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We demonstrate the existence of multipeaked fundamental and vortex solitons in defocusing Kerr media with an
imprinted azimuthally modulated Bessel lattice. Multipeaked solitons emanating from the fundamental linear
lattice modes are stable in their entire existence domains. The number of soliton peaks is determined by the azi-
muthal index. Multipeaked vortex solitons with high topological charges in lattices exhibit special amplitude and
phase distributions that resemble those of azimuthons. We reveal that the “stability rule” for vortex solitons in
defocusing Kerr media is exactly opposite to that in focusing media. Multipeaked vortex solitons we obtained may
provide a missing link between the radially symmetric vortices and nonrotating soliton clusters. © 2011 Optical
Society of America

OCIS codes: 190.0190, 190.6135.

1. INTRODUCTION
Optical solitons are spatially localized, nondiffracting modes
existing in nonlinear optical media. Recent progress in theo-
retical and experimental study opens up many possibilities in
the study of novel types of solitons [1,2]. Special attention is
paid to solitons in optically induced lattices these days be-
cause the lattice can behave as an effective and tunable po-
tential to confine and capture optical radiation [1–3]. In
photorefractive materials, harmonic lattices are usually cre-
ated by interfering several plane waves whose intensity and
intersection angles determine the lattice depth and period
[3]. Stable fundamental [4], dipole [5], vortex [4,6,7], necklace-
like [8], higher-band solitons [9], etc., can be supported by
two-dimensional harmonic lattices.

Besides the harmonic lattice, there is another important op-
tical lattice with unique symmetry, the Bessel lattice, which
can be created by nondiffracting Bessel beams with cylindri-
cal symmetry. Kartashov and co-workers systematically inves-
tigated the dynamics of various types of solitons supported by
Bessel lattices, including multipole-mode solitons [10], ring-
profile vortex solitons, and [11], spatiotemporal solitons [12].
Necklace [13] and broken ring solitons [14] can also be
trapped stably in different order Bessel lattices. Solitons
trapped at different lattice rings can be set into controlled ro-
tation inside each ring [15,16]. Discrete solitons and soliton
rotation in Bessel-like lattices were observed [17]. For a re-
view of the early works, see [18].

Interestingly, Bessel lattices with azimuthal modulation are
possible [19,20]. Such lattices resemble highly nonlinear mi-
crostructured fibers [21], and may be realized in experiment
by several incoherent Bessel beams with different intensities
and orders [19]. The complex lattices can also be created in
photorefractive crystals by the phase-imprinting technique
[21,22]. The azimuthally modulated lattices exhibit several dis-
crete guiding channels of linear refractive index. Stable soli-
ton complexes and azimuthal switching in focusing cubic
media with modulated Bessel lattices were reported in [19].

Neighboring components in a soliton complex are out of
phase. Ring-shaped and single-site solitons were observed
in azimuthally modulated lattices [21,22]. Especially, by using
group-theory techniques, Kartashov et al. derived a general
“charge/stability rule” for vortex solitons supported by the azi-
muthal Bessel lattice [20].

In [23], Desyathikov and his co-workers introduced a novel
class of spatially localized self-trapped ringlike singular opti-
cal beams in focusing cubic and saturable media, the so-called
“azimuthons.” The amplitude of such a state is a spatially lo-
calized ring modulated azimuthally, and the phase of the azi-
muthon is a staircase function of the polar angle. This concept
provided an important missing link between the radially sym-
metric vortices and rotating soliton clusters [24]. Following
this work, stable azimuthons in nonlocal nonlinear media
were found when the nonlocality parameter exceeds a certain
threshold value [25,26]. Families of azimuthons can be found
by considering internal modes of classical vortex solitons [27].
Two-dimensional azimuthons and vector azimuthons were
also predicted in Bose–Einstein condensates confined by a
parabolic trap [28,29].

