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In this paper, we study the uniform attractor for semilinear wave equation with mixed dif-
ferential quotient terms and critical nonlinearity. We prove the existence of the uniform
attractor in H1

0ðXÞ � L2ðXÞ.
� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider the following weakly damped non-autonomous wave equation involving mixed differential
quotient terms [12–14]
utt þ but � Duþ a
P3
i¼1

Diut þ f ðuÞ ¼ gðx; tÞ; x 2 X;

ujoX ¼ 0;

uðx; sÞ ¼ u0
sðxÞ; utðx; sÞ ¼ u1

sðxÞ;

8>>>><
>>>>:

ð1:1Þ
here X is a bounded domain in R3 with smooth boundary, a; b are positive constants and the functions f and g satisfy the
following conditions:
f 2 C1ðRÞ; jf 0ðsÞj 6 Cð1þ jsj2Þ; ð1:2Þ
f ðsÞs�m1FðsÞP �m2; ð1:3Þ

gðx; tÞ 2 L1ðR; L2ðXÞÞ ð1:4Þ
and
otg 2 Lr
bðR; LrðXÞÞ with r >

6
5
; ð1:5Þ
where m1 and m2 are positive constants. The number 2 is called the critical exponent, since the nonlinearity f is not compact
in this case. It is clear that the external forces g satisfying (1.4) and (1.5) is translation bounded but not translation compact
(the definition can be found in the beginning of the next section).
. All rights reserved.
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In this paper, we consider the non-autonomous system (1.1) via the uniform attractors of the corresponding family of
processes fUrðt; sÞg, r 2 R, the feature of the model (1.1) is that: (i) the wave equation involves mixed differential quotient
terms, (ii) the nonlinearity f ðuÞ has critical exponent, and (iii) the external forcing gðx; tÞ is not translation compact in
L2

locðR; L2ðXÞÞ.
Let us recall some relevant research in this area. For the autonomous case, the global attractors for wave equations were

studied in [1–7,9] for the linear damping case and [17–19,21,23,24] for the nonlinear damping case. In the case of non-auton-
omous system, in Chepyzhov and Vishik [7], the authors obtained the existence of a uniformly attractor when g is translation
compact and nonlinearity f is subcritical. In Zelik [8], by use of a bootstrap argument together with a sharp use of Gronwall-
type lemmas, when g, otg 2 L1ðR; L2ðXÞÞ, f 2 C2ðRÞ, f ð0Þ ¼ 0 and f is critical exponent, the author obtained some regularity
estimates for the solutions, which implies naturally the existence of a uniform attractor. Under the assumptions that g
and otg are both in the space of bounded continuous functions CbðR; L2ðXÞÞ, Zhou and Wang [11] have proved the existence
of kernel sections and obtained the estimation of the Hausdorff dimension of the kernel sections. Caraballo et al. [10] have
discussed the pullback attractors for the case of subcritical nonlinearity.

The study of wave equations has attracted much attention and has made fast progress in recent years, the qualitative the-
ories for quasilinear hyperbolic equations with damping were considered in [25–29]. But few of the wave equations involv-
ing mixed differential quotient terms, especially for the non-autonomous case. For the autonomous case, recently, Kurt [12]
proved the existence of an absorbing set of (1.1) in H1

0ðXÞ � L2ðXÞ in the one-dimensional case. Subsequently, in [13], Zhang
and Zhong obtained the global attractor of (1.1) in H1

0ðXÞ � L2ðXÞ for the one-dimensional case. In [14], Zhang showed the
global attractor for the problem (1.1) in H1

0ðXÞ � L2ðXÞwith subcritical nonlinearity. In the case of non-autonomous systems,
to our best knowledge, the problem is less clear. Therefore, it is necessary to extensively search. Our main goal in this paper is
to prove the existence of a uniform attractor for the problem (1.1)–(1.5) in H1

0ðXÞ � L2ðXÞ and improve the result of [12–14].
We state our main result in Section 4, namely Theorem 4.6.

This paper is organized as follows: in Section 2, we give some preparations for our consideration; in Section 3, we prove
the existence of an uniformly absorbing set in H1

0ðXÞ � L2ðXÞ; in the last Section, we derive uniform asymptotic compactness
of the corresponding family of processes fUrðt; sÞg;r 2 R generated by problem (1.1).

