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In this study, a fuzzy stochastic two-stage programming (FSTP) approach is developed for water
resources management under uncertainty. The concept of fuzzy random variable expressed as param-
eters’ uncertainties with both stochastic and fuzzy characteristics was used in the method. FSTP has
advantages in uncertainty reflection and policy analysis. FSTP integrates the fuzzy robust programming,
chance-constrained programming and two-stage stochastic programming (TSP) within a general opti-
mization framework. FSTP can incorporate pre-regulated water resources management policies directly
into its optimization process. Thus, various policy scenarios with different economic penalties (when the
promised amounts are not delivered) can be analyzed. FSTP is applied to a water resources management
system with three users. The results indicate that reasonable solutions were generated, thus a number of
decision alternatives can be generated under different levels of stream flows, a-cut levels and different
levels of constraint-violation probability. The developed FSTP was also compared with TSP to exhibit its
advantages in dealing with multiple forms of uncertainties.
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1. Introduction

Water resources management is related to many technical,
social, environmental, institutional, political and financial factors
(Zarghaami, 2006). However, in the 21st century, the available
water resources are becoming over utilized and there is an urgent
need to develop sound management plans (Wheida and
Verhoeven, 2007). The competitions for water among municipal,
industrial and agricultural users have been intensifying. The
disparate groups of water users need to know how much water
they can expect in order to make appropriate decisions regarding
their various activities and investments. If the promised water
cannot be delivered due to insufficient supply, users will have to
either obtain water from higher-priced alternatives or curb their
development plans (Magsood et al., 2005).
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In water resources management, uncertainties that exist in
many system parameters could intensify the conflict-laden issue of
water allocation among competing municipal, industrial and agri-
cultural interests (Huang and Chang, 2003). The above complexities
could become further compounded through not only interactions
among the uncertain parameters but also combinations of the
uncertainties as presented in multiple formats. In analyzing water
resources systems, inexact optimization methods were considered
useful for planning water resources systems under uncertainty
(Huang and Loucks, 2000; Magsood et al., 2005; Jung et al., 2006; Li
et al., 2006; Dessai and Hulme, 2007; Wu et al., 2007; Guo and
Huang, 2009). Two-stage stochastic programming (TSP) is effec-
tive for problems where an analysis of policy scenarios is desired
and when the right-hand side coefficients are random with known
probability distributions. The advantage of TSP is its capability of
guiding corrective actions after a random event has taken place. In
TSP, a decision is firstly undertaken before values of random vari-
ables are known; then, after the random events have happened and
their values are known, a second decision is made in order to
minimize “penalties” that may appear due to any infeasibility. The
TSP methods were widely explored over the past decades (Kall,
1979, 1982; Wang and Adams, 1986; Beraldi et al., 2000; Dai
et al,, 2000; Huang and Loucks, 2000; Luo et al., 2003; Ahmed


mailto:guoping@iseis.org
mailto:gordon.huang@uregina.ca
mailto:wangxl@tju.edu.cn
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft

1574 P. Guo et al. / Environmental Modelling & Software 25 (2010) 1573—1581

et al., 2004; Magsood et al., 2005; Guo et al., 2008a). Fuzzy opti-
mization is a flexible approach that permits an adequate solution of
real-world problems in the presence of vague information. The
fuzzy programming (FP) method considers uncertainties as fuzzy
sets and is effective in reflecting ambiguity and vagueness in
resource availabilities (Li et al, 2007). The chance-constrained
programming (CCP) method was used to deal with random
uncertainty information. CCP required that all of the constraints be
satisfied in a proportion of cases under given probability levels
(Loucks et al., 1981). Previously, a number of research works for FP
and CCP methods were undertaken (Huang, 1998; Huang et al.,
2001; Liu and Iwamura, 1998; Debjani, 2002; Cooper et al., 2004;
Yang and Wen, 2005; Guo et al., 2008Db, c, 2009).

However, a remarkable limitation of the aforementioned
methods is their incapability in reflecting parameter’s multiple
uncertainties presented as combinations of fuzzy and probability
distributions. In many real-world problems, a number of parameters
can hardly be expressed in conventional fuzzy or stochastic formats;
instead, they may have characteristics of both probability distribu-
tions and fuzzy sets (Luhandjula, 2004). The concept of fuzzy random
variable (FRV) was first defined by Kwakernaak (1978, 1979). When
the parameters have characteristics of both randomness and fuzzi-
ness, the fuzzy random variables would be included in the model.
Through the fuzzy random variables, the parameters’ multiple
uncertainties could be expressed. Therefore, to address fuzzy and
probabilistic uncertainties, both fuzzy programming and stochastic
programming can be integrated within a general optimization
framework (Luhandjula and Gupta, 1996; Luhandjula, 2004, 2006;
Liu, 1997, 2001; Katagiri et al., 2005; Liu and Liu, 2005; Huang, 2006).