Thus far, stable azimuthons or azimuthonlike solitons in
media with local nonlinear responses, have not been reported,
to our knowledge. In this paper, we show that azimuthally
modulated Bessel lattices in defocusing cubic media can sup-
port two types of multipeaked solitons whose amplitude dis-
tribution are similar to those of azimuthons. The existence and
stability properties of vortex solitons with special amplitude
and phase distributions are discussed in detail. When the lat-
tice is not modulated, multipeaked vortex solitons will degen-
erate to the conventional radially symmetric vortex solitons
[11]. On the other hand, if the phase of multipeaked vortex
solitons is removed, it will exhibit as a discrete soliton cluster.
It is the combination of nontrivial phase and lattice confine-
ment that affords the existence of multipeaked vortex soli-
tons. Thus, the multipeaked vortex solitons we obtained
provide a missing link between the radially symmetric
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vortices and nonrotating soliton clusters, although they break
the radial symmetry due to the potential we used. Similar to
the “azimuthons” stated in [23], the nonlinear localized modes
we discuss can also be attributed to the two contributions in-
duced by the internal energy flow and the modulated beam. In
sharp contrast to the cases in focusing cubic media [20], we
reveal that the “stability rule” in defocusing cubic media is
quite the reverse. The result is in good agreement with the
conclusion given by [30,31], where the stability of discrete vor-
tex solitons supported by hexagonal photonic lattices in fo-
cusing media is opposite to the stability in the defocusing
one, although the discussions were limited to the single-
charged and double-charged vortex solitons.

2. MODEL
We consider beam propagation along the z axis in defocusing
cubic media with an imprinted transverse refractive index
modulation. The dynamics of the nonlinear modes supported
by such a scheme can be described by the nonlinear Schrö-
dinger equation for the normalized complex field q:

i
∂q
∂z

þ 1
2

�
∂2q
∂x2

þ ∂2q
∂y2

�
− jqj2qþ pRðx; yÞq ¼ 0: ð1Þ

Here the longitudinal z and transverse x, y coordinates are
scaled to the diffraction length and input beam width, respec-

tively. The parameter p describes the lattice depth. The profile
of the modulated lattice is given by Rðx; yÞ ¼ J2

nJ
½ð2blinÞ1=2r�

cos2ðnϕÞ, where nJ denotes the order of the Bessel function,
r ¼ ðx2 þ y2Þ1=2 is the radius, ϕ is the azimuthal angle, n
stands for the azimuthal index, and blin defines the transverse
lattice scale. Typical transverse linear refractive index modu-
lation induced by the first-order Bessel lattices with azimuthal
index n ¼ 2 and 5 are shown in Figs. 1(a) and 1(b), respec-
tively. The local lattice maxima situated closer to the lattice
center are more pronounced than others. The number of guid-
ing channels in the main ring is given by 2n.

Such lattices were proposed by Kartashov et al. in [19,20]
and created by Fischer et al. [21,22]. Experimentally, Eq. (1)
can be realized by launching a modulated Bessel beam into a
photorefractive crystal in the ordinary polarization direction
and a soliton beam in the extraordinary polarization direction
[10]. In the particular case of optical lattice induction in stron-
tium-barium niobate crystal biased with dc electric field of
∼105 V=m, for laser beams with 10 μm, the propagation dis-
tance z ∼ 1 corresponds to 1mmof actual crystal length, while
amplitude q ∼ 1 corresponds to peak intensity of about
50mW=cm2 [20].

Note that Eq. (1) can also be treated as Gross–Pitaevskii
equation for a two-dimensional Bose–Einstein condensate
with repulsive interatomic interactions trapped in an optical
lattice created by an azimuthally modulated Bessel beam.

Fig. 1. (Color online) First-order Bessel lattices with azimuthal index (a) n ¼ 2 and (b) n ¼ 5. Profiles of the first linear modes with (c) n ¼ 2 and
(d) n ¼ 5. All quantities are plotted in dimensionless units.
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Equation (1) conserves several quantities, including the
power: U ¼ R

∞
−∞

R
∞
−∞

jqj2dxdy.
We search for stationary solutions of Eq. (1) in the form of

qðx; y; zÞ ¼ ½wrðx; yÞ þ iwiðx; yÞ� expðibzÞ, where wr and wi

are real and imaginary parts of the solution profiles and b
is a nonlinear propagation constant. The twisted phase
structure of the stationary solutions can be defined by
m ¼ H

arctan½wiðx; yÞ=wrðx; yÞ�=2π, where m is the so-called
“topological charge” of vortex solitons. Obviously, the multi-
peaked fundamental solitons only have nonzero wr . Substitut-
ing the expression into Eq. (1), we obtain

1
2

�
∂2

∂x2
þ ∂2

∂y2

�
wr;i − bwr;i − ðw2

r þw2
i Þwr;i þ pRwr;i ¼ 0: ð2Þ

The soliton profiles are found numerically by a two-
dimensional relaxation algorithm. In numerical calculations,
because one can use scaling transformation qðx; y; zÞ →
χqðχx; χy; χ2z; χ2pÞ to obtain various families of lattice solitons
from a given family [15], we fix blin ≡ 2 and vary b, p, and n
without loss of generality.

