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Network Optimization for Lightweight Stochastic
Scheduling in Underwater Sensor Networks

Dimitri Marinakis, Kui Wu, Ning Ye, and Sue Whitesides

Abstract—In this paper, we examine the merit of a sim-
ple and lightweight stochastic transmission strategy based on
the ALOHA protocol for underwater wireless sensor networks
(UWSNs). We use a stochastic scheduling approach in which time
is slotted, and each network component transmits according to
some probability during each slot. We present objective functions
for assigning the transmission probabilities that are aimed at
optimizing network performance with respect to the overall
network latency and the overall network reliability. We show
that there is an easily distributed heuristic policy based on local
network density that works well in practice. We also evaluate our
approach using numerical simulations. The evaluation results
show that even without using explicit control signaling, our
lightweight stochastic scheduling method is effective for data
transmission in underwater sensor networks.

Index Terms—Underwater senor networks, slotted ALOHA,
network optimization.

I. INTRODUCTION

THE monitoring and exploration of the ocean is of great
importance to the sustainable and environmentally sound

development of the Earth. Activities such as oceanographic
data collection, offshore exploration, and ocean ecosystem
monitoring are facilitated by the deployment of underwater
wireless sensor networks (UWSNs) [9]. One basic requirement
is that the devices should be able to exchange data and
control messages with each other, as seen in some examples
of underwater research platforms (e.g., [2]).

Underwater communication, however, is a challenging prob-
lem which is an area of active research (e.g., [14]). Radio
waves propagate underwater only at very low frequencies (e.g.,
30- 300 HZ) and have an extremely short range (e.g. 20
meters). Under water, optical waves are affected by scattering
effects and cannot be used to transmit over long distances.
So far, acoustic communication has been the physical layer of
choice for underwater communication. Underwater acoustic
communication, however, is subject to large propagation la-
tency, low bandwidth, high bit error rate (BER), and complex
multipath fading. These special properties call for solutions
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that are significantly different from those designed for tradi-
tional RF communications. To make the situation worse, there
can be large variations in temperature, salinity, and pressure
over short distances in the underwater environment, all of
which can significantly impact acoustic propagation.

In existing RF communication systems, Medium Access
Control (MAC) protocols are used to resolve contention issues
in medium access. A basic requirement for a MAC protocol
is to find a transmission scheduling scheme that eliminates
or minimizes conflicting transmissions. To achieve this, an
implicit control mechanism (e.g., Time Division Multiple
Access (TDMA) ), or explicit control messages (e.g., Request-
To-Send (RTS) and Clear-To-Send (CTS) messages in Carrier
Sense Multiple Access (CSMA) based protocols), are adopted.
These scheduling methods are designed, however, for RF com-
munications in the air and usually assume that the propagation
delay is negligible. Simulation studies have shown that the
RTS/CTS based control, which alleviates hidden/exposed ter-
minal problems and improves network throughput [7], actually
degrades throughput when the propagation delay becomes
large [24].

Interestingly, it has recently been shown that MAC protocols
based on the relatively simple ALOHA protocol [1] perform
well in an underwater multi-hop environment in which there
are significant propagation delays. Recently, Syed et al. [21]
modified the slotted ALOHA protocol for underwater, acoustic
communication, so that ALOHA could achieve a throughput
comparable to what it achieves in RF networks. In related
work, Petrioli et al. [13] evaluated various MAC protocols for
underwater sensor networks and found that in multi-hop, un-
derwater acoustic networks, ALOHA variants performed better
than protocols that have larger overhead costs. Additionally,
simulations reported by Zhou et al. [24] demonstrated that
random ALOHA schemes can provide stable performance in
UWSNs.

Motivated by the important role we believe ALOHA based
MAC protocols will play in UWSNs, we have examined the
merit of a simple, stochastic transmission strategy based on
the ALOHA protocol: time is slotted; and during each time
slot, each device in the network is assigned a probability for
transmission. Such a simple link scheduling method is easy to
implement and requires virtually zero control overhead. There-
fore, we propose that stochastic variants of slotted ALOHA
could be used for networking devices in UWSNs.

