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Abstract In this paper, we discuss the semicontinuities of orbital and limit set maps in
an impulsive semidynamical system and investigate their relationships with the stabilities
of orbits. Actually, we only deal with infinite impulsive trajectories under the hypotheses
that each prolongational set is compact in the phase space. We prove that if the limit set is
stable (eventually stable or eventually weakly stable), then the corresponding limit set map
is upper semicontinuous or lower semicontinuous, respectively. And if the limit set map
is upper semicontinuous (lower semicontinuous), then the corresponding limit set is stable
(eventually stable or eventually weakly stable, respectively). Furthermore, we give several
sufficient conditions to guarantee that limit sets are minimal .
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1 Introduction

Let X = (X, ρ) be a metric space with metric ρ. A semidynamical system on X is a triple
(X, π,R+), where R

+ is the set of all nonnegative reals and π : X × R
+ → X is a

continuous function satisfying
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(i) π(x,0) = x for all x ∈ X and
(ii) π(π(x, s), t) = π(x, s + t) for all x ∈ X and t, s ∈ R

+.

Sometimes, we denote a semidynamical system (X, π,R+) by (X, π). If R+ is replaced
byR, the triple (X, π,R) is a dynamical system. For each x ∈ X, the function πx : R+ → X

defined by πx(t) = π(x, t) is clearly continuous, and we call πx the trajectory of x. In
this paper, we denote π(x, t) by xt for brevity. Similarly, for A ⊂ X and B ⊂ R

+, set
AB = {xt : x ∈ A, t ∈ B}.

Let (X, π,R+) be a semidynamical system. Given x ∈ X, the set

C+(x) = {π(x, t) : t ∈ R
+} = {x}R+

is the positive orbit through x, which we also denote by π+(x). The closure of C+(x) in X
is denoted by K+(x), i.e., K+(x) = C+(x). Given x ∈ X and r ∈ R

+, we set

C+(x, r) = {xt : 0 ≤ t < r}.
For t ≥ 0 and x ∈ X, we define

F(x, t) = {y : π(y, t) = x}
and, for � ⊂ [0,+∞) and D ⊂ X, we set

F(D,�) = ∪{F(x, t) : x ∈ D, t ∈ �}.
A point x ∈ X is called an initial point, if F(x, t) = ∅ for all t > 0.

Now, we define semidynamical systems with impulse action. An impulsive semidy-
namical system (X,π;M, I) consists of a semidynamical system (X, π) together with a
nonempty closed subset M of X and a continuous function I : M → X such that for any
x ∈ M , there is an εx > 0 such that F(x, (0, εx)) ∩ M = ∅ and π(x, (0, εx)) ∩ M = ∅.
Notice that the points of M are isolated in every trajectory of the semidynamical system
(X,π). The set M is called the impulsive set, the function I is called the impulsive function,
and we write N = I (M), x+ = I (x) for every x ∈ M . We also define

M+(x) = (π+(x) ∩M)\{x}.
Let (X, π;M, I) be an impulsive semidynamical system and let x ∈ X. The impulsive

trajectory of x in (X, π;M, I) is a function π̃x defined on a subset [0, T (x)) of R+ (T (x)
may be ∞) to X inductively as follows: Set x = x0 = x+0 . If M+(x0) = ∅, then π̃x(t) =
π(x, t) for all t ∈ R

+. If M+(x0) �= ∅, there exists a positive s0 ∈ R
+ such that π(x0, s0) =

x1 ∈ M and π(x0, t) /∈ M for all 0 < t < s0. We define π̃x on [0, s0] by

π̃x(t) =
{

π(x, t), 0 ≤ t < s0,

x+1 , t = s0.

To complete the definition of π̃x in this case, we continue the above process starting at
x+1 . Thus, either M+ (

x+1
) = ∅, and we define π̃x(t) = π

(

x+1 , t − s0
)

for t ≥ s0 and
T (x) = ∞, or else M+ (

x+1
) �= ∅, which implies that there is an s1 > 0 as before, and we

define

π̃x(t) =
{

π
(

x+1 , t − s0
)

, s0 ≤ t < s0 + s1,

x+2 , t = s0 + s1,

where x2 = π
(

x+1 , s1
) ∈ M and π

(

x+1 , t
)

/∈ M for any t with 0 < t < s1. This pro-
cess either ends after a finite number of steps, if M+ (

x+n
) = ∅ for some value of n, or

M+ (

x+n
) �= ∅, n = 1, 2, . . . , and the process continues infinitely. This gives rise to either

a finite or infinite sequence of points xn in X, and with each x+n is associated a real num-
ber sn, where π

(

x+n , sn
) = xn+1 ∈ M and π

(

x+n , t
)

/∈ M for 0 < t < sn. The interval of
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definition of π̃x is clearly [0, T (x)), where T (x) =
∞
∑

n=0
sn. This completes the definition of

the trajectory π̃x .
Analogous to the nonimpulsive case, an impulsive semidynamical system (X, π;M, I)

satisfies the following two properties:

(i) π̃(x,0) = x for any x ∈ X and
(ii) π̃(π̃(x, s), t) = π̃ (x, s+t), for any x ∈ X, s, t ∈ [0, T (x)) such that s+t ∈ [0, T (x)).