To elucidate the stability properties of solitons, we search
for perturbed solutions of Eq. (1) in the form qðx; y; zÞ ¼
½wr þ iwi þ ður þ iuiÞ expðλzÞ� expðibzÞ, where ur and ui

are the real and imaginary parts of the perturbations, respec-
tively. Substituting the perturbed solution into Eq. (1) and
linearizing ur;i around wr;i yield a system of coupled
Schrödinger-type equations for perturbation components ur;i:

�λui;r ¼
1
2

�
∂2

∂x2
þ ∂2

∂y2

�
ur;i − bur;i þ pRur;i

− ð3w2
r;i þw2

i;rÞur;i − 2wrwiui;r ; ð3Þ

where ur;i may grow with a complex rate λ during the propa-
gation of solitons. The eigenfunctions ur;i and eigenvalues λ
can be solved numerically. The solitons are stable only when
all real parts of λ equal zero.

3. MULTIPEAKED FUNDAMENTAL
SOLITONS
Before we discuss the dynamics of localized nonlinear modes,
it is important to understand the origin of such nonlinear
modes. After removing the nonlinear term in Eq. (2), the
linear equation has infinite eigenvalues and the corresponding
linear eigenmodes. Nonlinear modes bifurcate from these lin-
ear modes when the nonlinearity cannot be ignored. Funda-
mental solitons always bifurcate from the first linear modes
and higher-order solitons associate with the other linear
modes. Corresponding to the azimuthal Bessel lattices shown
in Figs. 1(a) and 1(b), we plot the first eigenmodes of the lin-
earized equation of Eq. (2) in Figs. 1(c) and 1(d). The profiles
of linear modes possess several amplitude peaks covering on
a constitutive ringlike substrate; thus, they look like azimu-
thons. Such linear modes intuitively reveal the possible pro-
files of nonlinear modes in a nonlinear system.

Now, we address the properties of the multipeaked funda-
mental solitons in the modulated Bessel lattice. For the sake
of simplicity, we select the first-order Bessel lattice with dif-
ferent azimuthal index as a linear guide for the laser beam. For
azimuthal index n ¼ 2, the power of multipeaked solitons is a
monotonically decreasing function of the propagation con-

stant [Fig. 2(a)]. It approaches to infinity at b → 0 and
vanishes at b → bco, where bco stands for the upper cutoff
of the propagation constant. Comparing the power curves
at p ¼ 10 and 20, one finds that, for a fixed propagation con-
stant, the deeper the lattice is modulated, the higher the power
will be. The existence domain of multipeaked solitons ex-
pands with the growth of lattice depth [Fig. 2(b)]. We did
not find an increasing bco branch corresponding to the de-
creasing bco branch, which occurs in focusing media for soli-
ton complex when the lattice is shallow [19].

An example of multipeaked fundamental solitons marked in
Fig. 2(a) is shown in Fig. 2(c). The complex configuration re-
sembles the amplitude distribution of azimuthons mentioned
in [23]. The four bright peaks of solitons reside only in the four
guiding channels of the azimuthal Bessel lattices. Multipeaked
solitons expand to the outer lattice rings at small propagation
constants and reside on the main guiding lattice ring at large
propagation constants. The profiles of multipeaked solitons
do not cross the transverse plane. That is to say, multipeaked
solitons here are fundamental solitons that bifurcate from the
first linear modes of the linearized equation of Eq. (2). The
local minima of amplitude profile on the lattice ring does
not equal zero, which differs from the lattice distribution.