One potential approach for accounting for various uncertainties in
the constraints’ left- and right-hand sides is to integrate the fuzzy
robust programming (FRP), chance-constrained programming (CCP),
and two-stage stochastic programming (TSP) within a general opti-
mization framework. This research aims to develop a fuzzy stochastic
two-stage programming (FSTP) method for water resources
management under uncertainty. FSTP can handle uncertainties in left-
hand sides presented as fuzzy sets and those in right-hand sides as
probability distributions and fuzzy random variables. The developed
FSTP will then be applied to a case of water resources management to
demonstrate its applicability. FSTP can incorporate pre-regulated
water resources management policies directly into its optimization
process. Thus, various policy scenarios with different economic
penalties (when the promised amounts are not delivered) can be
analyzed. The developed FSTP will also be compared with TSP to
exhibit its advantages in dealing with multiple forms of uncertainties.

2. Modeling formulation
2.1. Problem formulation

The water manager is responsible for allocating the scarce water
supply to the competing users within multiple periods. The future
availability of this water supply is uncertain. The manager needs to
create a plan to effectively allocate the uncertain supply of water to
the three users in order to maximize the overall system benefit
while simultaneously considering the system disruption risk
attributable to the uncertainties. Based on the regional water
management policies, an allowable flow level to each user must be
regulated. If this level is satisfied, it will result in a net benefit to the
system. However, if it is not satisfied, the shortage will lead to
a decreased net system benefit. Under such a situation, the shortage
amount will be the targeted allocation minus the actual allocation
amount. Uncertainties of seasonal water flows presented as prob-
ability distributions should also be reflected. The distribution of
each seasonal water flow can be converted into an equivalent set of

discrete values (Huang and Loucks, 2000). This leads to a two-stage
stochastic programming (TSP) problem as follows:

m m n

max f = ZBI'WI' 72 ZPJC&WI*AU) (18)
i=1 i=1j=1

subject to

m

Y A(I+E) <q, Vi (1b)

i=1

[water availability constraints],

Aj <W; < Wi, Vi (1c)
[allowable water-allocation constraints],

Aj>0, Vij (1d)

[non-negativity and technical constraints]

In model (1), the water-allocation targets (W;) must be set at the
first stage before the stream flows (q;) are known. The water-allo-
cation plan (Aj;) will thus be determined during the second stage
when the stochastic stream flows are known. £ is the loss rate of
water process during transportation. The 1" ; B;W; is the first-
stage decision. The > [ ; Y1 p;Gi(W; — Ay) is the second-stage
recourse when the random event has happened (Kall, 1979). Model
(1) can reflect uncertainties in stream flows presented as proba-
bility density functions. However, in many real-world problems,
the quality of the uncertain information may be more complex,
especially, in large-scale models.

2.2. Methodology

The fuzzy robust linear programming (FRLP) involves the opti-
mization of a precise objective function in a fuzzy decision space
delimited by constraints with fuzzy coefficients and capacities
(Inuiguchi and Sakawa, 1998). Consider a FRLP problem as follows
(Leung, 1988):

min f=CX (2a)
subject to

AX<B (2b)
X>0 (2c)

where Ce{R}'*" and Xe{R}™'; {R} denote a set of numbers;
Ae {R}™ ™ and Be {R}™! are fuzzy sets; symbols = and < present
fuzzy equality and inequality; Let ¢; be the jth element of C, a;; be
the ith row and jth line element of A, b; be the ith element of B, x; be
the jth element of X, and f be the objective’s aspiration level.

