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Abstract. In this paper we prove the existence of homoclinic orbits for the
first order non-autonomous Hamiltonian system

ż = JHz(t, z),

where H(t, z) depends periodically on t. We establish some existence results
of the homoclinic orbits for weak superlinear cases. To this purpose, we apply
a new linking theorem to provide bounded Palais-Samle sequences.

1. Introduction and main results. In this paper we are interested in the exis-
tence of homoclinic orbits of the Hamiltonian system

ż = JHz(t, z), (HS)

where z = (p, q) ∈ RN ×RN = R2N , J =

(

0 IN
−IN 0

)

, and H ∈ C1(R×R2N ,R)

is of the form

H(t, z) =
1

2
B(t)z · z +R(t, z), (1.1)

with B(t) ∈ C(R,R4N2

) being a 2N × 2N symmetric matrix valued function, and
R ∈ C1(R × R2N ,R) is superlinear in z. Here by a homoclinic orbit of (HS) we
mean a solution of the equation satisfying z(t) 6≡ 0 and z(t) → 0 as |t| → ∞.

Establishing the existence of homoclinic orbits for system like (HS) is a classical
problem. Up to the year of 1990, there is a few of isolated results. In very recent
years, many authors devoted to the existence of homoclinic orbits for Hamiltonian
systems via critical point theory. For example, see [9, 10, 11, 12, 13, 14] for the
second order systems, and [2, 4, 5, 6, 15, 16, 17, 18, 19, 20, 22, 26] for the first
order systems. Usually, for superlinear case, one needs the following condition due
to Ambrosetti-Rabinowitz [3];

∃ µ > 2, 0 < µR(t, z) ≤ Rz(t, z)z, ∀z 6= 0. (1.2)
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Generally speaking, the role of (1.2) is to ensure the boundedness of all (PS)(or
(PS∗)) sequences for the corresponding functional. Without (1.2), it is very dif-
ficulty to get the boundedness of (PS)(or (PS∗)) sequences. The purpose of
this paper is to apply some linking theorem to deal with superlinear Hamilton-
ian system (HS) when the nonlinearity R doesn’t satisfy the condition (1.2). Let
A := −(J d

dt + B(t)) be the self-adjoint operator acting in L2(R,R2N ) and σ(A)
denote the spectrum of A. As we all know, the information of σ(A) are very impor-
tant in finding the homoclinic orbits. For example, if 0 is an essential spectrum of
the operator A, then the operator A can not lead the behavior of the equation at
0, which brings difficulty in the usual variational arguments. So in the early results
[16, 18, 19, 20, 22, 26], the authors assume

(J ) B(t) ≡ B̃ is independent of t such that sp(J B̃) ∩ iR = ∅,
where sp(J B̃) denotes the set of all eigenvalues of J B̃. Clearly, the condition (J )
implies that there exists β > 0 such that σ(A) ∩ (−β, β) = ∅. That is, 0 is not a
spectrum of A, which is important for variational arguments. Recently, the above
condition (J ) is weakened by Ding and Willem [2], and they allow 0 to be an es-
sential spectrum of A. Assume

(J1) B(t) depends periodically on t with period 1, and there is α > 0 such that
σ(A) ∩ (0, α) = ∅.

Under the superlinear condition (1.2) and some additional conditions, the paper
[2] proved that the system (HS) has at least one homoclinic orbit. We underline
that, under the condition (J1), 0 may be an essential spectrum of A, which brings
difficulty in such case. To overcome this difficulty, they proved an embedding the-
orem as a compensation. Later, under the superlinear condition (1.2), Ding and
Girardi [6] also considered the case when 0 may be an essential spectrum of A.
The authors proved that the system (HS) has infinitely many homoclinic orbits
provided R(t, z) is even in z. In [2, 6], the condition (1.2) is important for them to
get the boundedness of the (PS)-sequence. When zero is a continuous spectrum of
the operator A, in this paper we shall prove a similar results as in [2] under some
weaker conditions than (1.2). As far as we know, there were no results of existence
of homoclinic orbit in this case. In order to state the main results, we assume that
R(t, z) satisfies the following conditions:

(J2) R(t, z) ∈ C1(R × R2N ,R) is 1-periodic in t; there exist positive
constants c1, c2 and ν > 2 such that

c1|z|
ν ≤ Rz(t, z)z ≤ c2|z|

ν , ∀ (t, z) ∈ R × R
2N .

(J3) Rz(t, z)z − 2R(t, z) > 0 for all t ∈ R and z ∈ R2N \ {0}.
(J4) There exists µ0 > 2 such that

lim inf
z→0

Rz(t, z)z

R(t, z)
≥ µ0,

uniformly for t∈ R.
(J5) There exists c0 > 0 such that

lim inf
|z|→∞

Rz(t, z)z − 2R(t, z)

|z|β
≥ c0,

uniformly for t ∈ R, where ν > β > ν∗ := ν(ν−2)
ν−1 .
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Remark 1. In [27, 28], the conditions (J2) − (J5) have been used to weaken the
Ambrosetti-Rabinowitz superlinear growth condition (1.2) for Schrödinger equation.

Remark 2. It is easy to check that the classical Ambrosetti-Rabinowitz superlinear
growth condition (1.2) implies (J3) − (J5). But the converse proposition is not
correct. Here we given the following example, and this example was first given in
[27, 28].

Example 1. R(t, z)=a(t)(|z|ν + (ν − 2)|z|ν−ε sin2( |z|
ε

ε )), ν > 2, 0 < ε < min{ν −
2, ν − ν∗}, where a(t) > 0 and is 1-periodic in t.

Clearly, (J3)−(J5) hold with µ0 = ν and β = ν−ε. However, similar to Remark

1.2 of [27]. Let zn = (ε(nπ + 3π
4 ))

1
εL2N , where L2N = (1, 0, · · ·, 0). Then for any

γ > 2, one has

Rz(t, zn)zn − γR(t, zn) = a(t)[(ν − γ)|zn|
ν + (ν − 2)(ν − ε− γ)|zn|

ν−ε sin2(
|zn|ε

ε
)

+ (ν − 2)|zn|
ν sin 2(

|zn|ε

ε
)]

= a(t)|zn|
ν [2 − γ +

(ν − 2)(ν − ε− γ) sin2( |zn|ε

ε )

|zn|ε
]

→ −∞ as n→ ∞.

