the proposal T . The dynamic phases induced by
different pulses cancel out, leading to arbitrary spin rotation
with pure geometric phase.

The paper is organized as follows. In section 2, we give
a brief review of the proposal for fast optical rotations of an
electron spin trapped in a QD, introduce the analytic solutions
and calculate the expression of the phase components. In
section 3, we present numerical results, analyse the phase
components and demonstrate the effect of the spin precession
to the dynamic phase. In section 4, a scheme to eliminate
dynamic phases by multipulse control is proposed. In
section 5, we calculate the fidelity and discuss the effects
of the magnetic field and decay of the trion state. A summary
and some prospects are provided in section 6.

2. Review of the proposal and calculation of the
phase components

The nanostructure employed in the proposal T consists
of arrays of self-assembled (In,Ga)As/GaAs QDs, each
containing on average a single electron [31]. In the Voigt
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Figure 1. (a) Level diagram of the � system in QD. In the Voigt
geometry, two lower states are |z〉 and |z̄〉 with electron spins in the
z direction, coupled by the magnetic field B. The intermediate state
|τ 〉 is the trion state with the heavy spin pinned along the z axis.
Circularly polarized light propagates parallel to the QD growth
direction. Due to selective rules, σ + pulse only couples |z〉 and |τ 〉.
(b) Bloch sphere sketches electron spin and precession of the spin
around the magnetic field. The clockwise arrows mark the spin
precession direction.

geometry, the external magnetic field (along the x axis)
B = 0.29 T [17] is applied perpendicularly to the QD growth
direction (z axis) which is parallel to the optical axis, as shown
in figure 1(b). The two lower states |z〉 and |z̄〉 with spins in the
z direction are coupled through the magnetic field, and they
are superpositions of spin-energy eigenstates in the x direction.
When the QD absorbs a photon, it is excited to a trion state
which consists of a singlet pair of electrons and a heavy hole.
The hole spin is pinned along the growth direction due to
strong confinement and spin–orbit interaction. Selection rules
determine that specific circularly polarized light only couples
one spin state to one trion state, e.g. σ + light couples |z〉 to
|τ 〉, leading to the �-type system shown in figure 1(a). The
Hamiltonian of the system in the interaction picture reads

H = h̄

⎡
⎣ 0 ωB 0

ωB 0 �(t) e−i�t

0 �(t) ei�t 0

⎤
⎦ , (1)

with the basis {|z̄〉, |z〉, |τ 〉}, where ωB is the spin Larmor
precession frequency and � is the detuning. �(t) =
� sech(ηt) is the time-dependent Rabi frequency with a
hyperbolic secant temporal envelope, where η is the pulse
bandwidth.

To obtain analytic solutions, the slow precession
approximation [10] is required: when the Zeeman splitting
is much smaller than the pulse bandwidth, i.e. ωB � η, the
spin precession can be neglected within the pulse action. In
this case the �-type system can be considered a direct sum
of one-dimensional and two-dimensional systems, with the
basis {|z̄〉} and {|z〉, |τ 〉} respectively. By the approach of
Rosen and Zener [19], the second-order equation of probability
amplitudes is transformed to the hypergeometric differential
equation through change of variable z = (1/2)[tanh(ηt) + 1].
Considering that the spins are initialized in the z direction,
Cz̄(−∞) = 0, Cz(−∞) = 1, Cz̄(−∞) = 0, the analytic
expression of the state vector is obtained as

|ψ(t)〉 = F(a,−a; c; z)|z〉
− ia

c
zcF (a + c,−a + c; 1 + c; z)|τ 〉, (2)
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where F denotes the Gauss hypergeometric series 2F1 [32] and
the parameters a = �/η, c = (1/2)(1 + i�/η).

If and only if � = η, the pulse area 2
∫

� sech(ηt) equals
2π . In this case during the pulse action the system undergoes
a cyclic evolution between |z〉 and |τ 〉. After the pulse the
population returns to |z〉 with an overall phase φ:

|ψ(∞)〉 = eiφ|z〉, (3)

φ = 2 arctan

(
�

�

)
. (4)

Considering the qubit space spanned by {|z̄〉, |z〉}, the unitary
operator induced by the 2π sec pulse [10] is

Uspin � eiφ/2

[
e−iφ/2 0

0 eiφ/2

]
; (5)

thus, the spin rotation about the z axis is achieved.
Now we demonstrate the calculation of the phase

components. The dynamic phase α is the cycle-averaged
expectation value of the Hamiltonian and the geometric phase
γ is the rest part of removing the dynamic component from
the overall phase [20]:

α = −1

h̄

∫ ∞

−∞
dt〈ψ(t)|H |ψ(t)〉, (6)