To shed more light on the multipeaked solitons in the
modulated Bessel lattices with different azimuthal indices,
we also studied the existence of multipeaked solitons in the
first-order lattices with azimuthal index n ¼ 3…8. The basic
properties, such as power or existence domain, are similar
to those of nJ ¼ 1 and n ¼ 2. The difference between the local
maxima and minima of amplitude decreases with the growth
of azimuthal index n. A multipeaked soliton approaches to a
ring-profile distribution when we further increase azimuthal
index n. However, the profiles of multipeaked solitons still ex-
hibit special amplitude distributions when the lattice order is
increased.

Fig. 2. (Color online) Properties of multipeaked fundamental soli-
tons in the first-order Bessel lattices with azimuthal index n ¼ 2.
(a) Power versus propagation constant. (b) Propagation constant cut-
off bco versus lattice depth p. (c) Profile of soliton marked by circle in
(a). (d) Stable propagation of (c), cut of intensity distribution at y ¼ 0
is shown. White noise σ2noise ¼ 0:01 was added into the initial input.
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In focusing cubic media, one- and two-dimensional
lattice soliton configurations can be stable only when the
field changes sign between neighboring channels. The main
guiding ring of an nth Bessel lattice can support stable soliton
complexes formed by 2n out-of-phase bright spots [19]. On the
contrary, multipeaked solitons carrying 2n in-phase bright
peaks, which are found in defocusing cubic media modulated
by azimuthal Bessel lattices, are stable in their entire exis-
tence domain. According to the Vakhitov–Kolokolov stability
criterion, which is valid for fundamental solitons, the multi-
peaked solitons in defocusing media are all stable since
dU=db < 0. To verify this prediction, we solved the coupled
eigenequations [Eqs. (3)] for varying lattice depth, lattice or-
der, and azimuthal index, and found that all real parts of λ
equal zero. We also conduct extensive numerical propagation
simulations of multipeaked solitons with different parameters
by the split-step Fourier algorithm. The perturbed input
condition of Eq. (1) is qjz¼0 ¼ ½wrðx; yÞ þ iwiðx; yÞ�½1þ
σnoiseρðx; yÞ�, where wðx; yÞ describes the stationary solution,
ρðx; yÞ is a random function with Gaussian distribution, and
variance σnoise ¼ 0:1. A stable propagation of multipeaked so-
litons is displayed in Fig. 2(d). The white noise added into the
initial input radiates away soon and the soliton reemerges in
its unperturbed shape after a short propagation distance.

To further understand the characteristic properties of mul-
tipeaked solitons, we studied the existence of multipeaked so-
litons in different order Bessel lattices modulated azimuthally.
Various families of multipeaked solitons in lattices with differ-
ent order nJ and different azimuthal index n were found. It is
worth mentioning that multipeaked solitons with odd number
peaks can be supported by lattices with azimuthal index
n ¼ 1:5, 2.5, etc. Such solitons consisting of 2n peaks have
been proved to be stable by various ways mentioned above
and propagation simulation results at z ¼ 512 are plotted in
Fig. 3. We should note that stable solitons with odd number
peaks are very rare, with the only exception found in nonlocal
nonlinear media [26]. Deeper lattices are needed for support-
ing multipeaked solitons with more peaks. The difference be-
tween the local maxima and minima around the lattice ring
decreases with the growth of peak number 2n.

4. MULTIPEAKED VORTEX SOLITONS
Mathematically, the refractive index modulation contributed
by the modulated Bessel lattice increases linearly with the
growth of lattice depth. However, this relationship cannot
hold for a practical crystal when the lattice is modulated very
deep. Thus, the practical realization of stable vortex solitons
with higher topological charges becomes infeasible by solely
increasing the lattice depth of the first-order lattice to a very
large value. Fortunately, the higher-order Bessel lattice can

suppress the azimuthal instability of vortex solitons effec-
tively [32]. To study the properties of vortex solitons with
higher charges, onemust consider the higher-order modulated
Bessel lattices.

The following discussion will focus on multipeaked vortex
solitons carrying different topological charges supported by
azimuthally modulated Bessel lattices imprinted in defocusing
cubic media. For the convenience of comparing with the re-
sults of [20], we assume Rðx; yÞ ¼ J2

n½ð2blinÞ1=2r� cos2ðnϕÞ,
where the order of lattice equals the azimuthal index. We also
search for stationary solutions of vortex solitons by relaxation
methods. A Gauss beam multiplying a phase dislocation with
charge m was selected as an initial iterative guess solution.