Main Contributions:

• We lay the groundwork for exploring whether stochastic
scheduling for lightweight, ALOHA based MAC variants
might provide suitable solutions for underwater network

1536-1276/12$31.00 c© 2012 IEEE



MARINAKIS et al.: NETWORK OPTIMIZATION FOR LIGHTWEIGHT STOCHASTIC SCHEDULING IN UNDERWATER SENSOR NETWORKS 2787

communication challenges. Specifically, we present a
Lightweight Stochastic Scheduling (LiSS) approach.

• We consider how the transmission probability of a node
should be adjusted based on its local (at a given time)
communication topology in order to obtain good overall
network performance.

• We present heuristic objective functions for assigning
the transmission probabilities to improve overall network
performance. We present analytical results and perform
simulation study to demonstrate the effectiveness of our
Lightweight Stochastic Scheduling.

The remainder of this paper is organized as follows. We
review related work on underwater MAC protocols. Then
we present the analysis that motivates an easily distributed
heuristic for assigning transmission probabilities, and we
present experimental results based on network simulations. We
conclude with several observations and remarks.

II. RELATED WORK

A number of MAC protocols have been proposed to handle
the special conditions encountered in underwater multi-hop
sensor networks (e.g., [11], [20], [12], [15]). Here we review
the more recent efforts that are particularly relevant to our
investigation.

A. Underwater MAC protocols

Despite the disadvantages of the inherent propagation de-
lays, a number of modern MACs proposed for underwater
communication nevertheless rely on the exchange of hand-
shaking control messages for medium access. For example,
Slotted Floor Acquisition Multiple Access (Slotted FAMA), as
presented by Molins and Stojanovic [11], is based on carrier
sensing. Each network component constantly listens to the
channel, but stays idle unless it has permission to transmit,
which is granted via an RTS/CTS handshaking mechanism.
Collisions are handled through a random back off scheme.
Simulations demonstrate that this protocol has promise for
underwater networks, although the authors consider an appli-
cation in which the data packets exchanged are much larger
than the control packets used for the handshaking. It is not
clear that this approach would be suitable for an application
in which many small data packets are exchanged on a frequent
basis.

The Tone-Lohi (T-Lohi) MAC introduced by Syed et
al. [20] also employs a synchronized transmission frame with a
handshaking scheme for contention avoidance. Unlike Slotted
FAMA, however, the protocol allows network components
to sleep for energy saving purposes. When a device using
the T-Lohi protocol is ready to send data, it attempts to
reserve the channel by sending a control message (a tone)
during a reservation period. If the device does not hear one or
more tones from other devices during this reservation period
then it is clear to send; otherwise it backs off and waits.
Energy savings through sleeping are achieved by using custom
acoustic hardware which triggers the device to wake up when
the tone is detected.

Considerable research has demonstrated the promise of
underwater MAC layers that incorporate CDMA (e.g., the

work of Pompili et al. [15], the work of Page and Stojanovic
[6], and the work of Tan and Seah [22]). The approach is
particularly suited for some challenging application areas, such
as shallow water operation where multi-path interference is a
major factor. In other applications, however, e.g., where con-
gestion issues dominate, the operational simplicity of ALOHA
schemes can be attractive.

In contrast to CDMA based approaches, Slotted FAMA and
T-Lohi, the Underwater Wireless Acoustic Network Media
Access Control (UWAN-MAC) protocol presented by Park
and Rodoplu [12] does not employ a handshaking mechanism
using control messages to reserve channel access. When
using UWAN-MAC, each device transmits infrequently, but
regularly with a randomly selected offset. The schedule of a
device’s neighbor is learned via synchronization packets sent
during an initialization period. The approach achieves energy
savings by finding locally synchronized schedules such that
network components can sleep during idle periods. Although
there is no explicit method for avoiding collisions, the colli-
sions are shown to be rare. The approach relies, however, on
a static network in which the transmission delays between
any pair of devices remain roughly constant. The UWAN-
MAC approach has some similarity in spirit to the stochastic
scheduling we consider in this paper, and it should be possible
to modify UWAN-MAC to benefit from our analysis, e.g., by
adapting the duty cycle of each device based on local network
density.