A1X1BAX B - DAXn <B (3)

where Aj (j=1, 2, ..., n) and B are fuzzy subsets, and symbol &
denotes the addition of fuzzy subsets. Fuzziness of the decision
space is due to uncertainties in the coefficients A; and B. Letting Uj
and V be base variables imposed by fuzzy subsets A; and B, we have:

Ha s Uj—[0,1] (4a)
g V—1[0.1] (4b)

where Ha, indicates the possibility of consuming a specific amount
of resource by activity j, and up indicates the possible availability of
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resource B. Fuzzy subset N can be expressed as follows (Dubois and
Prade, 1978):

F (%), if —ew<x<m, a>0

py@x) = ¢ 1, if x =m (5a)
Fr(%), if m<x<+w, 6>0

where F. and F; are membership functions under different x levels

(Fig. 1). Based on the nature of water resources management

systems, fuzzy set N in (5a) can be simplified as a linear membership
function that has the following general format (5b) (Liu et al., 2003).

0,
ww—{h

_2im=x] el
1 T if a<x<a

if x<aorx>a
if x=m

where [a, @] is a interval imposed by fuzzy subset N. To state precisely
the fuzzy restrictions on the corresponding base variables Uj and V
imposed by fuzzy subsets A; and B, fuzzy constraints in (3) can be
regarded as fuzzy inclusive constraints as follows (Leung, 1988):

A1X1DAX D - ®AXn =B (6)

Based on the concept of a level set (fuzzy a-cut) and the
representation theorem, constraints in (3) can be represented as
follows (Negoita et al., 1976):

(41>ax1@(é2>ax2®~--®<én>axn§ Ba, ac[0,1] (7a)
where

(4)), = {aie Ujlua (@) = o} (7b)
(B),= {beV|ug(b) > a} (7¢)

Assume that the fuzzy subsets in (6) are finite and have the
following characteristic:

{#Aj(aj)laje Qj} = {a1,az,..., 05} (8)

where 0 < ay < ap < -~ < as < 1. Then, foreach a5 (k=1, 2, ..., s),
constraints in (7a) become:

(41) xlea(éz) xzea~-~ea(4n) XnSBa, ac[0,1]  (9)
o s Qs
where (Aj),, (=1,2,...,n; k=1,2,...,s) and Bas constitute convex

and non-empty fuzzy sets. Then, fuzzy constraints in (9) can be
replaced by the following 2s precise inequalities, in which s denotes

Membership
A
grade

X—m
F
r( 5

)

F,

L

v

m X

Fig. 1. L/R fuzzy membership function.

s levels of a-cut (Soyster, 1973; Leung, 1988; Luhandjula and Gupta,
1996).

a’fx1+ﬁ§x2+~--+a’,§xn§5k, k=1,2,..s (10a)
akxy +dxy + o+ kx> b*, k=12, (10b)
where

a = sup(aj’-‘), afe (éj)as (10c)
at = inf(a]’f), ake <4 j)as (10d)
B = sup(b"), bke Bas (10e)
bk — inf(bk), bke Bag (10f)

where sup(t) denotes the superior limit value among t, and inf{t)
represents the inferior limit value among t. Therefore, for a water
resources management system with m fuzzy constraints, the deci-
sion space, together with the decision variables, can be delimited
by the following fuzzy inclusive constraints (Liu et al., 2003):

ApnXx1 ®ApXo ® - ®AXnSB;, i=1,....m (11)

Represented in terms of level sets, fuzzy constraints in (11)
become:

(éil)asx] ® (éi2>aSX2GB“'€B (éin)asxng Bia,

i=1,2,....m asel0,1] (12a)
where
{#A,,- (a)|aje Qif} = {ailaai27-~~vais} (12b)
O<ap<ap<-—<a<1, i=1,...m (12¢)

Then, following the arguments in (7a)—(10f), the decision space for
problem (12a) can be delimited by the following deterministic
constraints (Liu et al., 2003):

n

Z(ﬁﬁ-xﬁ gEf, i=1,2,...m k=1,2,...5s (13a)
i

n

Z(gng) >bf, i=1,2,..m k=12, .5 (13b)
i

x>0, j=12,...,n (13¢)

For fuzzy robust programming with fuzzy random variables in B,
constraints (13a) and (13b) become (Luhandjula and Gupta, 1996):

n

> (@) <bi(w), i=12,..m k=12..5s (14a)
=1

n

Z(gg;xj) >bfw), i=12,..m k=12 .5 (14b)

j=1
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When uncertainties of some elements in B can be expressed as
probability distributions, methods of chance-constrained program-
ming (CCP) can be used to deal with them. In terms of uncertainties in
B, consider a general stochastic linear programming (SLP) problem as
follows (Charnes et al., 1972; Charnes and Cooper, 1983):

min CX (15a)
subject to

AX < B(w) (15b)
X>0 (15¢)

where B(w) are sets with random elements defined on a probability
space Q, we Q. The problem can be converted into a deterministic
version through: (1) fixing a certain level of probability (r;e [0, 1])
for each constraint (i), and (2) imposing the condition that the
constraint is satisfied with at least a probability of 1 —r;. The
solution set is thus subject to the following constraints (Charnes
et al., 1972; Charnes and Cooper, 1983):