Figure 4 displays some instances of multipeaked vortex so-
litons in lattices with n ¼ 4 and 6. The vortex solitons exhibit
spatially modulated patterns that are in contrast to the vor-
tices in unmodulated Bessel lattices [11], where the vortices
are ring-shaped. Note that the amplitude and phase distribu-
tions of multipeaked vortex solitons we found are very similar
to those of azimuthons [23]. The profiles of vortex solitons
possess several amplitude peaks covering on a constitutive
ringlike substrate. The number of amplitude peaks is also de-
termined by the azimuthal index n. Similar to the vortices in
focusing media [20], vortices with similar amplitude distribu-
tions allow different topological charges. In the fourth-order
Bessel lattices with azimuthal index n ¼ 4, vortex solitons can
be found only for m ¼ 1, 2, and 3. For fixed b and p, the dis-
creteness of vortex solitons increases with the growth of the
topological charge m, while the “radii” of the vortices are al-
most the same. For fixed p and n, the vortex solitons will ex-
pand to the outer lattice rings at small b and shrink to the main
guiding lattice ring at larger b. The local minima of multi-
peaked vortex solitons around the lattice ring approaches
to zero when b → bco.

We also find multipeaked vortex solitons in the lattices with
different azimuthal indices. Numerical study reveals that vor-
tex solutions can be found only when the relation 0 < m < n
is satisfied. The relation also holds for the vortex solitons in
focusing cubic media [11]. The reason is that all nonlinear
modes originate from the linear modes. Because linear modes
do not exist when m ≥ n, there are no nonlinear modes for
m ≥ n. The phase difference between the neighboring compo-
nents is mπ=n, which differs from the vortex solitons in har-
monic lattices [6] or necklace solitons in Bessel lattices [13].
Form > n, a vortex soliton should have a phase change great-
er than π between the neighboring peaks. However, the defo-
cusing nonlinearity does not allow such phase difference,
which explains the existence condition of vortex solitons
(0 < m < n) qualitatively.

The properties of multipeaked vortex solitons in the azi-
muthally modulated Bessel lattices are summarized in Fig. 5.
Similar to the power curves of multipeaked solitons in
Fig. 2(a), the power of vortex solitons is a descending curve
due to the defocusing nonlinearity [Fig. 5(a)]. Vortex solutions
cannot be found when the propagation constant exceeds a
certain value that corresponds to an eigenvalue of the linear-
ized equation of Eq. (2). The upper propagation constant cut-
offs of vortex solutions with m ¼ 1 and 3 are displayed in
Figs. 5(b) and 5(c). The existence areas expand with the
growth of lattice depth for a fixed topological charge and
shrink with the growth of topological charges for a fixed

Fig. 3. (Color online) Stable propagation results of multipeaked so-
litons in the first-order Bessel lattices with odd azimuthal index.
(a) n ¼ 1:5, p ¼ 25, b ¼ 0:9. (b) n ¼ 3:5, p ¼ 25, b ¼ 0:9.
(c) n ¼ 7:5, p ¼ 35, b ¼ 2. The propagation distance is 512 and white
noise was added into the initial inputs.
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lattice depth. There is a lower threshold lattice depth for sup-
porting multipeaked vortex solitons. Comparing the points of
b → 0 in Figs. 5(b) and 5(c), we find that the threshold lattice
depth grows with the increase of topological charge m.

To comprehensively understand the stability properties of
multipeaked vortex solitons in the lattices with different
depths and azimuthal indices, we performed the linear stabi-
lity analysis on vortex solitons in lattices with order (azi-
muthal index) n up to 10 and lattice depths p ≤ 80. We
numerically derived an important “stability rule” for vortex so-
litons in the azimuthally modulated Bessel lattices imprinted
in defocusing media. That is, vortex solitons might be stable
only when the topological charge satisfies the condition

0 < m ≤ n=2; ð4Þ
where n > 2. Vortex solitons withm ¼ n=2 for even nmay be
stable or unstable depending on the lattice parameters. There
exists a narrow instability area near b → 0 when the lattice is
modulated shallow (near its lower threshold value). For dee-
per lattices similar to the stable ring-profile vortex solitons in

Bessel lattices [11], completely stable vortex solitons are pos-
sible. A summary of “stability rule” is presented in Table 1. The
table shows the stability status of vortex solitons for different
lattice orders. It is exactly opposite to Table 1 in [11], which
was derived by the group theory and is valid in the focusing
cubic media. This finding also verifies the very recent reports
[30,31] in which the stability of discrete vortex solitons sup-
ported by hexagonal photonic lattices in focusing media is
proved to be opposite to the stability in the defocusing ones.
We note that our conclusion is more general because the
above two studies are restricted to the single- and double-
charge discrete vortex solitons.