B. Stochastic Scheduling

In previous work [10], Marinakis and Whitesides used a
slotted stochastic transmission strategy in the context of an
alarm network. They addressed the question of how a network
of devices might signal the occurrence of an event capable
of disabling the sensors. The approach was for the devices
to regularly exchange messages during normal operation,
but signal the occurrence of an alarm event by ceasing all
transmissions. It is concluded that good performance could
be obtained by using a heuristic that sets the probability of a
node i transmitting per slot to the inverse of the max degree
of itself and all its neighbors plus one:

pi =
1

max δ(k) + 1
, k ∈ {N(i), i}, (1)

where N(i) denotes the neighboring nodes of node i and δ(k)
means the degree of node k. This heuristic is called the Max
Neighbourhood Degree Heuristic (MNDH). The objective of
this heuristic is to limit the transmission rate of each device
to that of the most overloaded device in its neighbourhood.

The probabilistic approach we present in this paper has
some relation to stochastic techniques applied to RF sensor
networks such as flooding (see e.g., Sasson et al. [16]), or
data aggregation (see e.g., Boyd et al. [4]). Also related are
distributed, low complexity approaches to scheduling such as
the recent work of Tang et al. [23]. Nevertheless, our work
differs from the above in that we consider different objective
functions. Furthermore, we obtain analytical results, for which
simple heuristics can be designed for distributed scheduling.
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III. NETWORK MODEL

We model the multi-channel, multi-hop communication
links available between the network nodes at any instance as
a directed graph G = (V,E) in which each vertex v ∈ V
represents a network node and each edge eij ∈ E denotes a
potential communication link from node i to node j, i.e., the
node i can transmit data to node j if eij ∈ E in a selected
channel.

We make the following assumptions on data communica-
tion:

1) A device may select either to transmit on a channel
m, or to tune its acoustic transceiver to receive data
on a channel m during a particular slot. A device that
is transmitting may not receive at the same time.

2) If a device is tuned to receive on a channel m, then
a packet can be received only if exactly one of its
neighbors is transmitting on that channel. This constraint
provides a simple way to model congestion issues such
as the hidden terminal problem [3].

3) All devices maintain synchronized clocks and may select
to time their communications to occur during a par-
ticular slot. Note that this is a common assumption,
and there are a number of existing techniques that
could be used to accomplish this task; see Syed and
Heidemann [19] for an example of a time synchroniza-
tion method appropriate for acoustic networks, and see
Sivrikaya and Yener [17] for a more general survey
of time synchronization techniques in wireless sensor
networks. Note that time synchronization is a basic
requirement for a networked system and correct time
is required to make sensing data meaningful.

4) Time is slotted, and at each time slot, a device may
select to transmit on a randomly selected channel with
a given probability, which will be determined according
to different performance goals. When not transmitting,
a node tunes itself to receive on a randomly selected
channel. Note that we do not assume any control channel
to coordinate nodes’ transmission, because it has been
demonstrated before that introducing control mecha-
nisms does not necessarily improve throughput when
the propagation delay is large [24].

Since no explicit control mechanism is required, we will
refer to this approach as Lightweight Stochastic Scheduling
(LiSS).

IV. LISS ON A SINGLE CHANNEL

In this section, we analyze the single channel case. As op-
posed to solving the congestion issue through the assignment
of deterministic schedules, we propose assigning a probability
of transmitting per time slot to each node in the network,
i.e., P = {pi, i ∈ V }. The key question is how to select
appropriate values for P . We will show that our approach
leads to good heuristics that can be used to design simple and
distributed scheduling that do not depend on the propagation
delay. For ease of reference, we list the main notations in
Table I.

Fig. 1. Example graph showing the influence of pi. If pi is adjusted
upwards, then the throughput across links (i, j1) and (i, j2) will be increased,
while that of the links (j1, i), (j2, i), (k1, j2), (k2, j2) and (k3, j2) will be
decreased.

A. Basic Constraint and General Guideline

As a preliminary, we consider the impact of P on the
probability of one node communicating with another. To this
end, we define a throughput graph corresponding to a given
network.

