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In this paper, we have developed a fourth-order compact finite difference scheme for
solving the convection–diffusion equation with Neumann boundary conditions. Firstly,
we apply the compact finite difference scheme of fourth-order to discrete spatial deriva-
tives at the interior points. Then, we present a new compact finite difference scheme for
the boundary points, which is also fourth-order accurate. Finally, we use a Padé approxi-
mation method for the resulting linear system of ordinary differential equations. The pre-
sented scheme has fifth-order accuracy in the time direction and fourth-order accuracy in
the space direction. It is shown through analysis that the scheme is unconditionally stable.
Numerical results show that the compact finite difference scheme gives an efficient
method for solving the convection–diffusion equations with Neumann boundary
conditions.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In practical engineering applications, convection–diffusion equations are generally used to describe the transport processes
involving fluid motion, heat transfer, astrophysics, oceanography, meteorology, semiconductors, hydraulics, pollutant and
sediment transport, and chemical engineering. With the rapid progress in computer power, the differential convection–diffusion
equations can be analytically studied by pursuing the numerical solution of their discretized counterparts. Many numerical
methods have been developed to solve the convection–diffusion equations with Dirichlet boundary conditions, see [1–13].

However, fewer difference schemes have been developed to solve the convection–diffusion equation with Neumann
boundary conditions, which are much more difficult to handle than Dirichlet conditions. Even for those less compact
difference schemes involving Neumann boundary conditions, very often, the schemes are fourth or sixth order accurate at
the interior points, but only first-order or second-order at the boundary points. We have found that, when the first-order
accurate scheme for the Neumann boundary conditions is employed, it affects the accuracy of the overall numerical solution
even if a second-order numerical method is constructed at the interior grid points.

Recently, some authors pay attention to the numerical method of the following diffusion equations with Neumann
boundary conditions:
@u
@t
¼ c

@2u
@x2 ; 0 6 x 6 L; 0 6 t 6 T;

uðx;0Þ ¼ /ðxÞ; 0 6 x 6 L;

@uð0; tÞ
@x

¼ g0ðtÞ;
@uðL; tÞ
@x

¼ g1ðtÞ; t 2 ½0; T�:
. All rights reserved.

o).
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To the above equations, Zhao et al. [14] presented a fourth-order compact difference scheme at the interior points and a sec-
ond-order difference scheme at the boundary points. Sun [15] gave a fourth-order difference scheme for the boundary
points.

In this paper, we consider the numerical method of the following one-dimensional convection–diffusion equation with
Neumann boundary conditions:
@u
@t
þ e

@u
@x
¼ c

@2u
@x2 ; 0 6 x 6 L; 0 6 t 6 T; ð1Þ

uðx;0Þ ¼ /ðxÞ; 0 6 x 6 L; ð2Þ
@uð0; tÞ
@x

¼ g0ðtÞ;
@uðL; tÞ
@x

¼ g1ðtÞ; t 2 ½0; T�: ð3Þ
We propose a scheme for solving Eqs. (1)–(3) which is unconditionally stable and is fifth-order accurate in the time direction
and fourth-order accurate in the space direction. Specifically speaking, we first use the compact finite difference approxima-
tion of fourth-order for discretizing spatial derivatives of convection–diffusion. It is very important that the new scheme is
fourth-order accurate in space at all grid points, both interior and boundary points. Secondly, we use the Taylor expansion
and the Padé approximation method for the resulting linear system of ordinary differential equations. Finally, we give three
numerical examples to verify the effectivity of the present scheme.

2. Spatial discretizations

2.1. Preliminaries

The solution domain [0,L] � [0,T] of the problem is covered by a mesh of grid lines
xi ¼ ih; i ¼ 0;1;2; . . . ; n;

tj ¼ jk; j ¼ 0;1;2; . . . ;m
parallel to the space and time coordinate axes, respectively. Approximations uj
i to u(xi, tj) are calculated at the intersection of

these lines, and (ih, jk) is referred to as the (i, j) grid-point. The constant spatial and temporal grid spacings are h = L/n and
k = T/m, respectively. In the next two subsections, we will construct fourth-order approximations to Eq. (1) in space.