That is, the condition (1.2) can not be satisfied for γ > 2.

Now we state the main result of this paper.

Theorem 1.1. Let (J1)-(J5) be satisfied. Then (HS) has at least one homoclinic
orbit.

Remark 3. If there exists α > 0 such that (−α, 0) ∩ σ(A) = ∅ and R̄(t, z) :=
−R(t, z) satisfies the assumptions (J2)−(J5), then the same conclusion of Theorem
1.1 remains valid.

Throughout the paper we shall denote by c > 0 various positive constants which
may vary from lines to lines and are not essential to the problem.

2. Embedding theorem. In order to establish a variational setting for the system
(HS), in this section we shall study the spectrum of a Hamiltonian operator.

Recall that A := −(J d
dt + B(t)) is a self-adjoint operator in L2(R,R2N ) with

domain D(A) = H1(R,R2N ). Let σd(A) and σess(A) be, respectively, the discrete
spectrum of A and the essential spectrum of A. By Proposition 2.2 of [2], 0 is at
most a continuous spectrum of A, so we only need to consider the case 0 ∈ σess(A).
Let | · |q denote the usual Lq-norm, and (·, ·)2 be the usual L2-inner product. Set
H := L2.

Let {E(λ) : λ ∈ R} be the spectral family of A. We have A = U |A|, called the
polar decomposition, where U = I − E(0) − E(−0). Clearly, H has orthogonal
decomposition

H = H+ ⊕H−,

where H± = {z ∈ H;Uz = ±z}. For each z ∈ H, we will write z = z− + z+, where
z± ∈ H±.
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Let E be the completion space of D(|A|
1
2 ) under the norm

‖z‖E = ||A|
1
2 z|2.

E is a Hilbert space with the inner product

(z1, z2)E := (|A|
1
2 z1, |A|

1
2 z2)2.

By Lemma 7.2 in Appendix, we have that for all z ∈ D(|A|
1
2 ),

c1‖z‖
H

1
2
≤ ‖z‖E + a|z|2 ≤ c2‖z‖

H
1
2

+ 2a|z|2, (2.1)

where c1, c2 > 0 and a > 4 supt∈R
|B(t)|.

Let E+ := H+ ∩D(|A|
1
2 ). Since the spectrum of A on E+ is bounded away from

0, thus we have

‖u‖2
E = (Au, u)2 =

∫ +∞

α

λd(E(λ)u, u)2 ≥ α|u|22, ∀u ∈ E+.

Together with (2.1), it follows that E+ is a closed set and

‖ · ‖E ∼ ‖ · ‖
H

1
2

on E+, (2.2)

where the notation “ ∼ ” denotes the equivalence. Then E has an orthogonal
decomposition

E = E+ ⊕ E−,

with

E− ⊇ H− ∩ D(|A|
1
2 ). (2.3)

However, since 0 may belong to a spectrum of A, then ‖ · ‖E may not be equivalent

to H
1
2 -norm on E−. Therefore, in the following we use the spectrum family of A

to sperate σ(A) ∩ (−∞, 0] into two segments. That is, for any ε > 0, set

H−
ε := E(−ε)H,

and E−
ε = H−

ε ∩ D(|A|
1
2 ) = H−

ε ∩ E−. Let Ĥ−
ε := H− ∩ (clH(∪λ<−εE(λ)H))⊥,

where clH(B) denotes the closure of the set B in H. Similarly to E+, since the
spectrum of A restrict to E−

ε is bounded away from 0. Thus,

‖ · ‖E ∼ ‖ · ‖
H

1
2

on E−
ε . (2.4)

However, Ĥ−
ε is not complete with respect to the norm ‖ · ‖E, thus it is reasonable

to introduce a new norm. Define

‖z‖ν = (||A|
1
2 z|22 + |z|2ν)

1
2 . (2.5)

Let E−
ε,ν be the completion of Ĥ−

ε under the norm ‖ · ‖ν .

Now let E−
ν denote the completion of D(A)∩H− with respect to the norm ‖ · ‖ν.

Since H
1
2 is continuously embedded in Lp for any p ∈ [2,∞), by (2.4), E−

ε is a
closed subspace of E−

ν . Moreover, noting that E−
ε,ν ⊂ E−, it is orthogonal to E−

ε

with respect to (·, ·)E , we have

E−
ν = E−

ε ⊕ E−
ε,ν . (2.6)

Lemma 2.1. E−
ε,ν ⊂ H1

loc(R) and is embedded compactly in L∞
loc, and continuously

in Lp for all ν ≤ p ≤ +∞.
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Proof. The proof was actually given in [2]. We state it here for reader’s convenience.

By the spectral theory of self-adjoint operators, Ĥ−
ε ⊂ D(A) = H1. Let {zn} ⊂ Ĥ−

ε

be Cauchy sequence with respect to ‖ · ‖ν. Then

|A(zn − zm)|22 =

∫ 0

−ε

λ2d|E(λ)(zn − zm)|22

≤ −ε

∫ 0

−ε

λd|E(λ)(zn − zm)|22

= ε||A|
1
2 (zn − zm)|22 → 0,

(2.7)

as n,m→ ∞. For any finite interval I ⊂ R, one has
∫

I

|zn − zm|2dt ≤ |I|1−
2
ν |zn − zm|2ν → 0.

Together with (2.7), we have
∫

I

|żn − żm|2dt =

∫

I

|A(zn − zm) +B(t)(zn − zm)|2dt

≤ 2|A(zn − zm)|22 + 2

∫

I

|B(t)(zn − zm)|2dt → 0,

as n,m→ ∞. Therefore the limit z of {zn} with respect to ‖·‖ν belongs to H1
loc(R).

Moreover, since H1(I) is compactly embedded in L∞(I) for any finite interval I,
one sees that E−

ε,ν is compactly embedded in L∞(I).