Definition 1: The throughput graph of a given network
G = (V,E) is a weighted, directed graph, denoted by
G′ = (V,E,R), where R is the set of weights on the edges
and the weight of edge eij ∈ E, denoted by rij , corresponds
to the probability that node j receives a message from a
neighbouring node i during a given time slot. Although we
specify a directed graph for notational convenience, we assume
that the edge eij exists if and only if the edge eji exists. A
node j is called a neighboring node of a node i if there is an
edge eji ∈ E.

We call G′ the throughput graph because the weight as-
signed to the directed edge eij is proportional to the amount
of data across that link in a long run. In this paper, we
consider only static assignments of values to P . As illustrated
in Appendix, rij can be calculated as follows:

rij = pi(1− pj)
∏

k∈N(j),k �=i

(1− pk), eij ∈ E. (2)

The above formula captures the basic constraint. The impact
of this constraint is illustrated in Figure 1. In particular, while
a node’s transmitting probability is increased, the long-term
throughput from this node to its neighboring nodes will be
increased, and such an increase may lead to lower transmission
opportunities for its neighboring nodes.

B. Different Objectives for Value Assignment of P

We now consider how to assign P values for two useful
objective functions that aim to reduce link level packet loss
and link level latency. For the moment, our objective function
formulations weigh equally the importance of all links in the
network. Considering a specific subset of network links, for
example, a spanning tree, would be a straightforward adaption.

Definition 2: The overall reliability of network G =
(V,E), denoted by Qr, is a function over the corresponding
throughput graph G′ = (V,E,R) and is defined as:

Qr =
∏

rij∈R

rij . (3)

We call Qr the overall network reliability because in the
long run, maximizing Qr should maximize the probability that
a data packet could be successfully routed along an arbitrary
path q in |q| time slots, where |q| is the length of the path.
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TABLE I
MAIN NOTATIONS

Symbols Meaning
N(i) the neighbors of device i
rij the weight of edge eij corresponding to the probability that node j receives a message from node i in a time slot
pi the probability that node i transmits in a time slot
P the vector of pi’s
δi the degree of node i
Qr the overall reliability defined by (3)
Ql the overall latency defined by (4)
M the number of channels
β a parameter controlling the convergent rate towards the direction of gradient
α the communication ratio determining the density of a network

Definition 3: The overall latency of network G = (V,E),
denoted by Ql, is a function over the corresponding throughput
graph G′ = (V,E,R) and is defined as:

Ql =
∑
rij∈R

1

rij
. (4)

Intuitively, 1
rij

represents the long-term average delay as-
sociated with communication from node i to node j, because
the value rij gives the probability of successfully transmitting
a packet from node i to node j in a given time slot. By min-
imizing Ql, we obtain value assignment of P that minimizes
the delay associated with successfully routing a data packet
along an arbitrary path in the long term. The overall network
latency is a reasonable objective function in order to design
good heuristics to achieve small average routing delay in the
whole network. This is particularly useful when the source
and destination nodes are not given a-priori. We would like to
emphasize that Qr and Ql are both heuristic functions useful
to achieve good performance in the long term for a network
with unknown traffic patterns.

C. Maximizing Overall Network Reliability

We will now show how to assign the values in P = {pi, i ∈
V }, such that the overall network reliability Qr is maximized.
Since Qr is a function of P , we rewrite it as Qr(P ) to make
the point clear:

Qr(P ) =
∏

rij∈R

rij .

By taking the log of both sides we get:

Q′
r(P ) =

∑
rij∈R

log rij ,

where Q′
r(P ) = logQr(P ). Note that for Qr(P ) > 0, which

is for all nontrivial Qr(P ), logarithm is defined. Moreover,
the logarithm function is a monotonically increasing function;
hence the same maximizer(P ) is achieved. It is easy to see
that the function Q′

r is a concave function, since if we expand
log rij , each term in the function is concave and the sum of
concave functions is also concave.

Now we would like to find the values of P that maximize
Q′

r. We proceed by considering the partial derivatives of Q′
r

with respect to the value of pi ∈ P :

∇Q′
r =

(∂Q′
r

∂p1
,
∂Q′

r

∂p2
, . . .