Next, we define a function � from X into the extended positive reals R
+ ∪ {∞} as

follows: Let x ∈ X. If M+(x) = ∅, we set �(x) = ∞; otherwise, M+(x) �= ∅ and we set
�(x) = s, where π(x, t) /∈ M for any t ∈ (0, s) but π(x, s) ∈ M (i.e., �(x) is the smallest
positive time for which the positive trajectory of x meets M). For x ∈ X, we call �(x) the
“time without impulse” of x and π(x,�(x)) the impulsive point of x.

Let (X,π;M, I) be an impulsive semidynamical system. We shall often use the fol-
lowing fact that for any x ∈ X, 0 ≤ t < T (x), there exists a k = 0, 1, 2, . . . such that

t =
k−1
∑

i=0
�

(

x+i
) + t ′ and π̃ (x, t) = π

(

x+k , t ′
)

, where 0 ≤ t ′ < �
(

x+k
)

, x+0 = x and

−1
∑

i=0
�

(

x+i
) = 0.

Fix x ∈ X; one of the following properties holds:

(i) M+(x) = ∅ and hence the trajectory of x has no discontinuities.
(ii) For some n ≥ 1, each x+k is defined for k = 1, . . . , n and M+ (

x+n
) = ∅. In this case,

the trajectory of x has a finite number of discontinuities.
(iii) For any k ≥ 1, x+k is defined and M+ (

x+k
) �= ∅. In this case, the trajectory of x has

infinitely many discontinuities.

Clearly, if x satisfies (i) or (ii), then T (x) = ∞. If x satisfies (iii), then either T (x) = ∞
or T (x) ∈ (0,∞).

For brevity, sometimes we denote an impulsive semidynamical system (X, π;M, I) by
(X, π̃). Clearly, impulsive semidynamical systems present a more complex structure than
the nonimpulsive systems because of their irregularity. These systems present interesting
and important phenomena such as “beating,” “dying,” “merging,” “noncontinuation of solu-
tions,” etc. In recent years, the theory of such systems has been studied and developed
intensively. For instance, in [3], Ciesielski investigated the continuity of �. The stability of
invariant sets was studied by Ciesielski [4] and Kaul [7]. Some interesting results about the
limit sets were established by Bonotto and Federson [2] and Ding [5]. For the elementary
properties of impulsive dynamical systems, the reader is referred to books [1, 6, 8, 9].

Let (X, π̃) be an impulsive semidynamical system. Analogous to the case in semidynam-
ical systems, we denote π̃ (x, t) by x ∗ t . For A ⊂ X,B ⊂ R

+, set

A ∗ B = {x ∗ t : x ∈ A, t ∈ B}.
Thus, the set ˜C+(x) = {x} ∗ R

+ = {

π̃x (t) : t ∈ R
+}

is called the positive orbit through x
in (X, π̃) and its closure is denoted by ˜K+(x). Fix x ∈ X, ˜L+(x) = {y ∈ X : x ∗ tn →
y for some tn → T (x)and tn < T (x)} is the positive limit set of x, equivalently ˜L+(x) =
∩ {

˜K+(x ∗ t) : t ∈ R
+}

. The positive prolongation ˜D+(x) is defined by ˜D+(x) = {y ∈
X : xn ∗ tn → y for some {xn} ⊂ X with xn → x and {tn} ⊂ [0, T (x))}.

Clearly, the operators ˜K+, ˜L+, and ˜D+ can be considered as the maps from X to 2X,
where 2X is the set of all subsets of X. In [10], Saperstone and Nishihama investigated
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both the upper semicontinuity and lower semicontinuity of those limit set maps in a given
semidynamical system

(

X,π,R+)

defined on a metric space. It was proved in [10] that
the semicontinuities are closely related to the stabilities. Also, Saperstone and Nishihama
generalized an important result prompted by Boyarsky in [11], whose work concerned a
characterization of the limit sets of probability measures arising from diffusion processes.
In this paper, we go on the studies about semicontinuity of limit set maps in an impulsive
semidynamical system. In fact, we prove that if the limit sets are stable (eventually stable
or eventually weakly stable) then the corresponding limit set maps are upper semicontinu-
ous or lower semicontinuous, respectively (see Theorems 3.5 and 3.6). Also, we show that
the semicontiuity of limit set maps implies the minimality of corresponding limit sets (see
Theorems 4.6 and 4.7). Finally, we give some sufficient conditions to guarantee that limit
sets are minimal.

2 Definitions and Notations

Throughout this paper, there exists a semidynamical system (X, π) and an impulsive semi-
dynamical system (X, π̃) defined on a metric space (X, ρ). For any r > 0 and A ⊂ X,
let Nr(A) = {x : ρ(x,A) < r} denote the r-neighborhood of A, where the ρ(x,A)

is the distance from x to A. By A(A, δ, ε), we denote the annulus {x ∈ X : δ <

ρ(x,A) < ε}. Let K denote the collection of nonempty compact subsets of X and
h : K × K → R

+ be the Hausdorff metric corresponding to ρ. That is, if A, B ∈ K ,
h(A,B) = max{sup

x∈A ρ(x,B), sup
y∈B ρ(A, y)}.