By (2.7), {Azn} is a Cauchy sequence in L2. Hence Azn → w in L2. Since
Azn → Az in L2

loc, w = Az, i.e. Az ∈ L2. Note that for any finite interval I ⊂ R
∫

I

|ż|2dt =

∫

I

|Az +Bz|2dt ≤ 2

∫

I

(|Az|2 + |Bz|2)dt.

≤ c(

∫

I

|Az|2 + |I|1−
2
ν (

∫

I

|z|ν)
2
ν ).

(2.8)

Obviously, we have

z(τ) = z(t) +

∫ τ

t

ż(s)ds, for τ ∈ R.

Integrating from τ − 1
2 to τ + 1

2 in the above equality, one has

|z(τ)| ≤ (

∫ τ+ 1
2

τ− 1
2

|z|νdt)
1
ν +

∫ τ+ 1
2

τ− 1
2

|ż|2dt)
1
2 . (2.9)

Since z ∈ H and Az ∈ H, (2.8) and (2.9) show that

|z(τ)| → 0 as |τ | → ∞.

That is, z ∈ L∞. Therefore z ∈ Lν ∩ L∞ and so z ∈ Lp for any p ≥ ν. Replacing
z by zn − z in (2.8) and (2.9) one sees that E−

ε,ν is continuously embedded in L∞

and so is in Lp for any p ≥ ν.

Let Eν denote the completion of the set D(A) under the norm ‖ · ‖ν . It follows
from (2.2), (2.4), (2.6) and Lemma 2.1 that E−

ν and E+ are closed set. Moreover,
since Eν ⊂ E, and using the decomposition of E, it is easy to check that E−

ν ∩E+ =
{0}, and so

Eν = E−
ν ⊕ E+. (2.10)
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We now come to the following embedding theorem.

Theorem 2.2. Suppose (J1) is satisfied, and Eν is defined in (2.10). Then Eν is
embedded continuously in Lp for all p ≥ ν and compactly in Lq

loc for any q ≥ 2.

Proof. By (2.2), (2.4), (2.10) and Lemma 2.1, one can easily get the desired con-
clusion.

3. Linking theorem on Banach space. In this part, we shall state an abstract
critical theorem, which is first established in Hilbert space by Szulkin and Zou [4].
Recently, Willem and Zou [27] generalized it to Banach space. See also [7, 25] for
the earlier results on that direction.

Let (Ξ, ‖ · ‖) denote a reflexive Banach space with the direct sum decomposition
Ξ = X ⊕ Y . For z ∈ Ξ, we write z = x + y, where x ∈ X and y ∈ Y . Assume X
has a Schauder basis {e1, e2, · · ·}. We define ‖ · ‖τ : Ξ → [0,∞) by

‖z‖τ := max{‖y‖,
∞
∑

i=1

1

2i
|cj(x)|},

for z =
∑∞

i=1 cj(x)ej + y ∈ Ξ. Then ‖ · ‖τ is a norm on Ξ. Below the topology
generated by ‖ · ‖τ will be called the τ -topology. Clearly, for z = x+ y ∈ Ξ

‖y‖ ≤ ‖z‖τ ≤ ‖z‖.

Therefore the τ -topology is weaker than the original one: any sequence {zn} ⊂ Ξ
such that zn → z(in Ξ) converges to the τ -topology(zn → z in τ). Moreover, for
any bounded sequence {zn},

zn → z in τ ⇐⇒ xn ⇀ x and yn → y.

Recall from [7] that a homotopy h = I−g: [0, 1]×A 7→ Ξ, where A ⊂ Ξ, is called
admissible if:

(i) h is τ -continuous, i.e. h(vn, zn)
τ
−> h(v, z) whenever vn → v and zn

τ
−> z;

(ii) g is τ -locally finite-dimensional, i.e., for each (v, z) ∈ [0, 1] × A, there exists
a neighborhood U of (v, z) in the product topology of [0,1] and (Ξ, τ) such that
g(U ∩ ([0, 1]×A)) is contained in a finite-dimensional subspace of Ξ.

Let A be a closed subset of Ξ. We say that a map G : A× [0, 1] is an admissible
homotopy if it is τ -continuous and for each (u, t) ∈ A×[0, 1], there is a neighborhood
W(z,t) in the product topology of (Ξ, τ)×[0, 1] such that the set {v−G(v, s) : (v, s) ∈
W(z,t)∩(A× [0, 1])} is contained in a finite-dimensional subspace of Ξ. Observe that
admissible map is continuous. On bounded subsets of Ξ the τ -topology coincides
with the product topology of Xweak and Ystrong. We call the vector V: N → Ξ is τ -
locally τ -Lipschitzian, where N is τ -open, if for any z ∈ N , there is a τ -neighborhood
U such that ‖V (z1) − V (z2)‖τ ≤ Lz‖z1 − z2‖τ for all z1, z2 ∈ U and some Lz ≥ 0.

Lemma 3.1. [7, Proposition 2.2] Let V : O → Ξ be a vector field, where O is
a τ- open set. Assume that V is τ-locally τ-Lipschitzian and locally Lipschitzian,
and for each z ∈ O, there exists a τ- neighborhood Wz which is mapped by V into
a finite-dimensional subspace of Ξ. Let F ⊂ O be a closed set. Assume that the
solution of the Cauchy problem

d

dt
η = V (η), η(z, 0) = z ∈ F,
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η(z, t) exists on [0,1] for each z ∈ F . Then the map η : F × [0, 1] → Ξ is an
admissible homotopy.

Let Φλ ∈ C1(Ξ,R), R > r > 0, and z0 ∈ Y with ‖z0‖ = 1 be given and define

M := {z = x+ ρz0 : ‖z‖ ≤ R, ρ ≥ 0}, N := {z ∈ Y : ‖z‖ = r},

Λ := {h ∈ C([0, 1] ×M,Ξ) : h is admissible, h(0, z) = z and

s→ (Φλ(h(s, z))) is non-increasing},

And for any a, k ∈ R and a < k, Φλa = {z ∈ Ξ; Φλ(z) ≥ a}, Φk
λ = {z ∈ Ξ; Φλ(z) ≤

k}, Φk
λa = Φλa∩Φk

λ. Φλ is said to be τ -upper semi-continuous if Φλa is τ -closed, and
Φ′

λ is said τ -weak sequentially continuous in Φk
λa if Φ′

λ(zn) ⇀ Φ′
λ(z) when zn → z

in τ in Φk
λa. So the following theorem holds.