γ = φ − α. (7)

One method (method I) to calculate the phase components is
to utilize the analytic expression of |ψ(t)〉 under the condition
� = η. We insert equation (2) into equation (6) and rewrite
the dynamic phase as

α = �2

�2 + �2

∫ ∞

−∞
sech2(�t)[e−i�t(1 − tanh(�t))

−i�
2�

× (1 + tanh(�t))
i�
2� (� − i� tanh(�t)) + c.c.]. (8)

In this case the overall phase is calculated following
equation (4). We note that the expression of equation (8)
is independent of ωB , resulting from the slow precession
approximation. The other method (method II) is full numerical
simulation, where the state vector is calculated through the
numerical solution of the Schrödinger equation. For this
case the spin precession is taken into account. The specific
considered parameters are demonstrated in section 5.

The integral interval is infinity in equations (6), (8), which
is in theory for including the whole sec pulse. In experiments
the stimulating effect of pulses concentrates within the pulse
duration, which is as short as 1.5 ps [17], and the pulse tail on
a long timescale can be safely neglected. On the other hand,
especially for the full numerical simulation method where no
slow precession approximation is made, if the time interval
is too large, the population transferred to |z̄〉 due to spin
precession is prominent; thus, the evolution of the system
cannot be considered cyclic and the proposal T would not
be ensured. Therefore in numerical simulation, we focus on
the evolution of the system during the pulse action. For both
methods the integral interval is finite, with the same order of
magnitude of the pulse duration.

0
4 2

3

4

0

2

2

Rotation angle rad

,
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Figure 2. The dependence of dynamic and geometric phase
components on the rotation angle (also the overall phase) φ. The
dashed (blue), dotted (purple) and solid (brown) curves correspond
to the dynamic component α, the overall phase φ and the geometric
component γ , respectively. The blue, red and green dots mark the
maximum of the dynamic phase, zero point and minimum of the
geometric phase respectively.

3. Analysis of the phase components and effect of
the spin precession to the dynamic phase

First we analyse the dependence of geometric and dynamic
phase components on the spin rotation angle (also the overall
phase) φ. By the method utilizing the analytic solution
introduced in equation (2), numerical results are obtained and
shown in figure 2. The dynamic phase α is a concave function
of φ, which is symmetrical to the axis of φ = π/2. α is
nonzero and positive except when φ = 0, π . The maximum
of α is 2 (blue dot in figure 2), which is in reasonable agreement
with the theoretical expression of equation (8) equal to 2 when
φ = π/2, � = �. The physical origin of the maximum
dynamic phase is that the instantaneous expectation value of
the Hamiltonian 〈ψ(t)|H |ψ(t)〉 attains a maximum when the
system is in the eigenstate |ψ〉 = 1/

√
2(|z〉 + |τ 〉), which

can be obtained when � = �. Removing the dynamic
component from the overall phase leads to the geometric
component γ , which is a convex function of φ. On some
interval α > φ, resulting in negative values of γ . Figure 2
shows that the geometric component has a minimum ∼ −0.68
when φ ≈ 1.05 (green dot). When φ ≈ 1.90 the overall phase
is equal to the dynamic phase, leading to the zero value of
the geometric component (red dot). The concavity of the
geometric component indicates that only when the spin is
rotated by φ = π , the overall phase is purely the geometric
phase. For other rotation angles, φ consists of a nonzero
dynamic component.

From the review in section 2, the rotation angle is
determined by �/�; therefore, the phase components are
essentially dependent on �/�. Figure 3 shows the log-
linear plot of the overall phase and two phase components as
a function of �/�. The dynamic phase component still has a
symmetry which is characterized more clearly. An interesting
feature is that �/� and its reciprocal leads to the same value of
the dynamic component, e.g. α(10) = α(0.1), resulting from
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Figure 3. Log-linear plot of dynamic and geometric phase
components as a function of the ratio of the Rabi frequency to the
detuning, �/�. The dashed (blue), dotted (purple) and solid
(brown) curves correspond to the dynamic component α, the overall
phase φ and the geometric component γ , respectively.
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Figure 4. Log-linear plot of the dynamic phase component as a
function of �/� by two methods. The dashed and solid curves
correspond to the result by methods I and II, respectively.

the feature of the integrand in equation (8). The minimum and
zero values of the geometric component are obtained when
�/� ≈ 0.58 and �/� ≈ 1.39, respectively.