Definition 2.1 A map f : X → K is called upper semicontinuous (USC) at x if for
every ε > 0, there exists a δ > 0 such that f (y) ⊂ Nε(f (x)) for all y ∈ Nδ(x). A map
f : X → K is called lower semicontinuous (LSC) at x if for every ε > 0, there exists a
δ > 0 such that f (x) ⊂ Nε(f (y)) for all y ∈ Nδ(x).

Equivalently, f is USC at x if and only if for any sequence xn → x,

sup{ρ(y, f (x)) : y ∈ f (xn)} → 0 as n → ∞,

and f is LSC at x if and only if for any sequence xn → x,

sup{ρ(y, f (xn)) : y ∈ f (x)} → 0 as n → ∞.

From the definition of Hausdorff metric on K , one can easily show that a map f from X
to K is continuous at x if and only if f is both USC and LSC at x.

From the point of an impulsive semidynamical system, the trajectories that are of inter-
est are those with an infinite number of discontinuities and with [0,∞) as the interval of
definition. We call them infinite trajectories.

Definition 2.2 Let (X, π̃) be an impulsive semidynamical system. If
{

x+n
}

is infinite and
∞
∑

i=0
si = ∞, then we call π̃x an infinite impulsive trajectory and set ̂N = {x ∈ N :

π̃x is an infinite impulsive trajectoty}.
We define the function tn : ̂N −→ R

+ as follows:

tn(x) =
n−1
∑

i=0

�
(

x+i
)

, n ≥ 1, and t0(x) = 0.
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Throughout this paper, we assume that the following additional hypotheses hold:

(i) N
⋂

M = ∅, namely for any x ∈ X, x+n /∈ M , n = 1, 2, 3, . . .,
(ii) � is continuous on X \M ,

(iii) For any x ∈ X, if �
(

x+n
)

< ∞, for n = 0, 1, 2, . . ., then x ∈ ̂N ,
(iv) ˜D+(x) is compact for every x ∈ X.

Obviously, under assumption (iii), T (x) = ∞ for any x ∈ X.
It is clear that π̃x is not a continuous function. However, the following lemma holds:

Lemma 2.1 [7]. Suppose that {xn} is a sequence in X and convergent to x ∈ X \ M .
Then, for any t ∈ [0,∞), there exists a sequence of real numbers εn, εn → 0, such that
π̃(xn, t + εn) → π̃ (x, t). In particular, if π̃(x, t) = x+1 , then π̃ (xn, t + εn) can be chosen
to be x+n,1.

Definition 2.3 [7]. A subset C of X is said to be positively invariant in (X, π̃) if for any
x ∈ C \M , ˜C+(x) ⊂ C.

Obviously, ˜C+(x) is positively invariant set for any x ∈ X.

Lemma 2.2 [7]. Suppose C ⊂ X is positively invariant in (X, π̃), then C is positively
invariant in (X, π̃).

Proof Suppose x ∈ C \ M and t ∈ [0,∞). Then, there exists a sequence {xn} in C

with xn → x. Without loss of generality, we assume that xn /∈ M . Hence, by Lemma 2.1,
π̃ (xn, t + εn) → π̃ (x, t) for some sequence εn → 0. Since C is positively invariant and
xn ∈ C \M , so π̃ (xn, t + εn) ∈ C; consequently, π̃ (x, t) ∈ C. This completes the proof.

Analogous to the case of semidynamical systems, we can show that ˜D+(x) =
⋂{Nr(x) ∗ R+ : r > 0}. Thus, the set ˜D+(x) is positively invariant.

3 The Semicontinuity of Map ˜K+

Theorem 3.2 generalizes a result in [10], and its proof is not a simple analogy of that in
semidynamical systems. In order to prove Theorem 3.2, we need the following lemma:

Lemma 3.1 Let (X, π̃) be an impulsive semidynamical system and x ∈ X. If ˜D+(x) =
⋂{Nr(x) ∗ R+ : r > 0} has a compact neighborhood, then for any ε > 0, there is a δ > 0
such that Nδ(x) ∗ R+ ⊂ Nε(˜D

+(x)).

Proof Suppose to the contrary that there exist an ε > 0 and sequences {xn}, {tn} with

xn → x, tn ∈ R
+ such that xn∗tn /∈ Nε(˜D+(x)). Without loss of generality, we assume that

Nε(˜D+(x)) is compact, since ˜D+(x) has a compact neighborhood and ˜D+(x) is compact.
If there are infinitely many n such that tn < �(xn), we choose a subsequence {nk} such

that tnk < �(xnk ) for each k. Then, xnk ∗ tnk = xnk tnk , and for every k, there is an snk ∈
[0, tnk ] such that xnk ∗ snk ∈ ∂Nε(˜D+(x)). By the compactness of ∂Nε(˜D+(x)), we can

assume that xnk ∗snk → y ∈ ˜D+(x). This is a contradiction since ∂Nε(˜D+(x))
⋂

˜D+(x) =
∅.
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If there are only finitely many n such that tn < �(xn) holds, we may assume that
�(xn) ≤ tn for all n ∈ N . For brevity, we set �n = {

t : π̃ (xn, t) ∈ Nε(˜D
+(x))

}

and
τn = inf

{

t : π̃(xn, t) /∈ Nε(˜D
+(x))

}

. Notice that xn ∗ τn /∈ Nε

(

˜D+(x)
)

since π̃ (xn, ·) is
right-continuous.