∂Q′
r

∂pn

)

where n = |V |. A single partial then becomes:

∂Q′
r

∂pi
=

∑
rlj∈R

1

rlj

∂rlj
∂pi

. (5)

The partials with respect to pi are only non-zero, however,
for rij , j ∈ N(i) and rji, j ∈ N(i) and rkj , k ∈ N(j), k �= i,
based on the basic constraint as defined in (2). We can now
consider the partial of a single weight value with respect to pi.
The first type of term in (5) with a non-zero partial derivative
that we need to consider is the outbound throughput from i
to j:

∂rij
∂pi

=
∂

∂pi
pi(1 − pj)

∏
k∈N(j),k �=i

(1 − pk)

= (1− pj)
∏

k∈N(j),k �=i

(1− pk)

=
rij
pi

. (6)

For the inbound throughput from j to i where j ∈ N(i) we
have:

∂rji
∂pi

=
∂

∂pi
(1− pi)pj

∏
k∈N(i),k �=j

(1 − pk)

= −pj
∏

k∈N(i),k �=j

(1− pk)

=
−rji
1− pi

(7)

and similarly, for the throughput from k to j where k ∈
N(j), k �= i we have:

∂rkj
∂pi

=
∂

∂pi
pk(1− pi)(1 − pj)

∏
l∈N(j),l �=i,l �=k

(1− pl)

= −pk(1 − pj)
∏

l∈N(j),l �=i,l �=k

(1 − pl)

=
−rkj
1− pi

. (8)

Let us denote the set of throughputs whose partial derivative
with respect to pi is not trivially zero as Li. This set can be
described as all throughputs that have an endpoint adjacent to
either the vertex i or one of its neighbors:

Li = {rkl, l ∈ {N(i) ∪ i} . (9)

We can further categorize the throughputs affected by pi into
those with a positive partial derivative:

Li+ = {rik, k ∈ N(i)} (10)



2790 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 11, NO. 8, AUGUST 2012

and those with a negative partial derivative:

Li− = Li \ Li+ . (11)

To further aid our analysis, we adopt δi to be the degree of
node i ∈ V and further define δ̄i to be the sum of the degrees
of all neighbors of i:

δ̄i =
∑

j∈N(i)

δj .

It is easy to see that |Li+| = δi and |Li−| = δ̄i.
Let us now return to (5) and consider taking the partial

derivative of Q′
r with respect to pi:

∂Q′
r

∂pi
=

∑
rjk∈L

∂rjk
∂pi

1

rjk

=
∑

rjk∈Li+

∂rjk
∂pi

1

rjk
+

∑
rjk∈Li−

∂rjk
∂pi

1

rjk

=
∑

rjk∈Li+

rjk
pi

1

rjk
+

∑
rjk∈Li−

−rjk
1− pi

1

rjk

=
δi
pi

− δ̄i
1− pi

. (12)

Since the partial derivative of our objective function Q′
r with

respect to a single pi does not depend on the other elements
of P , we can set each partial to zero in order to find the value
of each pi that will maximize Q′

r and of course Qr as well:

pi =
δi

δi +
∑

j∈N(i) δj
. (13)

The result is a feasible solution, i.e., 0 ≤ pi ≤ 1.

D. Minimizing Overall Network Latency

To minimize overall network latency, we need to solve the
following non-trivial optimization problem:

minimize
p1,p2,...,pn

Ql =
∑

rij∈R

1

rij

subject to 0 < pi ≤ 1, i = 1, . . . , n

(14)

where rij is defined by (2). For each node i, if we introduce
another parameter qi = 1 − pi, we can transform the above
problem to an equivalent optimization problem as follows.

minimize
p1,...,pn,q1,...,qn

Ql =
∑
rij∈R

1

rij

subject to 0 < pi ≤ 1, i = 1, . . . , n

0 < qi ≤ 1, i = 1, . . . , n

pi + qi = 1, i = 1, . . . , n

(15)

Note that after the transformation, the term (1− pi) in Ql,
i = 1, . . . , n, should be replaced with qi. This transformation
of the objective function allows us to use geometric pro-
gramming [5] techniques to solve the problem. Unfortunately,
the above optimization problem is not immediately solvable
with geometric programming because the equality constraints
pi + qi = 1, (i = 1, . . . , n) is not monomial [5]. To avoid this
problem, we relax the optimization problem by replacing the

equality constraints pi+qi = 1, (i = 1, . . . , n) with inequality
constraints pi + qi ≤ 1, (i = 1, . . . , n). We can then use
geometric programming to find the optimum of the relaxed
optimization problem [5].

