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We obtain exact spatiotemporal periodic traveling wave solutions to the generalized

ð3þ 1Þ-dimensional nonlinear Schrödinger equation with distributed coefficients. We utilize these

solutions to construct analytical light bullet soliton solutions of nonlinear optics.
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The nonlinear Schrödinger equation (NLSE) is one of
the most useful generic mathematical models [1] that
naturally arises in many fields of physics. Major interest
in the NLSE was piqued by the discovery of solitary wave
solutions [2,3]. Stable exact soliton solutions to the NLSE
are known only in ð1þ 1Þ dimensions [ð1þ 1ÞD], for the
simple reason that the inverse scattering method [2], re-
sponsible for the existence and stability of 1D solitons,
works only in ð1þ 1ÞD. There are no known exact stable
solitons in ð2þ 1ÞD or ð3þ 1ÞD.

Recently, great interest has been generated when it was
suggested that the ð2þ 1ÞD generalized NLSE with vary-
ing coefficients may lead to stable 2D solitons [4]. The
stabilizing mechanism has been the sign-alternating Kerr
nonlinearity in a layered medium. Avigorous search for the
stabilized localized solutions of the ð2þ 1ÞD NLSE has
been launched [5–7]; however, out of necessity, it has been
numerical. Rare experimental solutions have been pro-
vided in Ref. [8]. We present here analytical periodic
traveling wave and soliton solutions to the NLSE in ð3þ
1ÞD.

Our interest is focused on the generalized NLSE in ð3þ
1ÞD with distributed coefficients [9]:

i@zuþ �ðzÞ
2

ð�?uþ @2t uÞ þ �ðzÞjuj2u ¼ i�ðzÞu; (1)

which describes the evolution of a slowly varying wave
packet envelope uðz; x; y; tÞ in a diffractive nonlinear Kerr
medium with anomalous dispersion, in the paraxial ap-
proximation. Here z is the propagation coordinate, �? ¼
@2x þ @2y represents the transverse Laplacian, and t is the

reduced time, i.e., time in the frame of reference moving
with the wave packet. All coordinates are made dimen-
sionless by the choice of coefficients. The generalized
NLSE is of considerable importance, as it describes the
full spatiotemporal optical solitons, or light bullets, in ð3þ

1ÞD. The functions �, �, and � stand for the diffraction or
dispersion, nonlinearity, and gain coefficients, respectively.
When the coefficients are constant, the behavior of

solutions to the NLSE strongly depends on the dimension-
ality of the problem. In ð1þ 1ÞD, as mentioned, one can
observe stable localized wave packets. However, in ð2þ
1ÞD, for the self-focusing nonlinearity all localized solu-
tions either spread out with propagation (for input powers
less than a critical value) or collapse at a finite distance (for
powers above the critical value) [10]. This behavior is an
example of weak collapse. In ð3þ 1ÞD, one observes the
strong collapse: Wave packets collapse at any power—no
power threshold exists.
Utilizing anF-expansion technique [11] and a procedure

for balancing terms in the expansion [12], we present in
this Letter a method for finding analytical periodic travel-
ing wave solutions to the ð3þ 1ÞD NLSE with distributed
coefficients.
We define the complex periodic wave or light bullet field

u of Eq. (1) in terms of its amplitude and phase [13]:

uðz; x; y; tÞ ¼ Aðz; x; y; tÞ exp½iBðz; x; y; tÞ�: (2)

Substituting u into Eq. (1), we find the following
coupled equations:

@zAþ 1
2�½2@xA@xBþ 2@yA@yB

þ 2@tA@tBþ Að�? þ @2t ÞB� ¼ �A; (3)

� A@zBþ 1
2�½ð�? þ @2t ÞA� Að@xBÞ2

� Að@yBÞ2 � Að@tBÞ2� þ �A3 ¼ 0: (4)

We seek traveling wave solutions to Eqs. (3) and (4) and
assume the functions to be of the form:

A ¼ fðzÞFð�Þ þ gðzÞF�1ð�Þ; (5)
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� ¼ kðzÞxþ lðzÞyþmðzÞtþ!ðzÞ; (6)

B ¼ aðzÞðx2 þ y2 þ t2Þ þ bðzÞðxþ yþ tÞ þ eðzÞ; (7)

where f, g, k, l, m, !, a, b, and e are the parameter
functions to be determined and F is a Jacobi elliptic
function (JEF). Substituting Eqs. (5)–(7) into Eqs. (3)
and (4) and requiring that xqFn, yqFn, and tqFn (q ¼
0; 1; 2, n ¼ 0; 1; 2; 3) of each term be separately equal to
zero, we obtain a system of algebraic and first-order ordi-
nary differential equations that the parameters must satisfy
[14]:

dfj
dz

þ 3a�fj � �fj ¼ 0; (8)

fj

�
dk

dz
þ 2ka�

�
¼ 0; (9)

fj

�
dl

dz
þ 2la�

�
¼ 0; (10)

fj

�
dm

dz
þ 2ma�

�
¼ 0; (11)

fj

�
d!

dz
þ �ðkþ lþmÞb

�
¼ 0; (12)