Pri{o]AX < bj(w)}] > 1 -

Ai€A, biw)eBw), i=1,2,..m (16)

Constraint (16) is generally nonlinear, and the set of feasible
constraints is convex only for some particular cases, one of which
exists when the left-hand side coefficients (a;) are deterministic,
and the right-hand-side variables (b;) are random. This leads to an
equivalent linear constraint that has the same size and structure as
a deterministic term, and the only required information about the
uncertainty is the r; for the unconditional distribution of b;. Thus,
constraint (16) becomes linear (Charnes et al., 1972; Charnes and
Cooper, 1983; Huang, 1998):

(pi)

AX <bj(w)  , Vi (17)
r

where b,-(w)L) = FY(ri), given the cumulative distribution func-

tion of b; (i.e., Fi(b;)), and the probability of violating constraint i (r i).

However, linear constraints can only reflect the case when A is

deterministic. If both A and B are uncertain, the set of feasible

constraints may become more complicated.

When uncertainties of some elements in the constraints can be
expressed as fuzzy random variables and denoted as fuzzy
stochastic constraints, methods of fuzzy stochastic programming
can be used for dealing with them (Leung, 1988; Inuiguchi and
Sakawa, 1998). When the multiple uncertainties in the parame-
ters having fuzziness and randomness features at the same time,
fuzzy random variables can be used (Luhandjula and Gupta, 1996).
To address a linear program with fuzzy random variables, a fuzzy
robust chance-constrained programming (FRCP) model associated
with fuzzy random variables can be formulated (Loucks et al., 1981;
Huang, 1998; Liu et al,, 2003; Luhandjula, 2006):

min f = icjxj (18a)
i—1
subjecttoj
n
ax) < ()Y, i—12 . .m k=12 ..  (18b)

(e < (39

L (T3) .
J;(gng) > (Q:‘) , i=1,2,...m k=125 (18¢)
x>0, j=12,..n (18d)

The FRCP model can deal with left-hand coefficients pre-
sented as fuzzy sets and right-hand ones as fuzzy random
variables.

A two-stage stochastic linear programming (TSP) model can be
formulated as follows:

max f = CX + E(DY) (19a)
subject to

A1 X +A)Y <B(t) (19b)
X>0 (19¢)
Y>0 (19d)

where A;e {RY™", Aye {RY™", Ce{R}V*", De{R}*", Xe{R}™!
and Ye{R}™!; (R} denote a set of real numbers; B(t) are
random variable with known distribution functions. When
uncertainties of some elements in A; and A can be expressed as
fuzzy sets, and those in B can be expressed as probability
distributions and fuzzy random variables, then a fuzzy stochastic
two-stage programming (FSTP) model can be formulated
through incorporate model (18) with two-stage stochastic
programming;:

max f = CX -+ E(DY) (20a)
subject to

A1X + ALY < B(t) (20b)
X>0 (20c¢)
Y>0 (20d)

where A and A; are fuzzy sets in left-hand side of constraints; X
and Y are non-negative decision variables; B(t) are fuzzy random
variables with known distribution functions. Let ¢; be the jth
element of C, d; be the jth element of D, g;j be the ith row and jth line
element of Ay, g;; be the ith row and jth line element of A3, bi (i =1,
2, ..., m, ieM), be the ith element of B which is a fuzzy random
variable with a known distribution function, x; be the jth element of

X, and y; be the jth element of Y.

2.3. Modeling for water resources management

In water resources management systems, fuzzy random
variables are introduced into the TSP framework to facilitate
communication of the uncertainties into the optimization
process, resulting in a fuzzy stochastic two-stage programming
(FSTP) model. For example, uncertainties in stream flows may
be presented as fuzzy random variables; FSTP can then be used
to solve this type of problem. FSTP is an integration of fuzzy
robust programming, chance-constrained programming and
two-stage programming methods. It can be presented as
follows:

max f* = Objective function = A—B (21a)

where A is the benefit from the pre-regulated water allocated,
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B is the economic loss due to the amount of water not delivered,

m n

> D> piG(Wi- Ay
—1j=1

subject to
Water availability constraints:

UL —k AN .
Soa(1+5) < ()", vik (21b)
i=1
UL k k (Fh) .
ZA,-j(1 +§j) > (gj) . Vik (21¢)
i=1
Allowable water-allocation constraints:
Ajj Wi < Wjpax, Vi (21d)
Non-negativity constraints:
Aj >0, Vij (21e)

where f is the net system benefit ($); B; is the net benefit to user i
per m® of water allocated ($/m?) (first-stage revenue parameter);
W; is the target water allocation that is promised to user i (m?)
(first-stage decision variable); C; is the loss to user i per m> of water
not delivered, C; > B; ($/m>) (second-stage cost parameter); Ajj is
the allocation of water to user i under flow level j (m?) (second-
stage decision variable; when A;; < W;, the amount by which W; is
not met while the seasonal flow is g;); ¢ is the loss rate of water
during transportation; (q j)(r“ is the amount of seasonal flow under
flow level j (m?) (fuzzy random variables); W; .y is the maximum
allowable allocation amount for user i (m?); pj is the probability of
occurrence of flow level j; m is the total number of water users; n is
the total number of flow levels; i is the water user (in the study case,
m=3 and i=1, 2, 3, with i=1 for the municipality, i =2 for the
industrial user, and i =3 for the agricultural sector); j is the flow
level (in the study case, n=3 and j =1, 2, 3, with j = 1 representing
low flows, j = 2 representing medium flows, and j = 3 representing
high flows); ry, is the probability of violating constraint i.

Both two-stage programming and chance-constrained program-
ming are dealt within the proposed method for the probability
distribution. The distribution for the two-stage programming is
addressed for the seasonal flow (g;) under flow level j and the prob-
ability of occurrence of flow level j (p;). Let each seasonal flow takes
value g; with probability p;, where j is denoted as the level of seasonal
water flow rate (for j=1, 2, 3 corresponding to low level, medium
level and high level); In this problem, a decision of water-allocation
target needs to be made at the beginning facing future uncertainties
of river flow; at a future time, when the uncertainties of water flow
are disclosed, a recourse action can then be taken. Thus, water allo-
cation at the beginning is called the first-stage decision, and the plan
for recourse actions is named the second-stage decision. The distri-
bution for the chance-constrained programming are addressed for
violating of water availability constraints corresponding to the lower
bound and upper bound under each « - cut level and each level of
seasonal flow ((g;)"™)) (Fig. 2).

2.4. Algorithm to solve the problem

The fuzzy random variable is a more general definition for
uncertainties than fuzzy set and random variable. The significance
of this concept is its capability in reflecting more complex uncer-
tainties. Fig. 2 shows the fuzzy random information of the seasonal

0 a=02 a=05 a=0.75 1 Membership Grade

Fig. 2. Fuzzy random information for seasonal flow.

flows (g j)(m} that have both fuzzy and random characteristics.
Fig. 3 gives the framework of the FSTP model.

The solutions present as intervals for the objective function
value and decision variables under different levels of seasonal flows
and ry levels. They can be interpreted for generating multiple
decision alternatives. Model (21) can be solved based on Huang and
Loucks (2000), Liu et al. (2003), Magsood et al. (2005), and Guo
et al. (2008c). The detailed solution process can be summarized
as follows:

Step 1: Acquire the economic information of water allocated and
not delivered.

Step 2: Define the target of water allocation that is promised to
user.

Step 3: Acquire distribution information for the seasonal flows in
system constraints.

Step 4: Acquire fuzzy information for water loss rate and seasonal
flow rates under different a-cut levels.

Step 5: Acquire distribution information of stream flows under
different combinations of r; and «a-cut levels.

Step 6: Formulate the FSTP model.

Step 7: Solve the FSTP model to obtain solutions of A; opr under
each rj level and different levels of seasonal flows.

3. Case study

Consider a region where a manager is responsible for allocating
water in a dry season from an unregulated reservoir to three users.
In the study system, there are three users, including a municipality,
an industry and an agricultural sector. The stream flows vary
temporally with random features. The net benefit to user i per m>
of water allocated and the loss to user i per m®> of water not
delivered also vary temporally and spatially. Table 1 shows the
maximum allowable water allocation (W may) (in 10° m3), the net
benefit to user per m> of water allocated (B;) (in $/m?), the loss to
user per m> of water not delivered (G;) (in $/m?), and water-allo-
cation target (W;) (in 10% m?). Table 2 presents values of fuzzy
subsets for water loss rate (£) and seasonal flow rates (q;) under
different a-cut levels. Assume that the standard deviations are 4%
of the expected values; the relevant normal distributions can then
be obtained. Table 3 shows expected values and variances of g;(t)
and g;(t). Table 4 gives stream flow distributions (in 108 m?) under
different combinations of r, (probability of constraint violation)
and a-cut levels.