We next show that the global optimum to the relaxed
problem is also the global optimum to the original problem
as stated in (15).

Proposition 1: The global optimum to the relaxed opti-
mization problem obtained by replacing the equality con-
straints pi + qi = 1, (i = 1, . . . , n) with inequality constraints
pi+ qi ≤ 1, (i = 1, . . . , n) in (15) is also the global optimum
to the original problem in (15).

Proof. We prove by contradiction. Denote

S = (p1, q1, p2, q2, . . . , pn, qn)

as the global optimum to the relaxed problem. If there is an i
such that pi+qi < 1, then we can replace qi with q′i = 1−pi.
For each item 1

rxy
in Ql, where x, y = 1, 2, . . . , n, if it does

not include qi, its value is unchanged. Otherwise, its value
will be decreased since q′i > qi. Therefore, the value of the
objective function Ql calculated using

S̃ = (p1, q1, p2, q2, . . . , pi, q
′
i, . . . , pn, qn)

will decrease. Since S̃ also meets all the constraints in the
relaxed problem, S cannot be the global optimum. This causes
a contradiction and as such pi + qi = 1 must hold for all i =
1, . . . , n. In other words, the global optimum to the relaxed
problem is found only under the boundary conditions of pi +
qi = 1.

E. An Iterative Gradient-Following Algorithm

Although geometric programming can be used to obtain
the optimal P values for minimizing the overall network
latency, the solution is not in closed-form and can not easily
be distributed. In the following, we show that there is a clear
gradient that can be identified and followed in order to find
locally optimal values for the function.

In a manner similar to the calculations carried out in the
optimization of overall network reliability, we can arrive at
the following expression for a single partial derivative:

∂Ql

∂pi
=

∑
rij∈R

∂rij
∂pi

−1

(rij)2
. (16)

As for (5) in the previous section, the partials with respect
to pi in (16) are only non-zero for rij , j ∈ N(i) and rji, j ∈
N(i) and rkj , k ∈ N(j), k �= i. Using (6), (7), (8), (10), and
(11), we can write:

∂Ql

∂pi
=

∑
rij∈Li+

−1

pirij
+

∑
rij∈Li−

1

(1− pi)rij
(17)

=
−1

pi

∑
rij∈Li+

1

rij
+

1

1− pi

∑
rij∈Li−

1

rij
.

After some algebra it can be seen that the partial derivative is
zero when:

p′i =

∑
rij∈Li+

1
rij∑

rij∈Li−
1
rij

+
∑

rij∈Li+

1
rij

. (18)
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A fixed point of (18) translates to a zero point of the gradient
of the utility function Q′

r(P )
Given an arbitrary feasible assignment of P values, one can

calculate the L values and then identify a gradient that moves
towards the target P values:

∇ = (p′1 − p1, p
′
2 − p2, . . . , p

′
|V | − p|V |) (19)

which we can follow to determine a local minima for the
function Ql. This approach of formulating the gradient takes
advantage of the fact that we can find a closed form solution
for the zeros of the partials (18). The following stable iterative
gradient-following algorithm can now be used to find suitable
P values for the network:

P0 = initial values based on (13).
for t = 1: numOfIterations

1. Calculate each value in R as a function of Pt−1.
2. Calculate the target P ′ as a function of R
using (18).

3. Calculate ∇ using (19).
4. Set Pt = Pt−1 + β(∇).

end

The parameter β in Step 4 determines the rate at which
the algorithm moves in the direction of the gradient. As a
general guideline, a smaller β value requires a longer running
time (i.e., more iterations) for the algorithm to approach local
optimum, but a large β may, on the other hand, make the
optimization algorithm never reach the optimum. We will refer
to P values obtained using the above algorithm as gradient-
optimized.