� fj

�
da

dz
þ 2�a2

�
¼ 0; (13)

� fj

�
db

dz
þ 2�ab

�
¼ 0; (14)

�fj

�
de

dz
�1

2
�ðk2þ l2þm2Þc2þ3

2
�b2�3�f1f2

�
¼0;

(15)

f1½�ðk2 þ l2 þm2Þc4 þ �f21� ¼ 0; (16)

f2½�ðk2 þ l2 þm2Þc0 þ �f22� ¼ 0; (17)

where j ¼ 1; 2, f1 ¼ f, and f2 ¼ g. The constants c0, c2,
and c4 appearing in Eqs. (15)–(17) are related to the square
of the elliptic modulusM of JEFs (see Table I). By solving
Eqs. (8)–(17) self-consistently, one obtains a set of con-
ditions on the coefficients and parameters, necessary for
Eq. (1) to have exact periodic wave solutions.

We consider the most generic case, in which f and g are
assumed nonzero and �ðzÞ and �ðzÞ are arbitrary. The
following set of exact solutions is found:

f ¼ ð�Þ3=2f0 exp
�Z z

0
�dz

�
; g ¼

ffiffiffiffiffi
c0
c4

s
�f; (18)

k ¼ �k0; l ¼ �l0; m ¼ �m0; (19)

! ¼ !0 � �ðk0 þ l0 þm0Þb0
Z z

0
�dz; (20)

a ¼ �a0; b ¼ �b0; (21)

e¼e0þ�

2
½ðk20þ l20þm2

0Þðc2�6�
ffiffiffiffiffiffiffiffiffi
c0c4

p Þ�3b20�
Z z

0
�dz;

(22)

where � ¼ ½1þ 2a0
R
z
0 �dz��1 is the normalized chirp

function. It is related to the wave front curvature and
presents a measure of the phase chirp imposed on the
wave. The subscript 0 denotes the value of the given
function at z ¼ 0. A parameter � ¼ �1 is introduced in
Eqs. (18) and (22), to distinguish the two present
possibilities.
One should note the universal influence of the chirp

function � on the solutions. The chirp function is related
only to the diffraction or dispersion coefficient; however, it
affects all of the parameters. In the case when there is no
chirp, a0 ¼ 0, and � ¼ 1, the parameters k, l, m, and b are
all constant. In the presence of chirp, they all acquire the
prescribed z dependence. The chirp also influences the
form of the amplitude A through the dependence of f, g,
and � on �. It should also be noted that � is not arbitrary
but depends on �, �, and �:

� ¼ ��c4
�f20

ðk20 þ l20 þm2
0Þ exp

�
�2

Z z

0
�dz

�
: (23)

Hence, to obtain exact solutions in a lossy medium, the
nonlinearity coefficient � must grow exponentially. In our
choice of independent coefficients, we could have equally
well chosen � and �; then � would have been dependent.
Incorporating these solutions back into Eq. (2), we

obtain the general periodic traveling wave solutions to
the generalized NLSE:

u ¼ ð�Þ3=2f0 exp
�Z z

0
�dz

��
Fð�Þ þ

ffiffiffiffiffi
c0
c4

s
�F�1ð�Þ

�

� expfi½aðx2 þ y2 þ t2Þ þ bðxþ yþ tÞ þ e�g;
(24)

TABLE I. Jacobi elliptic functions.

Solution c0 c2 c4 F M ¼ 0 M ¼ 1

1 1 �ð1þM2Þ M2 sn sin tanh
2 1�M2 2M2 � 1 �M2 cn cos sech

3 M2 � 1 2�M2 �1 dn 1 sech

4 M2 �ð1þM2Þ 1 ns cosec coth
5 �M2 2M2 � 1 1�M2 nc sec cosh
6 �1 2�M2 M2 � 1 nd 1 cosh
7 1 2�M2 1�M2 sc tan sinh
8 1�M2 2�M2 1 cs cot cosech

9 1 �ð1þM2Þ M2 cd cos 1

10 M2 �ð1þM2Þ 1 dc sec 1
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where � ¼ !0 þ kxþ lyþmt� ðkþ lþmÞb0
R
z
0 �dz.

Apart from the solutions given in Eqs. (18)–(22), one can
alternatively assume that g ¼ 0, in which case one obtains
the exact same equations to which Eqs. (18)–(22) would
reduce for � ¼ 0. Thus, the parameter � in Eq. (24) can
take the three values: �1 and 0.

The form of solutions depends on what JEFs are utilized.
Table I lists some of the JEFs (labeled from 1 to 10) that
may appear in the solutions. Note a relation among the
constants c0, c2, and c4:

c0 þ c4 ¼ �c2: (25)

As long as one chooses the constants according to the
relations listed in Table I and substitutes the appropriate
Fð�Þ into Eq. (24), one obtains the exact periodic traveling
wave solutions to the generalized ð3þ 1ÞD NLSE. The
parameter M varies between 0 and 1. When M ! 0,
JEFs degenerate into trigonometric functions, and the pe-
riodic traveling wave solutions become the periodic trigo-
nometric solutions. When M ! 1, JEFs degenerate into
hyperbolic functions, and the periodic traveling wave so-
lutions become the light bullet soliton solutions. As long as
0<M< 1, there is no problem with the periodic solu-
tions; one can choose any of the listed functions. However,
whenM ¼ 0 orM ¼ 1, only some of the functions may be
utilized, because of the developing singularities.