2.2. The interior points

We consider the following differential equation:
�c
d2yðxÞ

dx2 þ e
dyðxÞ

dx
¼ gðxÞ: ð4Þ
If we denote the central difference schemes of order two for the second and first derivatives of y as d2
x y ¼ yiþ1�2yiþyi�1

h2 and
dxy ¼ yiþ1�yi�1

2h , respectively, where y(xi) = yi. Similar to the methods presented in [13,16], it is easy to derive a three-point
fourth-order difference scheme for Eq. (4) as
� cþ e2h2

12c

 !
d2

x þ edx

" #
yi ¼ 1þ h2

12
d2

x �
e
c

dx

� �" #
gi þ Oðh4Þ; ð5Þ
where d2
x and dx are the second-order and first-order center difference operators.

If we discretize Eq. (1) in space at point xi by the compact finite scheme (5), we can obtain
L�1
x AxuiðtÞ ¼ �

@uiðtÞ
@t
þ Oðh4Þ; ð6Þ
where Lx ¼ 1þ h2

12 d2
x � e

c dx

� �
and Ax ¼ � cþ e2h2

12c

� �
d2

x þ edx are two difference operators, ui(t) = u(xi, t).
Denote
v iðtÞ ¼
@uiðtÞ
@t

: ð7Þ
Then we have
L�1
x AxuiðtÞ ¼ �v iðtÞ þ Oðh4Þ: ð8Þ
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Neglecting the error term O(h4) of (8) and then rewriting it we get:
1
12
þ he

24c

� �
v i�1ðtÞ þ

5
6

v iðtÞ þ
1

12
� he

24c

� �
v iþ1ðtÞ ¼

c
h2 þ

e2

12c
þ e

2h

� �
ui�1ðtÞ þ �2c

h2 �
e2

6c

� �
uiðtÞ

þ c
h2 þ

e2

12c
� e

2h

� �
uiþ1ðtÞ: ð9Þ
2.3. The boundary points

Lemma 1 [17]. Let G = [gij]n�n be strictly diagonally dominant. Then

(a) G is invertible.
(b) If all main diagonal entries of G are positive, then all the eigenvalues of G have positive real parts.
(c) If G is Hermitian and all main diagonal entries of G are positive, then all the eigenvalues of G are real and positive.
Theorem 1. Assume that l(x) 2 C5[0,L], then
l0ðx0Þ ¼
lðx1Þ � lðx0Þ

h
� 5

12
hl00ðx0Þ �

1
12

hl00ðx1Þ �
1

12
h2lð3Þðx0Þ þ Oðh4Þ; ð10Þ

l0ðxnÞ ¼
lðxnÞ � lðxn�1Þ

h
þ 5

12
hl00ðxnÞ þ

1
12

hl00ðxn�1Þ �
1

12
h2lð3ÞðxnÞ þ Oðh4Þ: ð11Þ
Proof. Denote Djl(x) = l(j)(x). It is clear that
  !

lðx1Þ � lðx0Þ

h
� 5

12
hl00ðx0Þ �

1
12

hl00ðx1Þ ¼ Dþ h
2!

D2 þ h2

3!
D3 þ h3

4!
D4 þ h4

5!
D5 þ � � � lðx0Þ

� h
2

D2 þ h2

12
D3 þ h3

24
D4 þ h4

72
D5 þ � � �

 !
lðx0Þ

¼ l0ðx0Þ þ
1

12
h2lð3Þðx0Þ �

1
180

h4lð5Þðx0Þ þ � � �
Thus Eq. (10) holds. Similarly we can prove Eq. (11).
Assume that u(x, t) is the exact solution of problem (1), then, according to Theorem 1, we have
@uðx0; tÞ
@x