Now, take a δ ∈ (0, ε). We show that there is an n0 ∈ N such that for any n ≥ n0,
pn ∈ xn ∗ �n, there is a qn ∈ ˜D+(x) such that ρ(pn, qn) < δ. Otherwise, there are
sequences nk → +∞ and unk ∈ �nk such that ρ(π̃

(

xnk , unk
)

, ˜D+(x)) ≥ δ. This means

that π̃
(

xnk , unk
) ∈ A (

˜D+(x), δ, ε
)

. Since A(˜D+(x), δ, ε) is compact, we assume that
π̃

(

xnk , unk
) → y ∈ ˜D+(x). It is a contradiction.

For any n ≥ n0, we have xn ∗ [0, τn) ⊂ Nδ

(

˜D+(x)
)

since [0, τn) ⊂ �n. And from the
discussion above, we also have xn ∗ τn /∈ Nε

(

˜D+(x)
)

, which means that π̃(xn, ·) is not

continuous at τn; hence, xn ∗ τn = I (yn) for some yn ∈ M . Moreover, yn ∈ Nδ

(

˜D+(x)
)

since π̃(xn, t) → yn as t ↗ τn. According to the compactness of Nδ

(

˜D+(x)
)

, we assume

that yn → y ∈ Nδ

(

˜D+(x)
)

. From the continuity of I, we get I (yn) → I (y); this means
that I (y) /∈ ˜D+(x)) since I (yn) /∈ Nε

(

˜D+(x)
)

for every n. On the other hand, we have

I (y) = lim
n→∞ I (yn) = lim

n→∞ xn ∗ τn = lim
n→∞ π̃(xn, τn) ∈ ˜D+(x).

This is a contradiction. Thus, the proof is completed.

Theorem 3.2 If ˜K+ is USC at x, then ˜K+(x) = ˜D+(x). The converse is true provided that
˜K+(x) has a compact neighborhood.

Proof Suppose ˜K+ is USC at x. Since ˜K+(x) ⊂ ˜D+(x) always holds, we need only
to show that ˜D+(x) ⊂ ˜K+(x). Let y ∈ ˜D+(x). By the definition of ˜D+(x), there are
sequences xn → x, tn ∈ R

+ such that xn ∗ tn → y as n → ∞. As each xn ∗ tn ∈ ˜K+(xn)
and ˜K+ is USC at x, we have

ρ(xn ∗ tn, ˜K+(x)) ≤ sup
{

ρ(y, ˜K+(x)) : y ∈ ˜K+(xn)
} → 0.

Since ˜K+(x) is closed, it follows that y ∈ ˜K+(x). Hence, ˜D+(x) ⊂ ˜K+(x) and so
˜D+(x) = ˜K+(x).

Conversely, suppose that ˜K+(x) = ˜D+(x) and ˜K+(x) has a compact neighborhood.
According to Lemma 3.1, for every ε > 0, there exists a δ > 0 such that Nδ(x) ∗ R+ ⊂
Nε

(

˜K+(x)
)

.
Thus, for any y ∈ Nδ(x), we have

˜K+(y)) ⊂ Nδ(x) ∗ R+ ⊂ Nε

(

˜K+(x)
)

.

Consequently, ˜K+ is USC at x.
In order to show that ˜K+ is always LSC on X \ M , we need the following new

characterization of ˜K+(x) and ˜L+(x):

Definition 3.1 [10]. Let x ∈ X and set

˜Q+(x) = {

y ∈ X | ∀xn → x, ∃tn ∈ R
+such that xn ∗ tn → y

}

,

˜W+(x) = {y ∈ X | ∀xn → x, ∃tn → +∞ such that xn ∗ tn → y} .

Theorem 3.3 ˜Q+(x) = ˜K+(x) and ˜W+(x) = ˜L+(x) for each x ∈ X \M .
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Proof Suppose x ∈ X \M . It is easy to see that ˜Q+(x) ⊂ ˜K+(x) and ˜W+(x) ⊂ ˜L+(x)
by picking the sequence xn = x. We only show the reverse inclusion. First, we show that
x ∗ t ∈ ˜Q+(x) for any t ∈ R

+. In fact, let xn → x; according to Lemma 2.1, there is a
sequence of real numbers εn, εn → 0 such that xn ∗ (t + εn) → x ∗ t . Then, let tn = t + εn

for every n. It follows that xn∗ tn = xn∗(t+εn) → x ∗ t . Thus, ˜C+(x) ⊂ ˜Q+(x) ⊂ ˜K+(x).
Furthermore, it is evident from the definition of ˜Q+(x) that ˜Q+(x) is closed. Consequently,
˜Q+(x) = ˜K+(x).