Comparing (18) to (13), it can be seen that the optimal
values for each objective function should be similar when the
link throughput values across the network are of roughly equal
value. Given the formulation of the objective function, it would
seem that the variance across the Ql optimized throughput
values varies locally as a function of network density, with
the higher variance occuring in the more sparse areas of the
network. As a result, the solution to Qr makes an excellent
starting point in the above gradient-based search algorithm.
By constructing a gradient in this manner and seeding the
above approach with initial values obtained using maximizer
values for Qr (i.e., (13)), we consistently obtained the same
results as the global optimal with geometric programming in
less than 20 iteration steps with a reasonable β value of 0.1.
In addition, for multiple problem instances, where we select
numerous arbitrary initial values, as well as initial value using
(18), all trials for the same problem instance converge to the
same mode.

F. A Heuristic to Approximate Gradient-Optimized Values

We propose a closed-form approximation algorithm based
on two facts: (1) The above gradient-based search algorithm
consistently obtains the same result as the global optimum
obtained using geometric programming; (2) using the solution
to maximizing Qr as the initial values quickly converges to an
optimal solution in the gradient search algorithm. Therefore,
we use the values that optimize Qr given in (13) as a heuristic
to approximate optimal values for the overall network latency.

If we divide both the numerator and denominator of (13)
by δi, we get the inverse of one plus the average degree of i’s
neighbors, i.e., node i should transmit at each time slot with
a probability equal to

pi =
1

1 +
∑

j∈N(i) δj

δi

(20)

where N(i) represents the neighbors of device i, and δi gives
the degree of node i. We refer to this assignment of P values as
the Average Neighbourbood Degree Heuristic (ANDH). This
is as opposed to the Max Neighbourhood Degree Heuristic
(MNDH) suggested in the prior work [10] which considered
the maximum degree of all of a node’s neighbors, i.e., node i
should transmit at each time slot with a probability equal to

pi =
1

1 +maxj∈{N(i),i} δj
. (21)

We will show later in numerical simulations, that the ANDH
gives a close approximation to gradient-optimized values
obtained using the iterative approach given in the previous
section.

V. LISS ON MULTIPLE CHANNELS

In the case where we have M(M > 1) frequency channels,
we assume that each network device tunes its transceiver to
one of the M channels selected uniformly at random each time
step. In this case the value for R in G′ will take on different
values. We can calculate the value of rij as follows:

rij =

(
M

1

)
1

M
pi

1

M
(1− pj)

∏
k∈N(j),k �=i

(1− 1

M
pk), eij ∈ E

= pi
1

M
(1− pj)

∏
k∈N(j),k �=i

(1− 1

M
pk), eij ∈ E (22)

where N(x) returns the neighbors of x according to G. This
is because in order for node i to successfully transmit a
packet to node j over a particular channel, nodes i and j
need to tune to that channel for transmitting and receiving,
respectively, and node j’s neighboring nodes (except node i)
should not transmit over that channel. The probability that the
first condition holds is 1

M pi
1
M (1−pj), and the probability that

the second condition holds is
∏

k∈N(j),k �=i(1− 1
M pk), eij ∈ E.

The 1
M term specifies the probability of the transceiver being

tuned to that particular channel. The term
(
M
1

)
means there

are M ways to select a particular channel among M channels.
Following the same analysis steps as in the single channel

case, we can obtain the P values that maximize overall
network reliability or minimize overall network latency. In-
terestingly, the maximizing P values for overall network
reliability are the same as those found in the single channel
case.

Similarly as in the single channel case, we can use geo-
metric programming to obtain the global optimum solution
to minimize the overall network latency. We can also obtain
equations for the gradient which can be used to find (locally)
optimal values of P to minimize overall network latency.

Although it makes the analysis tractable, the use of a
uniform distribution for channel selection is not necessarily
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the best choice. For example, in a dense region of the network
in which each device has many neighbors. For the moment,
we leave further investigation into arbitrary, device specific
channel distributions as future research.

VI. APPROXIMATED DISTRIBUTED ALGORITHMS FOR

LISS

The analytical results in the previous section provide us
with heuristics to design simple, distributed algorithms for
LiSS. In this section, we present two distributed algorithms
that are aimed at maximizing overall network reliability and
minimizing overall network latency, respectively.