¼ uðx1; tÞ � uðx0; tÞ
h

� 5
12

h
@2uðx0; tÞ

@x2 � 1
12

h
@2uðx1; tÞ

@x2 � 1
12

h2 @
3uðx0; tÞ
@x3 þ Oðh4Þ; ð12Þ

@uðxn; tÞ
@x

¼ uðxn; tÞ � uðxn�1; tÞ
h

þ 5
12

h
@2uðxn; tÞ

@x2 þ 1
12

h
@2uðxn�1; tÞ

@x2 � 1
12

h2 @
3uðxn; tÞ
@x3 þ Oðh4Þ: ð13Þ
From Eq. (1), we get
@2uðx0; tÞ
@x2 ¼ 1

c
e
@uðx0; tÞ

@t
þ @uðx0; tÞ

@x

� �
; ð14Þ

@2uðx1; tÞ
@x2 ¼ 1

c
e
@uðx1; tÞ

@t
þ @uðx1; tÞ

@x

� �
; ð15Þ

@3uðx0; tÞ
@x3 ¼ 1

c
e
@2uðx0; tÞ
@t@x

þ @
2uðx0; tÞ
@x2

" #
; ð16Þ
substituting (14) into (16) yields
@3uðx0; tÞ
@x3 ¼ e

c
@2uðx0; tÞ
@t@x

þ 1
c2 e

@uðx0; tÞ
@t

þ @uðx0; tÞ
@x

� �
: ð17Þ
By using the Taylor series, we obtain
@uðx1; tÞ
@x

¼ @uðx0; tÞ
@x

þ h
@2uðx0; tÞ

@x2 þ h2

2
@3uðx0; tÞ

@x3 þ Oðh3Þ: ð18Þ
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Substituting Eqs. (14), (15), (17) and (18) into (12)
5h
12c
þ eh2

6c2 þ
e2h3

24c3

 !
v0ðtÞ þ

h
12c

v1ðtÞ ¼ �
1
h

u0ðtÞ þ
1
h

u1ðtÞ þ �1� eh
2c
� e2h2

6c2 �
e3h3

24c3

 !
g0ðtÞ

þ � eh3

24c2 �
h2

12c

 !
g00ðtÞ: ð19Þ
Similar to Eq. (13), we can obtain the difference scheme at the point x = xn
h
12c

vn�1ðtÞ þ
5h

12c
� eh2

6c2 þ
e2h3

24c3

 !
vnðtÞ ¼

1
h

un�1ðtÞ �
1
h

unðtÞ þ 1� eh
2c
þ e2h2

6c2 �
e3h3

24c3

 !
g1ðtÞ

þ � eh3

24c2 þ
h2

12c

 !
g01ðtÞ: ð20Þ
From Eqs. (9), (19) and (20), we obtain a system of ordinary differential equations which is as follows:
AVðtÞ ¼ BUðtÞ þ GðtÞ;
Uð0Þ ¼ U0;

�
ð21Þ
where
VðtÞ ¼ ½v0ðtÞ; v1ðtÞ; . . . ; vn�1ðtÞ;vnðtÞ�T ;
UðtÞ ¼ ½u0ðtÞ;u1ðtÞ; . . . ;un�1ðtÞ; unðtÞ�T ;

GðtÞ ¼
"
�1� eh

2c
� e2h2

6c2 �
e3h3

24c3

 !
g0ðtÞ þ � eh3

24c2 �
h2

12c

 !
g00ðtÞ;0; . . . ;0|fflfflfflffl{zfflfflfflffl}

n�1

; 1� eh
2c
þ e2h2

6c2 �
e3h3

24c3

 !
g1ðtÞ

þ � eh3

24c2 þ
h2

12c

 !
g01ðtÞ

#T

;

Uð0Þ ¼ ½/ðx0Þ;/ðx1Þ; . . . ;/ðxn�1Þ;/ðxnÞ�T ;
and A and B are the tri-diagonal matrix of order n + 1 as below
A ¼

5h
12cþ eh2

6c2 þ e2h3

24c3
h

12c 0 � � � 0 0
1

12þ eh
24c

5
6

1
12� eh

24c 0 � � � 0

0 1
12þ eh

24c
5
6

1
12� eh

24c 0 � � �

..

. . .
. . .

. . .
. ..

.