To prove that ˜L+(x) ⊂ ˜W+(x), it is sufficient to show that ˜W+(x) ⊃
⋂{

˜Q+(x ∗ n) : n ∈ N+}

. Suppose y ∈ ˜Q+(x ∗ n) for every n ∈ N and xk → x.
Then, for each n, there is a sequence εnk → 0 such that xk ∗ (

n+ εnk

) → x ∗ n

as k → ∞ according to Lemma 2.1. For each n, there exists a tnk ∈ R
+ such that

(

xk ∗
(

n+ εnk

)) ∗ tnk = xk ∗
(

n+ εnk + tnk

) → y as k → ∞. For each n, choose kn such
that ρ

((

xk ∗
(

n+ εnk

)) ∗ tnk , y
)

< 1/n whenever k ≥ kn. Without loss of generality, we can
assume that k1 < k2 < . . .. We now construct a sequence tk → ∞ such that xk ∗ tk → y.
For 1 ≤ k < k2, set tk = 1 + ε1

k + t1
k . For kn ≤ k < kn+1(n ≥ 2), set tk = (

n+ εnk + tnk

)

.
Then, we have tk → ∞ and xk ∗ tk → y as k → ∞. Thus, y ∈ ˜W+(x) and the proof is
completed.

Theorem 3.4 The map ˜K+ is LSC on X \M .

Proof Let x ∈ X \ M . Suppose that ˜K+ is not LSC at x. Then, there exist an ε > 0 and
a sequence xn → x such that sup

{

ρ(y, ˜K+(xn)) : y ∈ ˜K+(x)
} ≥ ε for each n. From the

compactness of ˜K+(x), there exists a sequence yn ∈ ˜K+(x) such that ρ
(

yn, ˜K+(xn)
) ≥ ε.

We may assume that yn → y ∈ ˜K+(x) = ˜Q+(x) for some y. By the definition of ˜Q+(x),
there is a sequence {tn} ⊂ R

+ such that xn ∗ tn → y. Consequently, ρ(xn ∗ tn, yn) → 0.
As xn ∗ tn ∈ ˜K+(xn) for each n, we have ρ

(

yn, ˜K+(xn)
) ≤ ρ(yn, xn ∗ tn) → 0. It is a

contradiction. Hence, ˜K+ is LSC at x.

Corollary 3.5 If ˜K+(x) is compact for some x ∈ X \M , then the following statements are
equivalent:

(i) ˜K+ is USC at x.
(ii) ˜K+ is continuous at x.

Definition 3.2 [7]. Let (X, π̃) be an impulsive semidynamical system. A subset C of X
is said to be stable in (X, π̃) if every neighborhood of C contains a positively invariant
neighborhood of C. Equivalently, C is said to be stable if for each neighborhood U of C,
there is a neighborhood V of C such that ˜C+(x) ⊂ U for every x ∈ V \M . π̃ is said to be
stable if each ˜K+(x) is positively stable.

Note that the stability defined in Definition 3.2 is a positive stability. Since we are dealing
with the system only in positive direction, we have dispensed with the modifier “positive”
for convenience.

The following theorem shows that the upper semicontinuity of ˜K+ is related to the
stability of ˜K+(x):

Theorem 3.6 Let (X, π̃) be an impulsive semidynamical system and x ∈ X. If ˜K+ is USC
on ˜K+(x) \M , then ˜K+(x) is stable.
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Proof Suppose ˜K+ is USC on ˜K+(x) \ M . Let U be a neighborhood of ˜K+(x). Since
˜K+(x) is compact, we may choose an ε > 0 such that Nε

(

˜K+(x)
) ⊂ U . Then, for any

z ∈ ˜K+(x) \M , there is a δz > 0 such that ˜K+(y) ⊂ Nε/2
(

˜K+(z)
)

whenever y ∈ Nδz (z).
On the other hand, ˜K+(z) ⊂ ˜K+(x) for every z ∈ ˜K+(x) \ M since ˜K+(x) is a posi-
tively invariant and closed set. Set V = ⋃{

Nδz(z) : z ∈ ˜K+(x) \M}

. By the definition
of an impulsive semidynamical system, we know that int

(

M
⋂

˜L+(x)
) = ∅. That is,

int
(

˜K+(x)
⋂

M
) = ∅. Thus, V is an open neighborhood of ˜K+(x). It follows that

˜C+(y) ⊂
⋃

{

Nε/2
(

˜K+(z)
) : z ∈ ˜K+(x) \M} ⊂ Nε

(

˜K+(x)
) ⊂ U for all y ∈ V \M.

Thus, ˜K+(x) is stable.

Theorem 3.7 Let x ∈ X \M . If ˜K+(x) is stable, then ˜K+ is USC at x.

Proof Suppose ˜K+(x) is stable for some x ∈ X \M . For any ε > 0, there exists a δ > 0
with Nδ(x) ∩ M = ∅ such that ˜C+(y) ⊂ Nε/2

(

˜K+(x)
)

for all y ∈ Nδ

(

˜K+(x)
) \ M . In

particular, if y ∈ Nδ(x) ⊂ Nδ

(

˜K+(x)
) \M , then

˜K+(y) ⊂ Nε/2
(

˜K+(x)
) ⊂ Nε

(

˜K+(x)
)

.