Figure 4 shows the discrepancy of the dynamic phase
component by two methods. The solid curve corresponds
to the result obtained by method II and the dashed curve by
method I which is as the same as shown in figure 3. Both results
are similar and in agreement with each other on distribution and
variation trend. In particular, when �/� � 1 the two curves
basically coincide. Around �/� = 1 the discrepancy appears.
The dynamic phase by method II reaches its maximum earlier
than the result by method I. With the increase of �/�, the
dynamic phase by method II drops faster than the result by
method I. But when �/� � 1 the two curves approach
each other again. The physical origin of the discrepancy is
obviously the spin precession, which is neglected by method I
but considered by method II. Due to spin precession about the
x axis during the pulse action, a little population is transferred
from |z〉 to |z̄〉. This leads to not only degrading the unitarity
of the spin rotation operation [11], but also the change of

Figure 5. Log-linear plot of dynamic and geometric phase
components as a function of �/�. The dashed (blue), dotted
(purple) and solid (brown) curves correspond to the dynamic
component α, the overall phase φ and the geometric component γ ,
respectively. Negative values of �/� lead to negative overall and
dynamic phases. The red, orange and green dots mark the values of
the dynamic phase when �/� = 10, −10 and −0.1, respectively.
Phases around �/� = 0 approach zero and are thus not sketched.

system energy distribution. The trion state |τ 〉 has a higher
energy than the two lower states |z〉 and |z̄〉. The population
transferred to |z̄〉 will not be transferred back to |z〉 during the
pulse action because of ωB � �, and |z̄〉 will not be excited to
the trion state due to selection rules. The due population of the
trion state during the pulse action is thus decreased. Therefore
the contribution of the trion state to the expectation value of
the Hamiltonian is lower than that for the no spin precession
case. This leads to the discrepancy of the dynamic phase.
The reason for the discrepancy becoming more evident when
� > � is that more real population is transferred to the trion
state during the pulse action. Thus the population transferred
out of the two-level system results in more loss of contribution
of the trion state to the dynamic phase.

4. Elimination of dynamic phases by multipulse
control

Now we demonstrate the scheme to eliminate the dynamic
phase by several 2π sec pulse control under the slow precession
approximation. Besides the symmetry of the dynamic phase
to �/� = ±1, the overall phase and phase components are all
odd functions of �/�, as shown in figure 5. Utilizing these
symmetry relations, we can choose particular parameters for
each sec pulse; thus, the dynamic phases induced by different
pulses may cancel out. For the case of two pulses, we choose
r1 = �/� for pulse 1, e.g. the red dot in figure 5. For pulse
2, if r2 = −r1, the dynamic phase is the opposite number of
that induced by pulse 1, α(−r1) = −α(r1) (e.g. the orange
dot in figure 5). However, due to the odevity, the overall
phase induced by pulse 2 is also the opposite number of
that by pulse 1, i.e. φ(−r1) = −φ(r1), γ (−r1) = −γ (r1).
Therefore after these two pulses all the phases cancel out.
For the purpose of only eliminating the dynamic phases, we
choose r2 = −1/r1 = −�/� for pulse 2. For this case the
dynamic phase is still the opposite number of that induced by
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Figure 6. The total geometric phase γtot obtained after two pulses,
as a function of �/�. r = �/�, −�/� for pulses 1 and 2
respectively.

pulse 1 due to the symmetry (e.g. the green dot in figure 5), but
the overall phases do not cancel out, leading to the geometric
phase being added. Therefore the total geometric phase after
two pulses reads

γtot = φ1 + φ2 = 2 arctan

(
�

�

)
+ 2 arctan

(
−�

�

)
. (9)

Figure 6 shows the total geometric phase γtot obtained
after two pulses. It indicates that by our scheme the dynamic
phase can be eliminated and an arbitrary pure geometric phase
can be obtained. Thus the rotation angle around the z axis
is a pure geometric phase. In experiments, one may fix the
pulse bandwidth �, and only adjust the detuning from the trion
resonance � to satisfy the parameter relation r2 = −1/r1 for
the two pulses.

5. Fidelity

Fidelity is a direct measure to characterize how accurate a
gate operation is implemented. The dominant mechanisms to
deteriorate the fidelity of our nonadiabatic geometric rotation
are the spin precession induced by the magnetic field and the
population loss induced by the decay of the trion state. The
former takes effect during the pulse action and between the two
pulses while the latter functions only during the pulse action.
The times of spin dephasing due to phonon and hyperfine
coupling are on the order of ms [33] and μs [34] respectively
and thus could be neglected. Here we consider the effects of
spin precession and population loss, and calculate the average
fidelity by the numerical solution of the Schrödinger equation.
The fidelity is defined as F(U) = |〈�|U †Uid|�〉|2, where |�〉
is the initial state, Uid and U are the ideal and actual operations
respectively and the average is taken over all input states [35].
We define I = U †Uid, same as [10, 36]; then the fidelity is
derived as

F(U) = 1

3

∑
i

|Iii |2 +
1

6

∑
i �=j

(|Iij |2 + IiiI
∗
jj ) (i, j = 1, 2),

(10)

where Iii , Iij and Ijj are the matrix elements of the operator I.