Theorem 3.2. [27, Theorem 2.2] Let Ξ = X ⊕ Y be a reflexive Banach space. A
functional Φλ ∈ C1(Ξ,R) has the form

Φλ(z) := A(z) − λB(z), 1 ≤ λ ≤ 2.

We suppose that
(i) B(z) ≥ 0;
(ii) A(z) → ∞ or B(z) → ∞ as ‖z‖ → ∞;
(iii) Φλ is τ-upper semi-continuous, and Φ′

λ is τ-weakly sequentially continuous
on Φk

λa for a, k ∈ R and a < k;
(iv) There exist R > r > 0, b > 0 and z0 ∈ Y , ‖z0‖ = 1, such that Φλ|N ≥ b >

0 ≥ sup∂M Φλ and d := supz∈M Φλ(z) <∞ for all λ ∈ [1, 2].
Then for almost every λ ∈ [1, 2], there exists a bounded sequence {zn} such that
Φ′

λ(zn) → 0 and Φλ(zn) → vλ, where

d ≥ vλ := inf
h∈Λ

sup
z∈M

Φλ(h(1, z)) ≥ b > 0.

The proof of this theorem was given in [27], so we omit its details.

4. Properties of the functional. From now on, we consider the system (HS) on
Banach space Eν defined in Section 2. Set Ξ := Eν = E−

ν ⊕ E+, where Y = E+,
X = E−

ν . It is not difficult to check that ‖ · ‖ν is uniformly convex, so Eν is a
reflexive Banach space.

Let

Ψ(z) =

∫

R

R(t, z)dt.

By assumptions and Theorem 2.2, Ψ(z) ∈ C1(Eν ,R) and

Ψ′(z)v =

∫

R

Rz(t, z(t))v(t)dt, ∀z, v ∈ Eν .

Define

Φλ(z) :=
1

2
‖z+‖2

E −
λ

2
‖z−‖2

E − λΨ(z), 1 ≤ λ ≤ 2,

for z = z− + z+ ∈ Eν . Then Φλ ∈ C1(Eν ,R). In order to obtain the boundedness
of the (PS)c-sequence, we shall apply Theorem 3.2 to the functional Φλ. So we first
study the properties for the functional Φλ. If λ = 1, we have

Φ(z) := Φ1(z) =
1

2
‖z+‖2

E −
1

2
‖z−‖2

E − Ψ(z).
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Thus, for ψ ∈ C∞
0 (R)

Φ′(z)ψ =

∫

R

(−J ż −Bz −Rz(t, z), ψ)dt. (4.1)

It follows that critical points of Φ are solutions of (HS). Moreover, if z is a solu-
tion of (HS), by Theorem 2.2, Rz(t, z) ∈ Ls(R,R2N ) for s ∈ [2,∞). A standard
argument shows that z is also a homoclinic orbit of (HS)(see [2]).

Lemma 4.1. Assume (J1) − (J5) hold. If z(t) 6= 0 is a critical point of Φ(z) in
Eν , then z is a homoclinic orbit of (HS).

Lemma 4.2. There exists a positive constant r > 0 such that

b := inf
z∈N

Φλ(z) > 0,

where N := {z ∈ E+ : ‖z‖ν = r}.

Proof. For all z ∈ E+, by Theorem 2.2 and (J2), we have

Φλ(z) =
1

2
‖z‖2

E − λ

∫

R

R(t, z)dt ≥
1

2
‖z‖2

E − cλ|z|νν

≥
1

2
‖z‖2

E − c‖z‖ν
E.

Now the desired result follows.

Lemma 4.3. Let z0 ∈ E+ and ‖z0‖ν = 1, ∂M = {z = z− + ρz0; ‖z‖ν = R and ρ ≥
0 or ‖z‖ν ≤ R and ρ = 0}. Then there exist R > r > 0 such that
(i) Φλ|∂M ≤ 0;
(ii) d := supz∈M Φλ(z) <∞,
where r > 0 is given in Lemma 4.2.

Proof. Noting that Φλ(z) ≤ Φ(z) for any z ∈ E and λ ∈ [1, 2], it suffices to prove
that Φ|∂M ≤ 0. Since R(t, z) ≥ 0, by (J2), for z = z− + ρz0, we have

Φ(z) ≤
ρ2

2
‖z0‖

2
E −

1

2
‖z−‖2

E − c1

∫

R

|z− + ρz0|
νdt.

There exists a continuous projection from the closure of E−
ν ⊕Rz0 in Lν to Rz0(see

[7]), thus, |ρz|ν ≤ c|z− + ρz0|ν for some c > 0. Hence

Φ(z) ≤
ρ2

2
−

1

2
‖z−‖2

E − cρν .

It follows that Φ(z− + ρz0) → −∞ as ‖z− + ρz0‖ν → ∞. Since Φ ≤ 0 on E−
ν , the

conclusion (i) hods for R sufficiently large. Moreover, since the set M is bounded,
it follows d <∞.

5. Existence of homoclinic orbit. In this section, we will establish Theorem
1.1. Recall that the functional

Φλ =
1

2
‖z+‖2

E − λ(
1

2
‖z−‖2

E +

∫

R

R(t, z)dt), z = z− + z+ ∈ Eν

defined in Section 4. By (J2), it is easy to check that A(z) → ∞ or B(z) → ∞ if
‖z‖2

ν = ‖z+‖2
E + ‖z−‖2

E + |z|2ν → ∞ and B(z) ≥ 0. Together with Lemmas 4.2-4.3,
we know that the conditions (i), (ii) and (iv) of Theorem 3.2 are satisfied. So we
have the following lemma.
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Lemma 5.1. For almost every λ ∈ [1, 2], there exists a bounded sequence {zn}
(‖zn‖ν ≤ C′′) such that Φ′

λ(zn) → 0 and Φλ(zn) → vλ, where vλ ∈ [b, d].