Consequently, ˜K+ is USC at x.

Theorem 3.8 Let x ∈ X \M . If ˜C+(x) is stable, then ˜K+ and ˜D+ are USC at x.

Proof Suppose ˜C+(x) is stable. For a fixed ε > 0, there is a neighborhood U of ˜C+(x)
such that (U \M) ∗ R+ ⊂ Nε/2

(

˜C+(x)
)

. Since x /∈ M and U is also a neighborhood of x,
we may choose a δ > 0 such that Nδ(x) ∩M = ∅ and Nδ(x) ⊂ U , i.e., Nδ(x) ⊂ U \M .
Consequently, we have

Nδ(x) ∗ R+ ⊂ Nε/2
(

˜C+(x)
) ⊂ Nε/2

(

˜K+(x)
) ⊂ Nε/2

(

˜D+(x)
)

.

Since for each y ∈ Nδ(x), there exists a δ1 > 0 such that Nδ1(y) ⊂ Nδ(x). Hence, we
also have

Nδ1 (y) ∗R+ ⊂ Nε/2
(

˜C+(x)
) ⊂ Nε/2

(

˜K+(x)
) ⊂ Nε/2

(

˜D+(x)
)

.

Since ˜D+(y) = ⋂

{

Nr(y) ∗ R+ : r > 0
}

, we have ˜D+(y) ⊂ Nδ1(y) ∗ R+. Therefore,

˜K+(y) ⊂ ˜D+(y) ⊂ Nε/2
(

˜K+(x)
) ⊂ Nε

(

˜K+(x)
) ⊂ Nε

(

˜D+(x)
)

for all y ∈ Nδ(x).

Consequently, ˜K+ and ˜D+ are USC at x.

4 The Semicontinuity of Map ˜L+

Now, we present a result about the continuity of π̃ at a nonimpulsive time.

Lemma 4.1 Let (X, π̃) be an impulsive semidynamical system. Then, for each x ∈ X \M ,

ε > 0 and t �= tn(x), n = 1, 2, 3, . . ., where tn(x) =
n−1
∑

i=0
�

(

x+i
)

, there exists a δ =
δ(ε, x, t) > 0 such that Nδ(x) ∗ t ⊂ Nε(x ∗ t).
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Proof Suppose it is not the case; then, there exist an ε > 0 and a sequence xn → x such that
xn ∗ t /∈ Nε(x ∗ t). Since t �= tn(x) for all n ∈ N , we may assume that tk(x) < t < tk+1(x)

for some k ∈ N . By the continuity of �(x), we have tk(x) is continuous on X \M for each
k. Therefore, tk(xn) → tk(x) as n → ∞ for every k ∈ N . Without loss of generality, we
assume that tk(xn) < t < tk+1(xn) holds for every n ∈ N . Since for each k, x+n,k → x+k as
n → ∞, we have

xn ∗ t = π
(

x+n,k, t − tk(xn)
)

→ π
(

x+k , t − tk(x)
)

= x ∗ t ∈ Nε(x ∗ t).
This is impossible. Consequently, the proof is completed.

Definition 4.1 A subset C of X is said to be positively minimal if C = ˜K+(x) for each
x ∈ C \M . Or, equivalently, C is said to be positively minimal if C is closed and positively
invariant, but none of its nonempty proper subsets has these two properties.

Lemma 4.2 Suppose a subset C ⊂ X; then, C is positively minimal if and only if C =
˜L+(x) for each x ∈ C \M .

The proof is trivial, so it is omitted.

Definition 4.2 [10]. A set C ⊂ X is called eventually stable if for every neighborhood U
of C, there exists a neighborhood V of C such that if y ∈ V \M , there is a τ = τ(y) > 0
such that y ∗ [τ,∞) ⊂ U . If the τ above does not depend upon y ∈ V \M , then C is called
uniformly eventually stable.

Theorem 4.3 Suppose x ∈ X. If the map ˜L+ is USC on ˜L+(x)\M , then ˜L+(x) is positively
minimal.

Proof Suppose ˜L+ is USC on ˜L+(x) \ M . Let y ∈ ˜L+(x) \ M . We need only to show
˜L+(x) ⊂ ˜L+(y). Since y ∈ ˜L+(x), there is a sequence tn → ∞ such that x ∗ tn → y. Let
z ∈ ˜L+(x). Then, z ∈ ˜L+(x ∗ tn) = ˜L+(x) for each n. Since

ρ
(

z,˜L+(y)
) ≤ sup

{

ρ
(

w,˜L+(y)
) : w ∈ ˜L+ (x ∗ tn)

} → 0 as n → ∞,

it follows that z ∈ ˜L+(y). Consequently, ˜L+(x) ⊂ ˜L+(y) and ˜L+(x) are positively
minimal.