2. Preliminaries

In this section, we first recall some basic concepts about non-autonomous systems, we refer to [7] for more details.
Space of translation bounded functions in Lr

locðR; LkðXÞÞ, with r; k P 1
Lr
bðR; LkðXÞÞ ¼ g 2 Lr

locðR; LkðXÞÞ : sup
t2R

Z tþ1

t

Z
X
jgðx; sÞjkdx

� �r
k

ds <1
( )

:

Space of translation compact functions in L2
locðR; L2ðXÞÞ
L2
c ðR; L2ðXÞÞ ¼ g 2 L2

locðR; L2ðXÞÞ : For any interval ½t1; t2� � R;
n
fgðx;hþ sÞ : h 2 Rgj½t1 ;t2 � is precompact in L2ðt1; t2; L2ðXÞÞ

o
:

Let X be a Banach space, and R be a parameter set.
The operators fUrðt; sÞg;r 2 R are said to be a family of processes in X with symbol space R if for any r 2 R
Urðt; sÞ � Urðs; sÞ ¼ Urðt; sÞ 8t P s P s; s 2 R; ð2:1Þ
Urðs; sÞ ¼ IdðidentityÞ 8s 2 R: ð2:2Þ
Let fTðsÞgsP0 be the translation semigroup on R, we say that a family of processes fUrðt; sÞg;r 2 R satisfies the translation
identity if
Urðt þ s; sþ sÞ ¼ UTðsÞrðt; sÞ 8r 2 R; t P s; s 2 R; s P 0; ð2:3Þ
TðsÞR ¼ R 8s P 0: ð2:4Þ
By BðXÞ we denote the collection of the bounded sets of X, and Rs ¼ ft 2 R; t P sg.

Definition 2.1 [7]. A bounded set B0 2 BðXÞ is said to be a bounded uniformly (w.r.t. r 2 R) absorbing set for
fUrðt; sÞg;r 2 R if for any s 2 R and B 2 BðXÞ there exists T0 ¼ T0ðB; sÞ such that

S
r2RUrðt; sÞB � B0 for all t P T0.

Definition 2.2 [7]. A set A � X is said to be uniformly (w.r.t r 2 R) attracting for the family of processes fUrðt; sÞg;r 2 R if
for any fixed s 2 R and any B 2 BðXÞ
lim
t!þ1

sup
r2R

distðUrðt; sÞB;AÞ
� �

¼ 0;
here distð�; �Þ is the usual Hausdorff semidistance in X between two sets.
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In particular, a closed uniformly attracting set AR is said to be the uniform (w.r.t. r 2 R) attractor of the family of
processes fUrðt; sÞg;r 2 R if it is contained in any closed uniformly attracting set (minimality property).

Similar to the autonomous cases (e.g., see [23]), we have the following existence and uniqueness results, the proof is
based on the Galerkin approximation method (e.g., see [22]), the time-dependent terms make no essential complications.

Lemma 2.3. Let X be a bounded domain of R3 with smooth boundary, f satisfies (1.2) and (1.3), g 2 L1ðR; L2ðXÞÞ. Then for any
initial data ðu0

s ;u
1
sÞ 2 H1

0ðXÞ � L2ðXÞ, the problem (1.1) has a unique solution uðtÞ satisfies ðuðtÞ;utðtÞÞ 2 CðRs; H1
0ðXÞ � L2ðXÞÞ and

ottuðtÞ 2 L2
locðRs; H�1ðXÞÞ.

For convenience, hereafter, the norm and scalar product in L2ðXÞ are denoted by k � k and ð; Þ, respectively. and C denotes a
general positive constant, which may be different in different estimates.

We use the notations as in Chepyzhov and Vishik [7]: let yðtÞ ¼ ðuðtÞ;utðtÞÞ, ys ¼ ðu0
s ;u

1
sÞ; E0 ¼ H1

0ðXÞ � L2ðXÞ with finite
energy norm
kykE0
¼ fkruk2 þ kutk2g

1
2:
Then system (1.1) is equivalent to the following system:
@tut ¼ Du� a
X3

i¼1
Diut � but � f ðuÞ þ gðx; tÞ for any t P s;

ujoX ¼ 0;uðx; sÞ ¼ u0
sðxÞ;utðx; sÞ ¼ u1

sðxÞ;
ð2:5Þ
which can be rewritten in the operator form
@ty ¼ ArðtÞðyÞ; yjt¼s ¼ ys; ð2:6Þ
where rðsÞ ¼ gðx; sÞ is symbol of Eq. (2.6).
We now define the symbol space for (2.6). Taking a fixed symbol r0ðsÞ ¼ g0ðx; sÞ, g0 2 L1ðR; L2ðXÞÞ \W1;r

b ðR; LrðXÞÞ for
some r > 6

5. Set
R0 ¼ fðx; tÞ 7! g0ðx; t þ hÞ : h 2 Rg ð2:7Þ
and
R be the � — weakly closure of R0 in L1ðR; L2ðXÞÞ \W1;r
b ðR; LrðXÞÞ: ð2:8Þ
Then we have the following simple properties:

Proposition 2.4. R is bounded in L1ðR; L2ðXÞÞ \W1;r
b ðR; LrðXÞÞ, and for any r 2 R, the following estimate holds:
krkL1ðR;L2ðXÞÞ\W1;r
b
ðR;LrðXÞÞ 6 kg0kL1ðR;L2ðXÞÞ\W1;r

b
ðR;LrðXÞÞ:
Thus, from Lemma 2.3, we know that (1.1) is well posed for all rðsÞ 2 R and generates a family of processes
fUrðt; sÞg;r 2 R given by the formula Urðt; sÞys ¼ yðtÞ, where yðtÞ is the solution of (1.1)–(1.6), and fUrðt; sÞg;r 2 R satisfies
(2.1) and (2.2). At the same time, by the unique solvability, we know fUrðt; sÞg;r 2 R satisfies the translation identity (2.3).

In what follows, we denote by fUrðt; sÞg;r 2 R the family of processes generated by (2.6)–(2.8).

3. Uniformly (w.r.t. r‰R) absorbing set in E0

Theorem 3.1. Under assumptions (1.2)–(1.5), the family of processes fUrðt; sÞg;r 2 R corresponding to (1.1) has a bounded
uniformly (w.r.t. r 2 R) absorbing set B0 in E0.

Proof. From the definition of R we know that for all r 2 R
krk2
L2

b
6 kg0k

2
L2

b
: ð3:1Þ
Without loss of generality, we assume that a ¼ b 	 1. Taking the scalar product with v ¼ ut þ du in L2, where 0 < d 6 d0

which will be determined later, we get
1
2

d
dt
kvk2 þ kruk2 þ 2

Z
X

FðuÞdx
� �

þ ð1� dÞkvk2 þ dkruk2 � dð1� dÞðu; vÞ � d
X3

i¼1

Diu; v

 !
þ d

Z
X

f ðuÞudx ¼ ðg; vÞ:

ð3:2Þ
From (1.3) we know that there is C0 > 0 such that
ðf ðuÞ;uÞP m1

Z
X

FðuÞdx� C0
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and we obtain the estimate by using Hölder inequality and Young inequality
kvk2 þ kruk2 þ
Z

X
2FðuÞdx P gðkvk2 þ kruk2Þ � C1; ð3:3Þ
where g is a positive constant and
ð1� dÞkvk2 þ dkruk2 � dð1� dÞðu; vÞ � d
X3

i¼1

Diu; v

 !
P

1
2
kvk2 þ d

2
kruk2

: ð3:4Þ
From (3.3) and (3.4) we obtain
1
2

d
dt
kvk2 þ kruk2 þ 2

Z
X

FðuÞdx
� �

þ 1
2
kvk2 þ d

2
kruk2 þ dm1

Z
X

FðuÞdx 6 dC0 þ
1
4
kvk2 þ kgk2

; ð3:5Þ
choose c ¼minf1
2 ; d; dm1g, set zðtÞ ¼ kvk2 þ kruk2 þ

R
X 2FðuÞdx, by Gronwall’s inequality, we get
yðtÞ 6 zðtÞ 6 zðsÞ expð�cðt � sÞÞ þ ð1þ c�1Þ 2dC0 þ 2kgk2
L2

b

� �
ð3:6Þ
from (3.1), we know
kgk2
L2

b
6 kg0k

2
L2

b
for all g 2 R:
Therefore, we obtain the uniformly (w.r.t. r 2 R) absorbing set B0 in E0.
B0 ¼ y ¼ ðu;utÞjkyk2
6 q2

0

n o
;

where q0 ¼ 2ð1þ c�1Þð2dC0 þ 2kg0k
2
L2

b
Þ, i.e., for any bounded subset B in E0, there exists a t0 ¼ t0ðs;BÞP s such that
[

g2R
Ugðt; sÞB � B0 8t P t0: �
4. Uniform (w.r.t. r‰) asymptotic compactness in E0

In this section, we will first give some useful preliminaries, then obtain some a priori estimates about the energy inequal-
ities on account of the idea presented in [15–21]. Finally, we use Theorem 4.5 to establish the uniform (w.r.t. r 2 R) asymp-
totic compactness in E0.