Proof. Let a ∈ R. Assume that zm ∈ Φλa with zm → z in τ . Then a ≤ 1
2‖z

+
m‖2

E −

(λ
2 ‖z

−
m‖2

E + λΨ(zm)). Since z+
m → z+, we have ‖z+

m‖E is bounded. Moreover, it

follows from λ
2 ‖z

−
m‖2

E ≤ 1
2‖z

+
m‖2

E − a that ‖z−m‖E is bounded. By (J2), one has

c|zm|νν + a ≤ a+
λ

2
‖z−m‖2

E + λΨ(zm) ≤
λ

2
‖z+

m‖2
E.

Thus, |zm|ν is bounded and so ‖zm‖ν . Therefore, zm ⇀ z which implies zm → z
in Lp

loc(p≥ 2) and along a subsequence zm(t) → z(t) a.e. t ∈ R. Consequently, by
the weakly semi-continuous of norm and Fatou’s lemma we get a ≤ Φλ(z). Now let
zm → z in τ(in Φk

λa). Similar to above arguments, we know that ‖zm‖ν is bounded,

and so zm ⇀ z in Eν . Then zm → z in Lp
loc and Rz(t, zm) → Rz(t, z) in L

p/(p−1)
loc .

Hence Φ′
λ(zm)ψ → Φ′

λ(z)ψ for ψ ∈ Eν . So the condition (iii) of Theorem 3.2 is
satisfied. By Theorem 3.2, it follows that the results of this lemma holds.

In order to prove that Φ(z) has non-zero critical point, we need the following
definition.

Definition 5.2. Let {zn} ⊂ Eν be a bounded sequence. Then, up to a subsequence,
either

(1) there exist γ > 0, R > 0 and yn ∈ R such that limn→∞

∫ yn+R

yn−R |zn|2dt ≥ γ > 0,
or

(2) limn→∞ supy∈R

∫ y+R

y−R
|zn|2dt = 0 for all 0 < R <∞.

In the cases (1) and (2), we say that {zn} is non-vanishing and vanishing, re-
spectively. The definitions are introduced in [4]

Since the Palais-Samle conditions is not satisfied due to the unboundedness of
the domain R, then we need the following lemma as a compact compensation. This
lemma is first established by P. L. Lions [24].

Lemma 5.3. Let a > 0 and {zn} ⊂ H
1
2 be bounded. If

(∗∗) sup
y∈R

∫

B(y,a)

|zn|
2 → 0, n→ ∞,

where B(y, a) is the interval (y − a, y + a), then zn → 0 in Lt(R) for 2 < t < ∞.
Particularly, if {zn} ⊂ E+ is bounded and satisfies (∗∗), then zn → 0 in Lt(R) for
2 < t <∞.

Proof. Usually, this lemma is stated for zn ⊂ H1(see [21, 24]). However, a simple
modification of the argument of Lemma 1.21 in [21] shows that the conclusion

remains valid in H
1
2 . Moreover, since the norms ‖ · ‖ν and ‖ · ‖

H
1
2

are equivalent in

E+, then the second conclusion follows.

Lemma 5.4. Let λ ∈ [1, 2] be fixed. If a bounded sequence {zn} ⊂ Eν satisfies

lim
n→∞

Φλ(zn) ∈ [b, d] and lim
n→∞

Φ′
λ(zn) = 0,

then there exist kn ∈ Z such that, up to be a subsequence, un := zn(t+ kn) satisfies

un ⇀ uλ 6= 0, 0 < Φλ(uλ) ≤ vλ and Φ′
λ(uλ) = 0.



1250 JUN WANG, JUNXIANG XU AND FUBAO ZHANG

Proof. Since sup ‖zn‖ν < +∞, then sup ‖z+
n ‖ν < +∞, where zn = z+

n + z−n , z−n ∈
E−

ν and z+
n ∈ E+. If {z+

n } is vanishing, i.e.,

lim
n→∞

sup
y∈R

∫

B(y,a)

|z+
n |2dt = 0,

by Lemma 5.3, one has z+
n → 0 in Lt(R) for 2 < t < ∞. Therefore, by (J2),

Theorem 2.2 and Hölder inequality, one sees that

|

∫

R

Rz(t, zn)z+
n dt| ≤ c

∫

R

|zn|
ν−1|z+

n |dt ≤ c|z+
n |ν |zn|

ν−1
ν → 0. (5.1)

Since Φ′
λ(zn) → 0 and Φ′

λ(zn)z+
n = ‖z+

n ‖2
E − λ

∫

R
Rz(t, zn)z+

n dt, we know that

‖z+
n ‖E → 0 and

Φλ(zn) ≤ ‖z+
n ‖E → 0,

a contradiction. Thus, {z+
n } is non-vanishing. That is, there exist γ > 0, ι > 0 and

ŷn ∈ R such that

lim
n→∞

∫ ŷn+ι

ŷn−ι

|z+
n |2dt ≥ γ > 0.

Hence we can find kn ∈ Z such that, setting un := zn(t+ kn),

lim
n→∞

∫ ι+1

−ι−1

|u+
n |

2dt ≥ γ > 0, (5.2)

where u±n = z±n (t+ kn). Since ‖zn‖ν = ‖un‖ν , then {un} is still bounded,

lim
n→∞

Φλ(un) = vλ ∈ [b, d] and lim
n→∞

Φ′
λ(un) = 0. (5.3)

Therefore, up to a subsequence, un ⇀ uλ and un(t) → uλ(t) a.e. t ∈ R, for some
uλ ∈ Eν . Since un → uλ in L2

loc(R,R
2N ), it follows from (5.2) that uλ 6= 0. Recall

that Ψ′ is weakly sequentially continuous. Therefore Φ′
λ(un) ⇀ Φ′

λ(uλ) and by
(5.3), Φ′

λ(uλ) = 0.
Finally, by (J3) and Fatou’s lemma,

vλ = lim
n→∞

(Φλ(un) −
1

2
Φ′

λ(un)un)

= lim
n→∞

λ

∫

R

(
1

2
Rz(t, un)un −R(t, un))dt

≥ λ

∫

R

(
1

2
Rz(t, uλ)uλ −R(t, uλ))dt = Φλ(uλ) > 0.

Lemma 5.5. There exists a sequence {λn} ⊂ [1, 2] and {zn} ⊂ Eν \ {0} such that

λn → 1, 0 < Φλn(zn) ≤ d and Φ′
λn

(zn) = 0.