The decision variables represent probabilistic water-allocation
flows from the reservoir to user i under flow level j (denoted as Aj).
The objective is to maximize net system benefits through
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- Uncertainty ]
Policy
(Target) ¢ ¢
Probability Fuzzy sets Fuzzy random
distributions variables
Two-stage stochastic Chance-constrained Fuzzy robust
programming (TSP) programming (CCP) programming (FRP)

T :

Fuzzy random programming (FRP)

A

'

Fuzzy stochastic

two-stage programming
(FSTP)

A 4

Optimal solutions for FSTP

A 4

Generation of decision alternatives

Fig. 3. Framework of the FSTP method.

effectively allocating the water flows from the reservoir to the three
users; the constraints involve all relationships among the decision
variables and the water-allocation conditions. Because uncer-
tainties exist in a variety of system components and a linkage to the
pre-regulated policies as formulated by local authorities is desired,
the FSTP method is considered to be a suitable approach for tack-
ling this management problem.

Fig. 4 shows the structure of the water management system. The
system consists of a reservoir and three users (Municipality,
Industry and Agricultural sector). The expected net system benefit
include the net benefit to user per m> of water allocated, the loss to
user per m° of water not delivered and water-allocation target. The
problem under consideration is to maximize the net system benefit
through effectively allocating the water flows from the reservoir to
the three users; the constraints involve relationships among the
decision variables and the seasonal flow rates under different
conditions.

Table 5 presents the solutions of the FSTP model under different
ry levels and those of the TSP model under optimized water-allo-
cation targets (in 108 m3). Solutions for the objective function value

Table 1
Water-allocation targets (in 10° m*) and the related economic data (in $/m?).

Activity User

Municipal Industrial Agricultural
(i=1) (i=2) (i=3)

Maximum allowable allocation (W; max) 7 7 7

Water-allocation target (W;) 2.5 5.3 6.8

Net benefit when water demand 90 45 28
is satisfied (B;)

Reduction of net benefit when demand 220 60 50

is not delivered (G;)

and decision variables are deterministic values. In case of insuffi-
cient water, allocation should firstly be guaranteed to the munici-
pality, secondly to the industry, and lastly to the agriculture. This is
because municipal use brings the highest benefit when water
demand is satisfied and is subject to the highest penalty if the
promised water is not delivered; in comparison, the industrial and
agricultural uses correspond to lower benefits and penalties. The
flow allocation patterns vary among different users with uncertain
characteristics. This is due to the uncertainties of the inputting W;
(policies), B; (benefits), G; (costs), gj(w) (stream flows), £ (loss rate of
water) and w (random variable) as well as the complexities of their
interactions.

InTable 5, the solutions of A = 2.5 x 106 m?, Ay =2.11 x 106 m?,
and As; =0 (under r, =0.1) indicate that, under low stream flow
levels, there would be no shortage of water (in reference to the
optimized water-allocation target of 2.5 x 10° m?) for municipal
water use. However, some shortages of 3.19 x 10° and 6.8 x 10® m?3
may exist (in reference to the optimized water-allocation targets of
5.3 x 108 and 6.8 x 10° m?) for industrial and agricultural uses,

Table 2
Values of fuzzy subsets for water losses and seasonal flows (g;).
o cut levels Water loss Seasonal flow (g;)
¢ 3 Low (j=1) Medium (j=2) High (j=3)
p=02 p=0.6 p=02
(ﬂj)m (ﬁj)a (gi)nz (@)a (g])u (qj)a
a=0 0.1 0.2 3 7 7 12 12 22
a=0.2 0.11 0.19 34 6.6 7.5 11.5 13 21
a=0.5 0.125 0.175 4 6 825 1075 145 195
a=0.75 0.1375 0.1625 45 5.5 8.875 10.125 1575 18.25
a=1 0.15 0.15 5 5 9.5 9.5 17 17
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Table 3
Expected values and variances of g;(t) and g;(t).
Flow level a-cut level
a=02 a=0.5 a=0.75
(G)a(t) (G)a(t) (G)a(t) (@)a(t) (@)a(t) (G)a(t)
Low (j=1) Expected value 34 6.6 4 6 4.5 5.5