Theorem 4.4 Suppose x ∈ X. If the map ˜L+ is USC on ˜L+(x)\M , then ˜L+(x) is eventually
stable.

Proof Suppose ˜L+ is USC on ˜L+(x) \ M . Let ε > 0 and y ∈ ˜L+(x) \ M; there exists
a δy > 0 such that ˜L+(z) ⊂ Nε

(

˜L+(y)
)

for z ∈ Nδy (y). According to Theorem 4.3, we
have that ˜L+(x) is positively minimal. Hence, ˜L+(x) = ˜L+(y) for every y ∈ ˜L+(x) \M .
Thus, ˜L+(z) ⊂ Nε

(

˜L+(x)
)

for each z ∈ Nδy (y). Set V = ⋃ {

Nδy (y) : y ∈ ˜L+(x) \M}

.
Similar to the case in Theorem 3.6, we have that V is an open neighborhood of ˜L+(x). Then,
˜L+(z) ⊂ Nε

(

˜L+(x)
)

for each z ∈ V \M . This shows that ˜L+(x) is eventually stable.

Theorem 4.5 Suppose x ∈ X. If ˜L+(x) is positively minimal and eventually stable, then
˜L+ is USC on ˜L+(x) \M .

Proof Suppose that ˜L+(x) is positively minimal and eventually stable. Let y ∈ ˜L+(x)\M .
Then, for each ε > 0, we choose a δ > 0 with Nδ(y)

⋂

M = ∅ such that for every
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z ∈ Nδ

(

˜L+(x)
) \ M , there exists τ = τ(z) > 0 such that ˜C+(z ∗ τ) ⊂ Nε/2

(

˜L+(x)
)

.
Therefore, for every z ∈ Nδ(y) ⊂ Nδ

(

˜L+(x)
) \M , we have

˜L+(z) ⊂ Nε/2
(

˜L+(x)
) ⊂ Nε

(

˜L+(x)
) = Nε

(

˜L+(y)
)

.

Consequently, ˜L+ is USC at y. The proof is completed.

Theorem 4.6 Given x ∈ X. If the map ˜L+ is USC on ˜L+(x) \M and ˜L+(x) is eventually
stable, then ˜L+ is USC on ˜A

(

˜L+(x)
)

, where ˜A
(

˜L+(x)
) = {

y ∈ X : ˜L+(y) ⊂ ˜L+(x)
}

.

Proof Note that ˜A
(

˜L+(x)
)

is the region of attraction of ˜L+(x) (see [12]). Let y ∈
˜A

(

˜L+(x)
)

; then, ˜L+(y) ⊂ ˜L+(x). According to Theorem 4.3, ˜L+(x) is positively mini-
mal; therefore, ˜L+(y) = ˜L+(x). Thus, it will be sufficient to show that ˜L+ is USC at x ∈
˜A

(

˜L+(x)
)

. Since ˜L+(x) is eventually stable, for each ε > 0, there is a δ1 > 0 such that for
every z ∈ Nδ1

(

˜L+(x)
)\M , there exists T = T (z) ≥ 0 such that ˜C+(z∗T ) ⊂ Nε/2

(

˜L+(x)
)

.
On the other hand, there exists a τ > 0 such that x ∗τ ∈ Nδ1

(

˜L+(x)
)\M , where τ �= tn(x),

n = 1, 2, 3, . . .. By Lemma 4.1, there exists a δ > 0 such that Nδ(x)∗τ ⊂ Nδ1

(

˜L+(x)
)\M .

Thus, for each y ∈ Nδ(x), we have ˜L+(y) = ˜L+(y ∗ τ) ⊂ Nε/2
(

˜L+(x)
) ⊂ Nε

(

˜L+(x)
)

.
Hence, ˜L+ is USC at x.

Theorem 4.7 If C ⊂ X is a nonempty, compact, and positively invariant set, then C
contains a positively minimal set.

Proof Let C ⊂ X be a nonempty, compact, and positively invariant set. Then, the collection
of all nonempty, closed, and positively invariant subsets of C is partially ordered by set
inclusion. Now, let {Cλ}λ∈� be a linearly ordered family of nonempty, closed, and positively
invariant subsets of C. From the compactness of C, it follows that

⋂{Cλ : λ ∈ �} is a
nonempty, closed, and positively invariant subset of C, and clearly, it is the lower bound
of the linearly ordered family {Cλ}λ∈�. Consequently, by an equivalent version of Zorn’s
lemma, we obtain that C contains a positively minimal set.

Theorem 4.8 Let x ∈ X. If ˜L+(y) is eventually stable for each y ∈ ˜L+(x)\M , then ˜L+(x)
is positively minimal.