Proof. This is a straightforward consequence of Lemmas 5.1 and 5.4.

Lemma 5.6. The sequence {zn} obtained in Lemma 5.5 is bounded in Eν .

Proof. We modify an arguments of Lemma 4.26 in [28]. For zn ∈ Eν , set zn =
z−n + z+

n , where z−n ∈ E−
ν , z+

n ∈ E+. Since Φ′
λn

(zn)zn = 0, by (J2),

‖z+
n ‖2

E − λn‖z
−
n ‖2

E = λn

∫

R

Rz(t, zn)zndt ≥ c|zn|
ν
ν . (5.4)
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Therefore, ‖z−n ‖2
E ≤ ‖z+

n ‖2
E, |zn|

ν
ν ≤ c‖z+

n ‖2
E and |zn|ν ≤ c‖z+

n ‖
2/ν
E . It suffices to

prove the boundedness of ‖z+
n ‖2

E .
By (J4) and (J5), let ε0 > 0 such that µ0−ε0 > 2, then there exist R1 ≥ R0 > 0

such that

Rz(t, z)z ≥ (µ0 − ε0)R(t, z), ∀t ∈ R, |z| ≤ R0, (5.5)

and

Rz(t, z)z − 2R(t, z) ≥ c0|z|
β, ∀t ∈ R, |z| ≥ R1.

Furthermore, by (J3), we can choose ǫ > 0 small enough such that

Rz(t, z)z − 2R(t, z) ≥ ǫ|z|β, ∀t ∈ R, |z| ≥ R0. (5.6)

Since Φλn(zn) ≤ d and Φ′
λn

(zn) = 0, we have

d ≥ Φλn(zn) −
1

µ0 − ε0
Φ′

λn
(zn)zn = (

1

2
−

1

µ0 − ε0
)(‖z+

n ‖2
E − λn‖z

−
n ‖2

E)

+ λn

∫

R

(
1

µ0 − ε0
Rz(t, zn)zn −R(t, zn))dt.

Hence, by (5.5) and (J2) − (J3), we get that

‖z+
n ‖2

E − λn‖z
−
n ‖2

E ≤ c+ c

∫

R

(R(t, zn) −
1

µ0 − ε0
Rz(t, zn)zn)dt

= c+ c(

∫

|zn|≥R0

+

∫

|zn|≤R0

)(R(t, zn) −
1

µ0 − ε0
Rz(t, zn)zn)dt

≤ c+ c

∫

|zn|≥R0

(R(t, zn) −
1

µ0 − ε0
Rz(t, zn)zn)dt

≤ c+ c(
1

2
−

1

µ0 − ε0
)

∫

|zn|≥R0

Rz(t, zn)zndt

≤ c+ c

∫

|zn|≥R0

|zn|
νdt.

(5.7)

Moreover, Φλn(zn) − 1
2Φ′

λn
(zn)zn ≤ d, (J3) and (5.6) imply that

c ≥

∫

R

(
1

2
Rz(t, zn)zn −R(t, zn)) ≥

ǫ

2

∫

|zn|≥R0

|zn|
βdt. (5.8)

Choose t ∈ ( ν−2
β(ν−1) ,

1
ν ) ⊂ (0, 1). Since ν ν−2

ν−1 = ν∗ < β < ν, then, by (5.8), Hölder

inequality and Theorem 2.2, we have
∫

|zn|≥R0

|zn|
νdt =

∫

|zn|≥R0

|zn|
βtν |zn|

(1−βt)νdt

≤ (

∫

|zn|≥R0

|zn|
βdt)tν(

∫

|zn|≥R0

|zn|
(1−tβ)ν

1−tν dt)1−tν

≤ c|zn|
(1−tβ)ν
p∗ ≤ c‖zn‖

(1−tβ)ν
ν

≤ c(‖z+
n ‖E + ‖z−n ‖E + |zn|ν)(1−tβ)ν

≤ c‖z+
n ‖

(1−tβ)ν
E + c‖z+

n ‖
2(1−tβ)
E ,

(5.9)
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where p∗ = (1−tβ)ν
1−tν > ν. Consequently, (5.4), (5.7) and (5.8) imply that

c

∫

R

|zn|
νdt ≤ ‖z+

n ‖2
E − λn‖z

−
n ‖2

E ≤ c+ c

∫

|zn|≥R0

|zn|
νdt

≤ c+ c‖z+
n ‖

(1−tβ)ν
E + c‖z+

n ‖
2(1−tβ)
E .

That is, |zn|ν ≤ c+c‖z+
n ‖

(1−tβ)
E +c‖z+

n ‖
2
ν (1−tβ)

E . On the other hand, Φ′
λn

(zn)z+
n = 0

and (J2) imply that

‖z+
n ‖2

E =

∫

R

Rz(t, zn)z+
n dt ≤ c

∫

R

|zn|
ν−1|z+

n |dt

≤ c|zn|
ν−1
ν |z+

n |ν ≤ c(c+ c‖z+
n ‖1−tβ

E + c‖z+
n ‖

2
ν (1−tβ)

E )ν−1‖z+
n ‖E

≤ c‖z+
n ‖E + c‖z+

n ‖
(1−tβ)(ν−1)+1
E + c‖z+

n ‖
2(ν−1)

ν (1−tβ)+1

E .

Since (1 − tβ)(ν − 1) + 1 < 2, we have that ‖z+
n ‖E < +∞.

Lemma 5.7. The sequence {zn} obtained in Lemma 5.5 is non-vanishing.

Proof. It suffices to show that ‖z+
n ‖E ≥ c1 > 0. Indeed, if {zn} is vanishing, since

Φ′
λn

(zn)z+
n = 0, similar to (5.1) of Lemma 5.4, we have

‖z+
n ‖2

E = λn

∫

R

Rz(t, zn)z+
n dt → 0,

as n → ∞, a contradiction. In the following we shall show that ‖z+
n ‖E ≥ c1 > 0.

Since Φ′
λn

(zn)zn = 0, we have

‖z−n ‖2
E ≤ c‖z+

n ‖2
E, |zn|

ν
ν ≤ c‖z+

n ‖2
E.