� � � 0 1
12þ eh

24c
5
6

1
12� eh

24c 0

0 � � � 0 1
12þ eh

24c
5
6

1
12� eh

24c

0 0 � � � 0 h
12c

5h
12c� eh2

6c2 þ e2h3

24c3

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

B ¼

� 1
h

1
h 0 � � � 0 0

c
h2 þ e2

12cþ e
2h � 2c

h2 � e2

6c
c

h2 þ e2

12c� e
2h 0 � � � 0

0 c
h2 þ e2

12cþ e
2h � 2c

h2 � e2

6c
c

h2 þ e2

12c� e
2h 0 � � �

..

. . .
. . .

. . .
. ..

.

� � � 0 c
h2 þ e2

12cþ e
2h � 2c

h2 � e2

6c
c

h2 þ e2

12c� e
2h 0

0 � � � 0 c
h2 þ e2

12cþ e
2h � 2c

h2 � e2

6c
c

h2 þ e2

12c� e
2h

0 0 � � � 0 1
h � 1

h

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
:

We always let h < 10c
e , then one can obtain that matrix A is strictly diagonally dominant. So, from Lemma 1, we can get

that A is invertible, and (21) can be written as follows:
dUðtÞ
dt ¼ A�1BUðtÞ þ A�1GðtÞ;

Uð0Þ ¼ U0: �

(
ð22Þ
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2.4. Time discretization

The exact solution of Eq. (22) for any interior computational node at t + k, given the solution at time t, can be expressed by
the following Taylor series:
Uðt þ kÞ ¼ 1þ k
d
dt
þ k2

2!

d2

dt2 þ � � �
 !

UðtÞ ¼ exp k
d
dt

� �
UðtÞ; ð23Þ
where k, k = 0,1,2, . . ., is the time step length.
To do so, we employ the Padé approximation to ez. The [2,2] Padé approximation to ez is
ez � 12þ 6zþ z2

12� 6zþ z2 : ð24Þ
Approximation (24) satisfies
ez � 12þ 6zþ z2

12� 6zþ z2 ¼ Oðz5Þ: ð25Þ
Now, we use
12þ6k d

dtþk2 d2

dt2

12�6k d
dtþk2 d2

dt2

to approximate the ek d
dt in Eq. (23), then we can get
12� 6k
d
dt
þ k2 d2

dt2

 !
Uðt þ kÞ ¼ 12þ 6k

d
dt
þ k2 d2

dt2

 !
UðtÞ: ð26Þ
From Eqs. (22) and (26), we can obtain the following difference scheme for the numerical solution of (22):
Ujþ1 ¼ M�1NUj þM�1½ð6kI � k2A�1BÞpjþ1 þ ð6kI þ k2A�1BÞpj þ k2ðp0j � p0jþ1Þ�; ð27Þ
where M = 12I � 6kA�1B + k2(A�1B)2, N = 12I + 6kA�1B + k2(A�1B)2, p(t) = A�1G(t), Uj is the numerical solution of U(tj), I is the
ðnþ 1Þ � ðnþ 1Þ identity matrix. The accuracy order of the difference scheme (27) is O(k5) in the time direction because of
(25), and O(h4) in the space direction, so that it is O(k5 + h4) accurate.

3. Stability analysis

For the homogeneous boundary conditions, the proposed method (27) can be written as
Ujþ1 ¼ uUj; j ¼ 0;1;2; . . . ; ð28Þ
where the amplification matrix is given by
u ¼ ½12I � 6kA�1Bþ k2ðA�1BÞ2��1½12I þ 6kA�1Bþ k2ðA�1BÞ2�: ð29Þ
For unconditional stability of method (27) it is necessary that the absolute value of the eigenvalues of the application matrix
(u) be less than one.

Note that if k is an eigenvalue of A�1B, then (12 � 6kk + k2k2)�1(12 + 6kk + k2k2) is an eigenvalue of matrix (29) having the
same corresponding eigenvectors. Thus, in order to prove that j(12 � 6kk + k2k2)�1(12 + 6kk + k2k2)j < 1, we only need to
show that each k is real and k 6 0.