Table 1. Fidelity of selected nonadiabatic geometric rotations about
z for considered QD parameters when B = 0.29 T.

γtot (rad) Fidelity

±π/4 99.38%
±π/2 99.43%
±3π/4 99.48%

In calculation, the actual operation U is firstly taken
over the three-dimensional Hilbert space then truncated in the
{|z̄〉, |z〉} subspace. Due to the effect of population loss, U is
nonunitary. We take the realistic parameters in experiments as
follows: the magnetic field B = 0.29 T [17] and the electron
g factor |ge| = 0.57 [4], which lead to the Larmor period
T ≈ 0.43 ns, the pulse duration τd = 1.5 ps [17] and the trion
lifetime τt = 900 ps [37]. The two pulses are successively
applied and the distance between pulse centres is taken as
14τd . We note in [38] that the square-wave pulse is adopted
to realize geometric phase gates for QD charge qubits and the
imperfection of the pulse shape is taken into account because
it results in inaccurate pulse area. Here we consider the two
pulses with a good hyperbolic secant shape and the pulse area
is independent of the detuning [11]. In experiments, for the
geometric rotation of π , only one pulse is required because it
leads to a pure geometric phase, as demonstrated in section 3.
The fidelities of other selected rotations of spin by multipulse
control for studied QD parameters when B = 0.29 T are listed
in table 1.

The numerical results show that the fidelities are equal
for the positive and negative rotation angles which have the
same absolute value. This is in full agreement with the
analysis result in equation (9): for ±γtot only the sign of
the detuning � is changed, the total stimulating effect of the
two pulses is thus the same. The loss of fidelity is due to the
combined action of the spin precession and population loss.
The small angle corresponds to the detuning � close to �

for both pulses. For this case the effect of spin precession
is predominant due to the majority of virtual trion excitation.
The large angle corresponds to one pulse with small � and
to the other pulse with large �. For this case the effect of
population loss is enhanced (see figure 7) due to the increased
real trion excitation. Lower fidelity for the smaller angle
indicates that the effect of spin precession is stronger than
population loss, which is more clearly shown in figure 8. When
a larger magnetic field is applied, the fidelity of the small angle
decreases more significantly than that of the large angle. This
indicates that compared with decay of the trion state, the effect
of spin precession is more detrimental to the fidelity, and the
weak magnetic field is a crucial condition for high fidelity of
geometric rotation.

6. Summary and prospects

In summary, we briefly review the fast spin rotation proposal
proposed by Economou et al [10] and analyse the geometric
and dynamic phase components of the overall phase induced
by 2π sec pulses. The dependence of two phase components
on the ratio of the Rabi frequency to the detuning from the

5
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Figure 7. Total population after two pulses, as a function of the
rotation angle for studied QDs. The transverse magnetic field is
taken as B = 8 T.
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Figure 8. Fidelity of the operation as a function of the rotation
angle for studied QDs. The upper (blue), medium (green) and lower
(red) dots correspond to the fidelities when the transverse magnetic
field is taken as B = 0.27 T, 1.35 T and 2.7 T, respectively.

trion resonance is investigated. Numerical results indicate
that if one pulse is applied, the overall phase is purely the
geometric phase only when the spin is rotated by π . With
other rotation angles the dynamic component is nonzero.
An interesting effect is shown that the dynamic phase has a
symmetry as a function of the rotation angle and �/�. Results
also show the discrepancy of the dynamic phase for the cases
with and without slow precession approximation. We discuss
its physical origin: the effect of spin precession. The spin
precession leads to population loss out of the two-level system
during the pulse action, resulting in the lower contribution of
the trion state to the system energy. Utilizing the symmetry
relations of the phases, we propose a scheme to eliminate
the dynamic phase by multipulse control. By choosing the
ratio �/� as the negative reciprocal to each other for each
pulse, the dynamic phases induced by two pulses cancel out.
Considering spin precession and population loss, high fidelity
of the geometric rotation is obtained when the weak magnetic
field is applied. The detrimental effects of the magnetic field
and decay of the trion state are compared and discussed. Our

scheme realizes high fidelity of geometric rotation of electron
spin about an axis. Because of the evident advantage on
short manipulation time and considerable feasibility of the
proposal T [17], our scheme may generalize the proposal to
universal nonadiabatic GQC. Further research may be focused
on nonadiabatic two-qubit geometric gates in the QD system.
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