Standard deviation 0.136 0264 0.16 024 018 0.22

Variance 0.019 0.07 0.026 0.058 0.032 0.048
Medium  Expected value 75 115 825 10.75 8.875 10.125
(j=2) Standard deviation 0.3 046 033 043 0355 0.405
Variance 0.09 0212 0.109 0.185 0.126 0.164
High Expected value 13 21 14.5 195 1575 18.25
(j=3) Standard deviation 0.52 0.84 058 0.78 0.63 0.73

Variance 027 0.706 0336 0.608 0.397 0.533

respectively, with the probability of occurrence being 20%. The
results of Ap=25x10°m3, A»=53x10°m> and
Aszp =0.69 x 10 m? (under rj, = 0.1) indicate that, under medium
flows, there would be no shortages of water for municipal and
industrial uses. However, there would be shortages of 6.11 x 106 m3
for agricultural water use with the probability of 60%. Likewise, the
solutions of A;3=25x10m3, Ay =53x10°m> and
As1 =6.8 x 10% m> (under r, = 0.1) indicate that, under high stream
flow levels, there would be no shortage of water with a probability of
20%. The results under r, = 0.25 would be similar to those under
rp=0.1.

A number of decision alternatives under different rj, levels were
also generated through the FSTP model. Willingness to accept a low
level of constraint-violation probability would guarantee a high
system benefit but a high risk of violating the allowable criterion;
a strong desire to acquire a low risk level (of violating the criterion)
would run into a low system benefit. A lower rj, level should be used
under advantageous conditions, and a higher r, level would
correspond to relatively demanding conditions. Therefore, FSTP
allows decision makers to incorporate implicit knowledge within
the optimization process and thus obtain satisfactory decision
alternatives.

Solutions of the FSTP model provide desired water-allocation
patterns. The complexities associated with water allocation arise
mainly from limited supply and increasing demand. Therefore, the
observed variations in the values of W; could reflect different
policies for water resources management. A too optimistic policy
corresponding to a high system benefit may be subject to a high risk
of system disruption; a too conservative policy may lead to a waste
of resources. The solutions can provide ranges of decision variables
and objective function value under different levels of stream flows,
a-cut levels, and ry levels. They can be easily interpreted for
generating multiple decision alternatives.

If the fuzzy random variables in seasonal flow constraints are
substituted by conventional random numbers, the study problem
can then be converted into a two-stage stochastic programming

(TSP) model. From Table 5, the solution of Az =1.85 x 10® m?
(allocation to industry under low stream flow levels) from TSP is
less than those from FSTP (A =211x10°m® and
A»=20x10°m> under r,=01 and 0.25). This is because
a number of multiple uncertainties were neglected in the TSP
model.

The stream flows have multiple uncertainties. Firstly, the stream
flow (q) is expressed as g; [i.e., 5, 9.5 and 17 (106 m?)], under low
(probability = 20%), medium (probability = 60%) and high (proba-
bility =20%) stream flow levels, respectively); secondly, q; are
presented as (q;), [fuzzy sets, ie., [3.4, 6.6], [4, 6] and [4.5, 5.5]
(10 m®) for low stream flow levels (with a probability of 20%)
under «=02, 0.5 and 0.75, respectively]; thirdly, (q;), are
expressed as [(q;),(t)]™ [fuzzy random variable, i.e., [3.57, 6.26] and
[3.49, 6.42] (10° m>) for low stream flow levels (with a proba-
bility of 20%) under a« =0.2 and r, =0.1 and 0.25, respectively].

Fuzzy random variables (FRV), such as [(gj)a(t)}r", are useful for
presenting fuzzy sets and random variables. Both fuzziness and
randomness can thus be reflected. Fuzzy stochastic optimization
methods were proposed to solve the associated decision problems.
Fuzzy robust programming is suitable for handling fuzzy coefficients
in both left- and right-hand sides of the constraints. Chance-con-
strained programming is helpful for dealing with right-hand-side
parameters with known probability distributions. To address fuzzy
random variables, fuzzy robust programming was firstly used to
convert fuzzy random constraints into random ones. Then, chance-
constrained programming methods were used to treat the random
constraints. Two-stage stochastic programming was useful for
dealing with stochastic complexities in water resources planning.
Thus, incorporation of the two-stage stochastic programming,
fuzzy robust programming and chance-constrained programming
within a general setting is advantageous for deal with multiple
uncertainties in water resources management.