Therefore, by (J2) and Hölder inequality,

|

∫

R

Rz(t, zn)z+
n dt| ≤ c

∫

R

|zn|
ν−1|z+

n |dt

≤ c|zn|
ν−1
ν |z+

n |ν ≤ c‖z+
n ‖

2(ν−1)
ν

E ‖z+
n ‖E

= c‖z+
n ‖

2(ν−1)
ν +1

E .

It follows from Φ′
λn

(zn)z+
n = 0 that

‖z+
n ‖2

E = λn

∫

R

Rz(t, zn)z+
n dt ≤ c‖z+

n ‖
2(ν−1)

ν +1

E .

Noting that 2(ν−1)
ν > 1, then there exists c1 > 0 such that c1 ≤ ‖z+

n ‖E.

Proof of Theorem 1.1. We have shown that there exist λn → 1 and a bounded
sequence {zn} such that 0 < Φλn(zn) ≤ d and Φ′

λn
(zn) = 0. Therefore,

Φ′(zn) = Φ′
λn

(zn) + (λn − 1)(z−n + Ψ′(zn)) = (λn − 1)(z−n + Ψ′(zn)) → 0.

It follows from Lemma 5.7 that {zn} is non-vanishing. By Lemma 5.4, there exists
kn ∈ Z such that if z̄n(t) := zn(t+ kn), then z̄n(t) ⇀ z̄(t) 6= 0 and Φ′(z̄) = 0. This
is the desired result.

Corollary 1. Let H(t, z) be the form of (1.1). Assume that A = −(J d
dt + B(t))

satisfies the conditions of Remark 3. Then (HS) has at least one homoclinic orbit.

It follows from the Remark 3 and Theorem 1.1.
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6. Some examples of matrices. In this section, we shall give some examples of
matrix satisfying the condition (J1). Therefore, some preliminary results is needed,
which due to Ding and Willem in [2].

Definition 6.1. Let S(t) ∈ C(R; R4N2

) be a symmetric matrix valued function,
and let F (t) be the fundamental matrix with F (0) = I for the equation

ẋ(t) = JS(t)x,

S(t) is said to have an exponential dichotomy if there is a projector P and positive
constants K, ξ such that

{

|F (t)PF−1(s)| ≤ Ke−ξ(t−s), if s ≤ t

|F (t)(I − P )F−1(s)| ≤ Ke−ξ(s−t), if s ≥ t,
(6.1)

(see [1]).

Definition 6.2. A continuous symmetric matrix valued function B(t) will be called
right (resp. left) dichotomic if there is δ̄ > 0 such that Bδ(t) := B(t) + δ has an
exponential dichotomy for each δ ∈ (0, δ̄] (resp. δ ∈ [−δ̄, 0)).

Lemma 6.3. If B(t) is right dichotomic, then it satisfies (J1).

Proof. The proof was actually given in [2]. We state it here for reader’s convenience.
Noting that

ẋ = JB(t)x⇐⇒ Aεx+ εx = 0,

where

Aε := −(J
d

dt
+Bε(t)) = A− ε.

By Lemma 7.1 in Appendix, for any ε ∈ (0, ε̃], there are aε < 0 < bε, both aε and bε
being in σ(Aε), such that (aε, bε) ⊂ ρ(Aε) := C \ σ(Aε). Let χ := min{ε̃, bε̃}. Then
since ε ∈ σ(A) if and only if 0 ∈ σ(Aε), we see that (0, χ) ⊂ ρ(A). The desired
conclusion follows.

Remark 4. In the same way, one can check that if B(t) is left dichotomic then
there is α > 0 such that (−α, 0) ⊂ ρ(A).

The following two matrix satisfy (J1).

Example 1. Let

B1(t) := −e| sin(πt)|+1

(

1 1
1 1

)

.

Clearly, we have that

B1δ(t) := B1(t) + δI2 =

(

δ − e| sin(πt)|+1 −e| sin(πt)|+1

−e| sin(πt)|+1 δ − e| sin(πt)|+1

)

,

and

ev(JB1δ) = {λ±1 = ·, ·, ·,= λ±N = ±((−δ2 + 2δe| sin(πt)|+1)
1
2 },

where ev(B1) denotes the set of all eigenvalues of B1. Therefore, B1 is right di-
chotomic if 0 < δ < 2e.
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Example 2. Let M(t) be 1-periodic continuous symmetric matrix valued func-
tion and

M1 :=

∫ 1

0

M(t)dt

be its mean value. Similar to example 2 of [2]. Set M1ε := M1 + ε and let

λj(ε) = αj(ε) + iγj(ε), j = 1, · · ·, 2N

denote the eigenvalues of JM1ε. Assume that there is ε̄ > 0 such that

α1(ε) ≤ · · · ≤ αN (ε) < 0 < αN+1(ε)

≤ · · · ≤ α2N , ∀ε ∈ (0, ε̄](ε ∈ [ε̄, 0)).

Then M(t) is right(left) dichotomic. In particular, if

M1 := diag(λ1, · · ·, λ2N )

with λ1 ≤ · · · ≤ λN (t) < 0 ≤ λN+1 ≤ · · · ≤ λ2N , then M(t) is right dichotomic.

7. Appendix. Recalling that A=−(J d
dt + B(t)) is a self-adjoint operator in H.

By (J1), we have D(|A|
1
2 ) = H

1
2 , where |A|

1
2 denotes the square root of |A|. In this

Appendix, we mainly refer to the paper [2]. For reader’s convenience, some of the
results, together with the proofs, will be provided here. Set W 1,s := W 1,s(R,R2N )

for s ≥ 1, H1 := W 1,2 and H
1
2 := H

1
2 (R,R2N ). For a self-adjoint operator A in H,

we denote by |A| its absolute value. Now we have

Lemma 7.1. Suppose that S(t) has an exponential dichotomy and s ≥ 1. Then the
following conclusions hold:

(1) The operator

Bs : Ls ⊃W 1,s → Ls, u 7→ −(J
d

dt
+ S(t))u,

has a bounded inverse B−1
s satisfying with some d = d(s, σ) > 0

|B−1
s z|σ ≤ d|z|s, ∀z ∈ Ls,

for all σ ≥ s;
(2) B := B2 is s self-adjoint, and there are b > 0, b1 > 0, b2 > 0 such that

σ(B) ∩ [−b, b] = ∅ and

b1‖z‖H1 ≤ |Bz|2 ≤ b2‖z‖H1 for all z ∈ H1;

(3) D(|B|
1
2 ) = H

1
2 , and there are d1, d2 > 0 such that

d1‖z‖
H

1
2
≤ ||B|

1
2 z|2 ≤ d2‖z‖

H
1
2

for all z ∈ H
1
2 .