As an example, we present some of the periodic wave
and light bullet soliton solutions, taking the diffraction
(dispersion) coefficient � to be of the form � ¼
�0 cosðkbzÞ and the gain (loss) coefficient � to be a small
constant. This choice leads to alternating regions of posi-
tive and negative values of both � and �, which is required
for an eventual stability of soliton solutions. In Fig. 1, we
depict the periodic wave solutions made up from the single
F functions 1 and 2 from the table, with the chirp and for
� ¼ 0. Figure 2 shows the periodic wave solution made
from the combination of the F functions 1 and 4 for � ¼ 1,
without and with the chirp. As can be seen, the presence of
� significantly changes the nature of solutions. Figures 3
and 4 present the light bullet soliton solutions, again with-

out and with the chirp. The effect of the particular periodic
chirp function is to produce a periodic variation along the
propagation direction and a monotonic asymmetric change
in the transverse directions. We note that the soliton solu-
tion is similar to a single period of the periodic wave
solutions for M close to 1. The period of the solution
stretches to infinity as M approaches 1, while the solitons
merge into each other as M decreases.
An important feature that distinguishes our solutions

from the others reported in the literature [9,14,15], apart
from the dimensionality, is the appearance of the general
spatiotemporal chirp function in both the phase and the
amplitude. Another important feature is that the z modu-
lation of both the diffraction or dispersion coefficient and
the nonlinearity coefficient, connected as they are through
Eq. (23), strongly affects the form and the behavior of
solutions.
In the end, we comment on the stability of solutions to

the generalized NLSE in ð3þ 1ÞD. The current situation is
somewhat confusing and even controversial: Some authors
point out that it is possible to obtain stable solutions
without modulating the dispersion [6], others disagree
[7], and some others still claim that an additional trapping
potential is necessary [16]. Most of them consider the
stability of radially symmetric structures and do not in-
clude the modulation of diffraction. When only the disper-
sion is modulated, 3D light bullets seem to be unstable
[7,16]. In the presence of energy dissipation, or through a
feedback control, again the stabilization seems possible
[17].

FIG. 1 (color online). Periodic traveling wave solutions with
chirp, as functions of the propagation distance. (a) Intensity juj2
of solution 1 and (b) of solution 2 from Table I, presented as
functions of k0xþ l0yþm0t and z. Coefficients and parameters:
�ðzÞ ¼ cosðzÞ, �ðzÞ ¼ �0 ¼ 0, � ¼ 0, M ¼ 0:9999, a0 ¼ 0:1,
b0 ¼ 1, e0 ¼ 0, k0 ¼ l0 ¼ m0 ¼ 1, and !0 ¼ 0.

FIG. 2 (color online). Combined intensity distributions of the
periodic wave solutions 1 and 4, as functions of the propagation
distance, with � ¼ 1. (a) Distribution without and (b) with chirp.
Other parameters are the same as in Fig. 1.

FIG. 3 (color online). Light bullet soliton solutions without
chirp. The setup and parameters are as in Fig. 1, except for M ¼
1 and a0 ¼ 0.
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Our situation is different: The solutions are not radially
symmetric, and the modulation of both the diffraction or
dispersion and the nonlinearity is effected concurrently.
The issue of stability is involved and requiring a separate
report (in preparation). We perform numerical solution of
Eq. (1), with initial fields coming from Eq. (24), and with
alternating positive and negative regions of nonlinearity.
We utilize a split-step beam propagation method, adapted
for the z-dependent coefficients. Our preliminary results
indicate no collapse. Instead, stable propagation over tens
of diffraction lengths is observed. An example of such
behavior is displayed in Fig. 5, which essentially presents
a numerical rerun of Fig. 3(b).

In conclusion, we have solved analytically the ð3þ
1Þ-dimensional generalized nonlinear Schrödinger equa-
tion with distributed diffraction, dispersion, nonlinearity,
and gain. A number of exact periodic wave solutions are

found, and novel exact light bullet solutions are obtained.
The influence of the spatiotemporal chirp function on the
phase and the amplitude of solutions is displayed.
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FIG. 4 (color online). Light bullet soliton solutions with chirp.
Setup is the same as in Fig. 3, except for a0 ¼ 0:1.

FIG. 5 (color online). Numerical simulation of the light bullet
from Fig. 3(b). Initial data from Eq. (24) are propagated accord-
ing to Eq. (1) for 90 diffraction lengths along the z axis. Only the
dependence on t is shown. The initial profile is noted by open
circles. The curves to the left present intensity profiles at the left
turning point, the curves to the right the profiles at the right
turning point. The curves at the center are snapshots of the
profiles passing approximately through the point t ¼ 0 (i.e.,
the frames closest to t ¼ 0 are recorded). Three sets of 15 profiles
are overlapped at different z points, to show that no instabilities
develop.
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