In order to prove it, we need the following results.

Lemma 2 [12]. If the real part of z is non-positive, then
12þ 6zþ z2

12� 6zþ z2










 6 1: ð30Þ
Theorem 2. Difference scheme (27) is unconditionally stable.
Proof. Let kA and kB be the eigenvalues of A and B, respectively. From the condition h < 10c
e , we can obtain that A is strictly

diagonally dominant, so, from Lemma 1, we can conclude that kA is positive, and from the Geršchgorin theorem, we can get
that kB is non-positive. So, the eigenvalue of matrix A�1B is also non-positive

Let ku be the eigenvalues of u; one can see that the eigenvalues of u are
ðkuÞi ¼
12þ 6kki þ k2k2

i

12� 6kki þ k2k2
i

; ð31Þ
where i = 1,2, . . . ,n + 1.
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From Lemmas 1 and 2, we have
12þ 6kki þ k2k2
i

12� 6kki þ k2k2
i












 6 1; i ¼ 1;2; . . . ; nþ 1: ð32Þ
Thus, the difference scheme (27) is unconditionally stable. h
4. Numerical experiments and discussion

In this section, we present the numerical results of the new method (27) on several problems. We tested the accuracy and
stability of method (27) presented in this paper by performing the mentioned method for different values of h, k, e and c. The
Péclet number is defined as Pe ¼ e

c. When the Péclet number is high, the convection term dominates and when the Péclet
number is low the diffusion term dominates.

Let Uj
i and u(xi, tj) be the numerical solution and the exact solution of problem (1)–(3). The maximum of l2-norm errors of

the numerical solutions as compared with the exact solution was computed for 0 6 t 6 T based on the formula
Eðh; kÞ ¼ max
06jk6T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
Xn

i¼1

½Uj
i � uðxi; tjÞ�2

vuut : ð33Þ
To obtain the convergence rate with respect to the spatial variable, we may assume that E(h,k) = O(kp + hq). If k is small en-

ough, then E(h,k) � O(hq). Consequently, Eðh;kÞ
Eð2h;kÞ � 2q, where q � log2

Eðh;kÞ
Eð2h;kÞ is the convergence rate with respect to the spatial

variable. Similarly, p � log2
Eðh;2kÞ
Eðh;kÞ is the convergence rate with respect to the time variable.

Problem 1. We consider the following equation [8]:
@u
@t
þ e

@u
@x
¼ c

@2u
@x2 ; 0 6 x 6 2; 0 6 t 6 1; ð34Þ
with initial conditions
uðx;0Þ ¼ sin x; 0 6 x 6 2;
and boundary conditions
uð0; tÞ
@x

¼ expð�ctÞ cosðetÞ; uð2; tÞ
@x

¼ expð�ctÞ cosð2� etÞ:
The exact solution of the above problem is u(x, t) = exp(�ct)sin(x � et). Obviously, the exact solution u(x, t) becomes very
small when t is large.

In our computation, we first choose e = 1, Pe = 10, k = 10�4. In Table 1, the maximum of l2-norm errors of numerical
solutions at the final time t = 1 with different h are obtained by using the present scheme (27). Table 1 shows the numerical
result when k = 10�4, h = 1/10, 1/20, 1/40, 1/80, 1/160. It can be seen from the table that the convergence rate of the present
scheme (27) is 4 with respect to the spatial variable.

In Fig. 1 we show the numerical solutions and exact solutions obtained for Problem 1 at the final time t = 1 with h = 1/16
and several values of Pe. We see, the numerical solutions of Problem 1 approximate the exact solutions very well.