Proof. For any z ∈ Ls, s ≥ 1, there is a unique u ∈ W 1,s satisfying

−(J
d

dt
+ S)u = z

given by

u(t) =

∫ t

−∞

F (t)PF−1(s)J zds−

∫ ∞

t

F (t)(I − P )F−1(s)J zds.

Set

λ+(s) = λ−(−s) =

{

1, if s ≥ 0,

0, if s < 0.
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Then

u(t) =

∫

R

F (t)PF−1(s)λ+(t− s)J zds

−

∫

R

F (t)(I − P )F−1(s)λ−(t− s)J zds

= u1(t) + u2(t),

and by Eq. (6.1)

|u1(t)| ≤ K

∫

R

e−ξ(t−s)λ+(t− s)|z|ds

and

|u2(t)| ≤ K

∫

R

e−ξ(s−t)λ−(t− s)|z|ds.

Setting f+(τ) = e−ξτλ+(τ) and f−(τ) = eξτλ−(τ), one has

|u1(t)| ≤ K(f+ ∗ |z|)(t) and |u2(t)| ≤ K(f− ∗ |z|)(t),

where ∗ denotes the convolution. Observe that
∫

R

|f+|σ =

∫

R

|f−|σ =
1

ξσ
∀σ ≥ 1 and |f±|∞ = 1.

By the convolution inequality, for any ϑ ≥ 1 satisfying 1
ϑ = 1

s + 1
σ − 1,

|uj|ϑ ≤ K(ξσ)−1/σ|z|s, j = 1, 2

and for 1
s + 1

s′ = 1, s > 1

|uj |∞ ≤ K(ξs′)−1/s′

|z|s, j = 1, 2.

and also

|uj |∞ ≤ K|z|1, if s = 1, j = 1, 2.

Therefore,

|u|ϑ ≤ K(ξσ)−1/σ|z|s, ϑ, s, σ ≥ 1 and
1

ϑ
=

1

s
+

1

σ
− 1. (7.1)

Now the conclusion (1) follows from Eq. (7.1).
It is easy to verify that B = B2 is self-adjoint. Note that if there is a sequence of

positive numbers bn → 0 such that σ(B) ∩ [−bn, bn] = ∅, then there is a sequence
{zn} ⊂ D(A) with |zn|2 = 1 and |Bzn|2 → 0, contradicting (7.1). That is, 0 6∈ σ(B).
The inequality of (2) is clear by (7.1).

We now verify (3). Let Γ := − d2

dt2 . Then D(Γ) = H2. By an interpolation theory
(see [2](page 764, line 15) or [23](see section 2.5.2))

(D(Γ0),D(Γ))θ,2 = (H, H2)θ,2 = H2θ, 0 < θ < 1.

On the other hand (see [2](page 764, line 17) or [23](see section 1.18.10))

(D(Γ0),D(Γ))θ,2 = D(Γθ).

Consequently,

D(Γθ) = H2θ

equipped with the norm

‖z‖2
D(Γθ) =

∫ ∞

0

(1 + λ2θ)d|Eλz|
2
2 = |z|22 + |Γθz|22,
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where {Eλ;−∞ < λ <∞} is the spectral family of Γ. In particular, let θ = 1/4,

H
1
2 = D(Γ

1
4 ), ‖u‖2

H
1
2
≤ |z|22 + |Γ1/4z|22.

Since |Γ1/2z|2 = |ż|2 ≤ c1|Bz|2 for z ∈ H1 by the conclusion (2), one has (Γ1/2z, z)2
≤ c2(|B|z, z)2(see Theorem 4.12 in [8]), and so |Γ1/4z|2 ≤ c2||B|1/2z|2. Together
with Eq. (7.1), it follows that the first inequality of (3) holds. Similarly, considering

the operator Γ̃ := d2

dt2 + 1, one can check the second one of (3).

Lemma 7.2. Under the assumption of (J1), we have

c1‖z‖H1/2 ≤ ||A|
1
2 z|2 + a|z|2 ≤ c2‖z‖H1/2 + 2a|z|2, for z ∈ H

1
2 ,

where ci > 0, (i=1, 2) and a > supt∈R
|B(t)|.

Proof. Now we consider the matrix Ba := B(t) + aB̃, where a > 0, B(t) satisfies

(J1) and B̃ =

(

0 1
1 0

)

. Clearly aJ B̃ has the eigenvalues λ1 = · · · = λN = a and

λN+1 = · · · = λ2N = −a, and its fundamental matrix is Fa = exp(at

(

−1 0
0 1

)

).

Therefore aB̃ has an exponential dichotomy. By the roughness of the exponential
dichotomy, for any

a > 4 sup
t∈R

|B(t)|, (7.2)

Ba also have an exponential dichotomy(see [1]). In Eq. (7.2), we fix an a. Consider
the self-adjoint operator

Aa = −(J
d

dt
+Ba) = A− aB̃.

Since for z ∈ D(A)

|Aaz|2 = |(A− aB̃)z|2 ≤ |Az|2 + a|z|2,

by Lemma 7.1,

c1‖z‖
2
H1/2 ≤ (|Aa|z, z)2 ≤ (|A|z, z)2 + a|z|22

≤ c2‖z‖
2
H1/2 + a|z|22.

By Proposition III 8.12 of [8], we have

c1‖z‖H1/2 ≤ ||A|
1
2 z|2 + a|z|2 ≤ c2‖z‖H1/2 + 2a|z|2,

for all z ∈ H
1
2 = D(|A|

1
2 ), where ci > 0, (i=1, 2).
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