Proof If ˜L+(x) is not positively minimal, then by Theorem 4.7, there exists a positively
minimal set C with ∅ �= C � ˜L+(x). Obviously, x /∈ C \M . Let y ∈ ˜L+(x) \ C, 0 < ε <

ρ(y,C), and z ∈ C \M (⊂ ˜L+(x) \M)

. By assumption, ˜L+(z) is eventually stable; then,
there exists a δ > 0 such that for every y′ ∈ Nδ

(

˜L+(z)
)\M , there is a T = T (y′) ≥ 0 such

that ˜C+(y′∗T ) ⊂ Nε/2
(

˜L+(z)
)

. Since z ∈ C\M ⊂ C = ˜L+(z) ⊂ ˜L+(x), there is a τ1 ≥ 0
such that x ∗ τ1 ∈ Nδ

(

˜L+(z)
) \M , where τ1 �= tn(x), n = 1, 2, 3, . . .. Thus, there exists a

T1 = T1(x ∗τ1) ≥ 0 such that (x ∗τ1)∗[T1,∞) = x ∗[τ1+T1,∞) ⊂ Nε/2
(

˜L+(z)
)

. Hence,
˜L+(x) ⊂ Nε/2

(

˜L+(z)
) ⊂ Nε

(

˜L+(z)
)

. It leads to a contradiction of the fact y ∈ ˜L+(x) but
y /∈ Nε

(

˜L+(z)
) = Nε(C). Consequently, ˜L+(x) must be positively minimal.

Definition 4.3 [10]. A subset C ⊂ X is called eventually weakly stable if for every neigh-
borhood U of C, there exists a neighborhood V of C such that for every y ∈ V \M there is
a sequence tn → ∞ such that y ∗ tn ∈ U .
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Theorem 4.9 Let x ∈ X. For each y ∈ ˜L+(x) \ M , ˜L+(y) is positively minimal and
˜L+(y)

⋂

M = ∅. Then, the map ˜L+ is LSC on ˜L+(x)\M if and only if ˜L+(z) is eventually
weakly stable for every z ∈ ˜L+(x) \M .

Proof Suppose that ˜L+ is LSC on ˜L+(x) \ M . If ˜L+(z) is not eventually weakly stable
for some z ∈ ˜L+(x) \ M , then there exist an ε > 0 and a sequence {yn} ⊂ X \ M

with yn → y ∈ ˜L+(z) \ M such that yn ∗ τ is ultimately in X \ Nε

(

˜L+(z)
)

. Hence,
˜L+(yn) ⊂ X \Nε

(

˜L+(z)
)

. It follows that

sup
{

ρ(ω,˜L+(yn)) : ω ∈ ˜L+(y)
} ≥ ε with yn → y.

This is a contradiction, since ˜L+ is LSC at y ∈ ˜L+(x) \M .
Conversely, suppose that ˜L+(z) is eventually weakly stable for every z ∈ ˜L+(x) \ M .

If ˜L+ is not LSC at y ∈ ˜L+(x) \ M , then there exist an ε > 0 and yn → y so that
sup

{

ρ
(

ω,˜L+(yn)
) : ω ∈ ˜L+(y)

} ≥ ε for each n ∈ N . The compactness of ˜L+(y) implies
that there exist an N1 > 0 and a v ∈ ˜L+(y) such that ρ

(

v,˜L+(yn)
) ≥ ε/2 for n ≥ N1.

Since ˜L+(y) is positively minimal, for each z ∈ ˜L+(y) \M , there is a Tz = T (z) ≥ 0 such
that z ∗ Tz ∈ Nε/4(v), where Tz �= tn(z), n = 1,2, 3, . . .. By Lemma 4.1, there exists an
rz > 0 such that Nrz (z)∗Tz ⊂ Nε/4(v). Set V = ⋃{

Nrz (z) : z ∈ ˜L+(y) \M}

with Tz ≥ 0,
rz > 0 such that Nrz (z) ∗ Tz ⊂ Nε/4(v). Obviously, V is an open neighborhood of ˜L+(y).
Choose a δ > 0 such that

Nδ(˜L
+(y)) ⊂ V.

According to Theorem 3.3, there is a sequence tn → ∞ such that yn ∗ tn → v.
By the eventually weakly stability of ˜L+(y), there exists an α > 0 such that for every

z′ ∈ Nα

(

˜L+(y)
)\M , there are tk ′ → ∞ such that z′∗tk ′ ∈ Nδ(˜L

+(y)). Choose an N2 ≥ N1

such that yn ∗ tn ∈ Nα

(

˜L+(y)
) \ M for every n ≥ N2. Fix an n ≥ N2. Then, there exist

tnk → ∞ such that (yn ∗ tn) ∗ tnk ∈ Nδ

(

˜L+(y)
)

. The compactness of ˜K+(yn) implies that
˜L+(yn∗tn)⋂

Nδ

(

˜L+(y)
) = ˜L+(yn)

⋂

Nδ

(

˜L+(y)
) �= ∅. Let ωn ∈ ˜L+(yn)

⋂

Nδ

(

˜L+(y)
)

.
Then, ρ

(

ωn,˜L
+(y)

)

< δ, and there exists a z ∈ ˜L+(y)\M such that ωn ∈ Nrz (z) and ωn ∗
Tz ∈ Nε/4(v). Thus, ˜L+(yn))

⋂

Nε/4(v) �= ∅ for n ≥ N2. It follows that ρ
(

v,˜L+(yn)
)

<

ε/4. This is a contradiction. Consequently, ˜L+ is LSC at y ∈ ˜L+(x) \ M . The proof is
completed.
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