In general, FSTP has the following advantages: (a) since fuzzy
sets are used for reflecting uncertainties in left-hand-side coeffi-
cients of the constraints and fuzzy random variables are used for
tackling uncertainties in [(q o)™ of the right-hand-side
constraints, implications of the constraints are extended; (b) FSTP is
applicable to practical problems since the solution methods of
fuzzy robust programming and chance-constrained programming
do not lead to more complicated intermediate submodels; (c) it
provides bases for identifying desired water-allocation plans with
reasonable benefit and risk levels.

FSTP can effectively reflect multiple uncertainties described as
fuzzy sets and probability distributions in the modeling parameters
and the associated impact factors. FSTP can directly incorporate
uncertainties within its optimization framework. Its solutions are
presented as deterministic values and probability distributions, and
thus offer flexibilities in result interpretation and decision-alter-
native generation. Moreover, solutions of the FSTP model also
contain information of system disruption penalties under varying
water resources management conditions.

Table 4
Stream flows (in 106 m?) under different combinations of r, and a-cut levels.
p, level Flow level a
a=02 a=0.5 a=0.75
[(g))a ()™ (@)a (O™ [(4)a (O] [(@)a(0)]™ [(g))a ()™ [@)a (O]
rp=0.1 Low (j=1) 3.57 6.26 4.2 5.69 4.73 522
Medium (j=2) 7.88 10.91 8.67 10.2 9.33 9.61
High (j=3) 13.67 19.92 15.25 18.5 16.56 17.31
rh, =0.25 Low (j=1) 3.49 6.42 4.11 5.84 4.62 535
Medium (j=2) 7.7 11.19 8.47 10.46 9.11 9.85
High (j=3) 13.35 20.43 14.89 18.97 16.17 17.76
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According to relative low, medium and high stream flows and
different policies for water resource management, the decision
maker can evaluate maximize system benefit for allocating water;
an optimistic policy may be subject to a high risk of system failure
penalties while a policy which is too conservative may lead to
a waste of resources. Uncertainty presented as fuzzy random vari-
ables, fuzzy membership functions and probability distributions
can be tackled by the FSTP method. In addition to its application to
water resources management, FSTP can also be extended to other
problems of resources and environmental management.
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Fig. 4. Structure of the water management system.
Table 5
Solutions of the FSTP and TSP models (in 106 m3).
User (i) Level (j) rh =0.1 r =0.25 TSP
Municipal Low 25 2.5 2.5 25 25 2.5
Industrial Low 53 2.11 53 2 53 1.85
Agricultural Low 6.8 0 6.8 0 6.8 0
Municipal Medium 25 25 25 25 25 25
Industrial Medium 53 53 53 53 53 53
Agricultural Medium 6.8 0.69 6.8 0.48 6.8 0.46
Municipal High 2.5 2.5 2.5 2.5 2.5 2.5
Industrial High 53 53 53 53 53 53
Agricultural High 6.8 6.8 6.8 6.8 6.8 6.8 Acknowledgments
f($10%) 364.39 356.83 3543

4. Conclusions

Fuzzy random variables are presented as a type of more
extensive uncertainties than fuzzy and random variables. Such
parameters can be described through incorporating fuzzy and
probabilistic uncertainties. Fuzzy stochastic programming is
introduced to deal with such uncertainties. Two-stage program-
ming (TSP) is useful for reflecting recourse in order to minimize
“penalties” that may appear due to any infeasibility, which choose
corrective actions after a random event has taken place. A fuzzy
stochastic two-stage programming (FSTP) method under multiple
uncertainties is thus developed based on fuzzy robust program-
ming (FRP), chance-constrained programming (CCP), and two-
stage stochastic programming (TSP) approaches.

FSTP is applied to a case of water resources management where
a reservoir and three water users exist. FSTP has advantages in
uncertainty reflection and policy analysis. It can provide decision
makers with decision support for water resources management
under uncertainty and recourse. This involves (1) providing
a linkage between pre-defined water policies and the associated
economic implications, (2) extending the range of uncertainty
which expressed as multiple uncertainties with both fuzziness and
randomness characteristics, (3) communicating uncertainties into
the optimization process under different stream flows, a-cut levels
and levels of constraint-violation probability, and (4) providing
a number of alternatives for decision makers to ascertain the
schemes for allocating water resources to the users.
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