Hereafter, we always denote by B0 the bounded uniformly (w.r.t. r 2 R) absorbing set obtained in Theorem 3.1.

4.1. Preliminaries

Firstly, we recall the simply criterion developed in [16], the following results are similar to that in [20,21] for autonomous
cases.

Definition 4.1 [16]. Let X be a Banach space and B be a bounded subset of X, R be a symbol (or parameter) space. We call a
function /ð�; �; �; �Þ, defined on ðX � XÞ � ðR� RÞ, to be a contractive function on B� B if for any sequence fxng1n¼1 � B and any
frng � R, there is a subsequence fxnkg

1
k¼1 � fxng1n¼1 and frnkg

1
k¼1 � frng1n¼1 such that
lim
k!1

lim
l!1

/ðxnk
; xnl

;rnk
;rnl
Þ ¼ 0:
We denote the set of all contractive functions on B� B by ContrðB;RÞ.

Theorem 4.2 [16]. Let fUrðt; sÞg;r 2 R be a family of processes satisfies the translation identity 2.3, 2.4 on Banach space X and
has a bounded uniformly (w.r.t. r 2 R) absorbing set B0 � X. Moreover, assume that for any e > 0 there exist T ¼ TðB0; eÞ and
/T 2 ContrðB0;RÞ such that
kUr1 ðT;0Þx� Ur2 ðT; 0Þyk 6 eþ /Tðx; y;r1;r2Þ 8x; y 2 B0 8r1;r2 2 R:
Then fUrðt; sÞg;r 2 R is uniformly (w.r.t. r 2 R) asymptotically compact in X.

We will use the following Proposition on external forcing g from [16].

Proposition 4.3 [16]. Let g 2 L1ðR; L2ðXÞÞ \W1;r
b ðR; LrðXÞÞðr > 6

5Þ. Then there is an M > 0 such that
sup
t2R
kgðx; t þ sÞkL2ðXÞ 6 M for all s 2 R:
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Proposition 4.4 [16]. Let si 2 Rði ¼ 1;2; . . .Þ, g 2 L1ðR; L2ðXÞÞ \W1;r
b ðR; LrðXÞÞðr > 6

5Þ, funðtÞjt P 0;n ¼ 1;2; . . .g is bounded in
H1

0ðXÞ, and for any T1 > 0, funt ðtÞ j n ¼ 1;2; . . .g is bounded in L1ð0; T1; L2ðXÞÞ. Then for any T > 0, there exist subsequences
funk
g1k¼1 of fung1n¼1 and fsnk

g1k¼1 of fsng1n¼1 such that
lim
k!1

lim
l!1

Z T

0

Z T

s

Z
X
ðgðx; sþ snk

Þ � gðx; sþ snl
ÞÞðunk

� unl
ÞtðsÞdxdsds ¼ 0:
4.2. A priori estimates

The main purpose of this part is to establish (4.10)–(4.12), which will be used to obtain the uniform (w.r.t. r 2 R) asymp-
totic compactness. Without loss of generality, we deal only with the strong solutions in the following, the generalized solu-
tion case then follows easily by a density argument.

For any ðui
0; v

i
0Þ 2 B0, let ðuiðtÞ;uit ðtÞÞ be the corresponding solution to ri with respect to initial data ðui

0; v
i
0Þ; i ¼ 1;2; that is,

ðuiðtÞ;uit ðtÞÞ is the solution of the following equation:
utt þ but þ a
P3

i¼1Diut � Duþ f ðuðtÞÞ ¼ riðx; tÞ;
ujoX ¼ 0;
ðuð0Þ;utð0ÞÞ ¼ ðui

0; v
i
0Þ:

8><
>: ð4:1Þ
For convenience, we denote
giðtÞ ¼ riðx; tÞ; t P 0; i ¼ 1;2
and
wðtÞ ¼ u1ðtÞ � u2ðtÞ:
Then wðtÞ satisfies
wtt þ bwt þ a
P3

i¼1Diwt � Dwþ f ðu1ðtÞÞ � f ðu2ðtÞÞ ¼ g1ðtÞ � g2ðtÞ;
wjoX ¼ 0;
ðwð0Þ;wtð0ÞÞ ¼ ðu1

0; v
1
0Þ � ðu2

0; v
2
0Þ:

8><
>: ð4:2Þ
Set
EwðtÞ ¼
1
2

Z
X
jwtðtÞj2 þ

1
2

Z
X
jrwðtÞj2:
At first, without loss of generality, we assume that a ¼ b 	 1, multiplying (4.2) by wt and integrating over ½s; T� �X, we
get
EwðTÞ � EwðsÞ þ
Z T

s

Z
X
jwtðsÞj2 dxdsþ

Z T

s

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwtðsÞdxds ¼

Z T

s

Z
X
ðg1ðsÞ � g2ðsÞÞwtðsÞdxds;

ð4:3Þ
where 0 6 s 6 T . Then we have
Z T

0

Z
X
jwtðsÞj2dxds 6

Z T

0

Z
X
ðg1ðsÞ � g2ðsÞÞwtðsÞdxdsþ Ewð0Þ �

Z T

0

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwtðsÞdxds: ð4:4Þ
Secondly, multiplying (4.2) by w and integrating over ½0; T� �X, we obtain
Z T

0

Z
X
jrwðsÞj2dxds ¼

X3

i¼1

Z T

0

Z
X

Diwwtdxdsþ
Z T

0

Z
X
jwtðsÞj2dxds� 1

2
kwðTÞk2 þ 1

2
kwð0Þk2 þ ðwtð0Þ;wð0ÞÞ

� ðwtðTÞ;wðTÞÞ �
Z T

0

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwðsÞdxdsþ

Z T

0

Z
X
ðg1 � g2Þwdxds: ð4:5Þ
Using Young inequality, we tackle with
P3

i¼1

R T
0

R
X Diwwt dxds.
X3

i¼1

Z T

0

Z
X

Diwwt dxds 6
Z T

0

1
6

X3

i¼1

Diw

�����
�����

2

þ 3
2
kwtk2

0
@

1
Ads 6

1
2

Z T

0

Z
X
jrwðsÞj2dxdsþ 3

2

Z T

0

Z
X
jwtðsÞj2dxds: ð4:6Þ
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So from (4.4)–(4.6), we have
Z T

0
EwðsÞds 6 3

Z T

0

Z
X
ðg1 � g2Þwt dxds� 3

Z T

0

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwtðsÞdxdsþ 3Ewð0Þ �

1
2
kwðTÞk2 þ 1

2
kwð0Þk2

þ ðwtð0Þ;wð0ÞÞ � ðwtðTÞ;wðTÞÞ �
Z T

0

Z
X
ðf ðu1ðsÞÞ � f ðu2ÞðsÞÞwðsÞdxdsþ

Z T

0

Z
X
ðg1 � g2Þwdxds: ð4:7Þ
Integrating (4.3) over [0,T] with respect to s, we obtain that
TEwðTÞ þ
Z T

0

Z T

s

Z
X
jwtðsÞj2dxdsds ¼ �

Z T

0

Z T

s

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwtðsÞdxdsds

þ
Z T

0

Z T

s

Z
X
ðg1 � g2Þwtdxdsdsþ

Z T

0
EwðsÞds: ð4:8Þ
Therefore, from (4.7) and (4.8), we have
TEwðTÞ 6 3Ewð0Þ þ
1
2
kwð0Þk2 þ ðwtð0Þ;wð0ÞÞ � ðwtðTÞ;wðTÞÞ þ 3

Z T

0

Z
X
ðg1 � g2Þwt dxds

� 3
Z T

0

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwt dxdsþ

Z T

0

Z
X
ðg1 � g2Þwdxds�

Z T

0

Z T

s

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwtðsÞdxdsds

þ
Z T

0

Z T

s

Z
X
ðg1 � g2Þwt dxdsds�

Z T

0

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwdxds: ð4:9Þ
Set
CM ¼ 3Ewð0Þ þ
1
2
kwð0Þk2 þ ðwtð0Þ;wð0ÞÞ � ðwtðTÞ;wðTÞÞ; ð4:10Þ

/Tððu1
0; t

1
0Þ; ðu2

0; t
2
0Þ;r1;r2Þ ¼

Z T

0

Z
X
ðg1 � g2Þwdxds�

Z T

0

Z T

s

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwtðsÞdxdsds

þ 3
Z T

0

Z
X
ðg1 � g2Þwt dxds� 3

Z T

0

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwt dxds

þ
Z T

0

Z T

s

Z
X
ðg1 � g2Þwt dxdsds�

Z T

0

Z
X
ðf ðu1ðsÞÞ � f ðu2ðsÞÞÞwdxds: ð4:11Þ
Then we have
EwðTÞ 6
CM

T
þ 1

T
/Tððu1

0; t
1
0Þ; ðu2

0; t
2
0Þ; r1;r2Þ: ð4:12Þ
4.3. Uniform asymptotic compactness

In this subsection, we shall prove the uniform (w.r.t. r 2 R) asymptotic compactness in H1
0ðXÞ � L2ðXÞ, which is given in

the following theorem:

Theorem 4.5. Assume that f satisfies 1.2, 1.3. If g0 2 L1ðR; L2ðXÞÞ \W1;r
b ðR; LrðXÞÞ for some r > 6

5 and R is defined by (2.8), then
the family of processes fUrðt; sÞg, r 2 R corresponding to (1.1), is uniformly (w.r.t. r 2 R) asymptotically compact in
H1

0ðXÞ � L2ðXÞ.

Proof. Since the family of processes fUrðt; sÞgr 2 R has a bounded uniformly absorbing set, by the definition of CM , we know
that for any fixed e > 0, we can choose T large enough, such that
CM

T
6 e:
Hence, thanks to Theorem 4.2, it is sufficient to prove that /Tð�; �; �; �Þ 2 ContrðB0;RÞ for each fixed T.
From the proof procedure of Theorem 3.1, we can deduce that for any fixed T, we have
[

r2R

[
t2½0;T�

Urðt;0ÞB0 is bounded in E0 ð4:13Þ
and the bound depends on T.
Let ðun;unt Þ be the solutions corresponding to initial data ðun

0; v
n
0Þ 2 B0 with respect to symbol rn 2 R;n ¼ 1;2; . . .. Then,

from (4.13), without loss of generality (at most by passing subsequence), we assume that
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un ! u H — weakly in L1ð0; T; H1
0ðXÞÞ; ð4:14Þ

unt ! ut H — weakly in L1ð0; T; L2ðXÞÞ; ð4:15Þ
un ! u in L2ð0; T; H1�e

0 ðXÞÞ 8e 2 ð0;1�; ð4:16Þ
unð0Þ ! uð0Þ and unðTÞ ! uðTÞ in LkðXÞ; ð4:17Þ
for k < 6, where we use the compact embedding H1
0,!Lk.

Now, we will deal with each term corresponding to that in (4.11) one by one.
At first, from Proposition 4.3 and (4.16), we can obtain that
lim
n!1

lim
m!1

Z T

0

Z
X
ðgnðx; sÞ � gmðx; sÞÞðunðsÞ � umðsÞÞdxds ¼ 0 ð4:18Þ
and from Proposition 4.4 we can get that
lim
n!1

lim
m!1

Z T

0

Z
X
ðgnðx; sÞ � gmðx; sÞÞðunt ðsÞ � umt ðsÞÞdxds ¼ 0; ð4:19Þ

lim
n!1

lim
m!1

Z T

0

Z T

s

Z
X
ðgnðx; sÞ � gmðx; sÞÞðunt ðsÞ � umt ðsÞÞdxdsds ¼ 0: ð4:20Þ
Secondly, from (4.16), we have
lim
n!1

lim
m!1

Z T

0

Z
X
ðf ðunðsÞÞ � f ðumðsÞÞÞðunðsÞ � umðsÞÞdxds ¼ 0: ð4:21Þ
Finally, by the similar method used in the Proof of Lemma 2.2 in [21], we get
lim
n!1

lim
m!1

Z T

0

Z
X
ðf ðunðsÞÞ � f ðumðsÞÞÞðunt ðsÞ � umt ðsÞÞdxds ¼ 0; ð4:22Þ

lim
n!1

lim
m!1

Z T

0

Z T

s

Z
X
ðf ðunðsÞÞ � f ðumðsÞÞÞðunt ðsÞ � umt ðsÞÞdxdsds ¼ 0: ð4:23Þ
Hence, from (4.18)–(4.23) we get /Tð�; �; �; �Þ 2 ContrðB0;RÞ immediately. h
4.4. Existence of uniform attractor

Theorem 4.6. Assume that f satisfy (1.2) and (1.3). If g0 2 L1ðR; L2ðXÞÞ \W1;r
b ðR; LrðXÞÞ for some r > 6

5 and R is defined by (2.8),
then the family of processes fUrðt; sÞg;r 2 R corresponding to (1.1) has a compact uniform (w.r.t. r 2 R) attractor AR.

Proof. Theorems 3.1 and 4.5 imply the existence of a uniform attractor immediately. h
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