Problem 2. We consider the convection–diffusion equation [8]:
@u
@t
þ e

@u
@x
¼ c

@2u
@x2 ; 0 6 x 6 2; 0 6 t 6 2; ð35Þ
with initial conditions
Table 1
Maximum l2-norm errors E(h,k) and convergence rates when k = 10�4 for Problem 1.

h The present scheme (27) Convergence rate

1/10 2.8194 (�06) 3.94
1/20 1.8372 (�07) 3.96
1/40 1.1808 (�08) 3.98
1/80 7.5042 (�10) 3.99
1/160 4.7340 (�11) –
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Fig. 1. Exact solution and approximate solutions of Problem 1 for several values of Pe with h = 1/16 at t = 1.
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uðx;0Þ ¼ exp �ðx� eÞ2

4c

( )
; 0 6 x 6 2;
and boundary conditions
@uð0; tÞ
@x

¼ e
2c

ffiffiffiffiffiffiffiffiffiffiffi
1þ t
p exp �ð1þ tÞ2e2

4cð1þ tÞ

( )
;

@uð2; tÞ
@x

¼ � 2� ð1þ tÞe
2cð1þ tÞ

ffiffiffiffiffiffiffiffiffiffiffi
1þ t
p exp �ð2� ð1þ tÞeÞ2

4cð1þ tÞ

( )
:n o
The exact solution of the above problem is uðx; tÞ ¼ 1ffiffiffiffiffiffi
1þt
p exp � ðx�ð1þtÞeÞ2

4cð1þtÞ .

For this test problem we first put e = 0.25, k = 10�4 and Pe = 25. In Table 2, we show the numerical solutions at the final
time t = 2 obtained for solving Problem 2 with the method presented in this paper for different values of h. It can be seen
from Table 2 that the convergence rate of the present scheme (27) is about 4. In Fig. 2, we show the numerical solutions
obtained for Problem 2 at the final time t = 2 with h = 1/128 and several values of Pe.

Problem 3. We consider the following convection–diffusion equation:
@u
@t
þ e

@u
@x
¼ c

@2u
@x2 ; 0 6 x 6 1; 0 6 t 6 1; ð36Þ
with initial conditions
uðx;0Þ ¼ a expð�cxÞ; 0 6 x 6 1;
and boundary conditions
Table 2
Maximum l2-norm errors E(h,k) and convergence rates when k = 10�4 for Problem 2.

h The present scheme (27) Convergence rate

1/10 3.3101 (�03) 3.94
1/20 2.1563 (�04) 4.00
1/40 1.3452 (�05) 3.99
1/80 8.4229 (�07) 3.99
1/160 5.2770 (�08) –
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Fig. 2. Approximate solutions of Problem 2 for several values of Pe with h = 1/128 at t = 2.

Table 3
Maximum l2-norm errors E(h,k) and convergence rates when k = 10�4 for Problem 3.

h The present scheme (27) Convergence rate

1/10 3.3411(�09) 3.85
1/20 2.3106(�10) 4.08
1/40 1.3608(�11) 3.21
1/80 1.4694(�12) –
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Fig. 3. Approximate solutions of Problem 3 for Pe = 1000 with h = k = 1/100.
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@uð0; tÞ
@x

¼ �ac expðbtÞ; @uð1; tÞ
@x

¼ �ac expðbt � cÞ;
where c ¼ �eþ
ffiffiffiffiffiffiffiffiffiffiffi
e2þ4cb
p

2c , a and b are constants.

The exact solution of the above problem is u(x, t) = aexp(bt � cx). For this problem, let a = 1, b = 0.1, e = 1, Pe = 1000. In
Table 3, we show the maximum l2-norm errors E(h,k) and convergence rates when k = 10�4 with different h. From Table 3,
we can see that the convergence rate of the present scheme (27) is almost 4, it should be mentioned that when the number of
grid points increases from 21 to 41, the convergence rate of the present scheme (27) decreases from 4.08 to 3.21. In Fig. 3, we
show the numerical solutions of problem 3 for Pe ¼ 1000 with h ¼ k ¼ 1=1000.

5. Concluding remarks

In this paper, a high accuracy difference scheme for solving one-dimensional convection–diffusion equations with
Neumann boundary conditions is presented, which is unconditionally stable for all choice of k and h. The accuracy of the
presented method is O(k5 + h4). It is shown from the above numerical results that the presented scheme (27) is fourth-order
convergent in space at all grid points, both interior and boundary points.
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