Linear instability analysis results of some unstable vortex
solitons in the fourth-, fifth- and sixth-order lattices are shown
in Figs. 5(d)–5(f). Note the relation between the azimuthal in-
dex and topological charge does not satisfy the condition
Eq. (4). The instability domain vanishes only when the propa-
gation constant approaches to its upper cutoff.

The vortex solitons aforementioned are restricted to the
particular cases of n ¼ nJ . In fact, vortex solutions can also

Fig. 4. (Color online) Amplitude distributions of multipeaked vortex solitons with (a) m ¼ 1, (b) 2, and (c), (d) 3. Parameters n ¼ 4, p ¼ 30, and
b ¼ 0:5 in (a)–(c) and n ¼ 6, p ¼ 45, and b ¼ 0:5 in (d). Bottom row: the corresponding phase structures.

Fig. 5. (Color online) (a) Power of multipeaked vortex solitons with m ¼ 1, 2, and 3 versus propagation constant, n ¼ 4, p ¼ 30. Propagation
constant cutoff bco versus lattice depth p for vortex solitons with (b) m ¼ 1 and (c) 3. Real parts of instability growth rate λ versus propagation
constant for vortex solitons supported by the (d) fourth-, (e) fifth-, and (f) sixth-order lattices with p ¼ 30,m ¼ 3; p ¼ 35,m ¼ 3; and p ¼ 35,m ¼ 5,
respectively. Azimuthal index n ¼ 4 in (a)–(d), 5 in (e), and 6 in (f).
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be found when n ≠ nJ . Contrary to intuition and the cases in
nonlocal media [26], the charge m of available vortex solu-
tions is independent of the lattice order nJ but less than
the azimuthal index n. The initial input guess solutions with
m ≥ n may converge to the nonlinear modes of the following
three different categories: 1. a vortex with chargem0 < n; 2. a
multipole-mode or necklace soliton with neighboring compo-
nents out- of phase; or 3. a multipole-mode or necklace soliton
embedded into a global skew phase whose charge m00 ¼
m − n. Thus, we conclude that vortex solutions can be found
only for m < n. The reason may be attributed to the Kerr
media with a local nonlinear response in our model [23].

Finally, we stress that the defocusing nonlinearity is a ne-
cessary ingredient for the existence of the stable multipeaked
fundamental and vortex solitons. The linear modes guided by
the purely modulated Bessel lattices occupy only the first lat-
tice ring [Figs. 1(c) and 1(d)], while the multipeaked (vortex)
solitons exhibit modulated multiring structures, e.g., see
Figs. 4 and 5 (also see Fig. 3 in [11]). One the other hand,
it is the defocusing nonlinearity that affords the nonzero local
intensity minima of vortex solitons around the rings of lat-
tices. The nonlinear modes converge to the linear modes
when the propagation constant approaches to its upper cutoff
value.

5. CONCLUSIONS
To summarize, we investigate the existence, stability, and pro-
pagation dynamics of azimuthonlike solitons supported by the
azimuthally modulated Bessel lattice in a defocusing medium.
We reveal that the scheme supports completely stable multi-
peaked fundamental solitons. Specially, stable solitons with
odd numbers of intensity peaks, which are very rare, can exist
in the azimuthally modulated Bessel lattices. Another interest-
ing result we uncovered is that the “stability rule” for vortex
solitons in defocusing cubic media is opposite to that in focus-
ing media. We show that stable azimuthonlike (vortex) soli-
tons can exist in local nonlinear media with an appropriate
optical potential. Our results reported here can be easily gen-
erated into the Bose–Einstein condensates trapped in azi-
muthally modulated Bessel lattices.
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