A. An Approximated Distributed Algorithm to Maximize Over-
all Network Reliability

It is straightforward to assign P values in a distributed
manner in order to optimizing overall network reliability. (13)
and (22) depend only on the knowledge of the local com-
munication topology and the number of frequency channels
employed. We present the following distributed algorithm for
selecting a suitable value of the transmission probability of an
individual device.

1) During initial deployment, a default value for pi can
be assigned to each node given a rough estimate of the
typical network density.

2) Each node maintains a neighbour table with one entry
for each of its neighbors. Each neighbour table entry
includes the unique media access control (MAC) identi-
fication of the neighbour, along with the timestamp and
the number of neighbors reported by that neighbour.

3) Each node exchanges neighbour count estimates with
each of its neighbors, and then updates its transmission
probability pi accordingly.

4) At each time slot, with probability pi, on a channel
selected uniformly at random, a node broadcasts its
unique media access control (MAC) identification, the
number of entries in its neighbour table, and any data
payload.

5) If not transmitting, the node tunes its receiver to a
channel selected uniformly at random, and if it receives
a message, it adds the appropriate details to its neighbour
table and updates it’s pi values accordingly.

B. An Approximated Distributed Algorithm to Minimize Over-
all Network Latency

The distributed algorithm adopts the gradient-based ap-
proach for selecting P values that locally optimize overall
network latency. In order to update its pi value, each node
requires knowledge of its two-hop communication topology
and both the transmission probability values and throughput
values of its two-hop neighbors. Given this information a
node can calculate its local gradient ∇ and adjust its pi value
in the direction of the gradient according to a suitable rate
β : pi = pi + β∇, where β can be adjusted to change the
speed of moving in the direction of the gradient.
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Fig. 2. Distribution of average link delay in units of time slot duration: (a)
Gradient-Optimized, (b) ANDH. Data from 100 trials of 100-node networks
constructed with a communication ratio α = 0.25, which results in an average
node degree of 5.49.

VII. PERFORMANCE EVALUATION

We perform simulation studies to evaluate LiSS. In the
simulation, we build the network topology using disk graphs.
The graphs are obtained by selecting points uniformly at
random in a region of the plane bounded by a circle of
diameter D as the locations of the network nodes. An edge
is then assigned between any two vertices if the pair-wise
distance between their associated locations is less than a given
ratio α of the deployment diameter D. Since the parameter α
can be used to control the number of communication links of
the network, we call it communication ratio. We assign a delay
to an edge proportional to the distance between the pairs (but
rounded to a discrete value for ease of simulation). These types
of graphs are commonly used as models in sensor network
research (see e.g., Gandham et al. [8]). To ease presentation,
we only show performance results over a single channel.

Since the gradient-based search algorithm always obtained
the same results as the global optimum with geometric pro-
gramming in all our simulation trials, we in the following only
show the gradient-optimized values to make the figures easy
to read.

A. Assignment of P values: Gradient-Optimized vs. Approxi-
mate Gradient-Optimized

As shown in Figure 2, the P values obtained using the
ANDH were close to those obtained using the Gradient-
Optimized values, suggesting that the ANDH is a good
approximation for optimizing values of the overall network
latency. The expected delay across each link was found by
computing the per link throughput according to (2) as a
function of the network topology. Figure 3 shows an example
of the P values obtained using these two techniques for a small



MARINAKIS et al.: NETWORK OPTIMIZATION FOR LIGHTWEIGHT STOCHASTIC SCHEDULING IN UNDERWATER SENSOR NETWORKS 2793

  0.333

  0.273

  0.250
  0.286

  0.286

  0.250

  0.333
  0.333

  0.333
  0.333

(a)

  0.299

  0.276

  0.284
  0.290

  0.290

  0.284

  0.286
  0.310

  0.325
  0.286

(b)

Fig. 3. A small example network topology with P values assigned using:
(a) ANDH and (b) Gradient-Optimized.
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Fig. 4. Average percentage increase in link delay values over Gradient-
Optimized P values using ANDH and MNDH. Results were averaged over
100 trials of 100-node networks for each communication ratio considered.
Error bars depict one standard deviation.

example communication topology. In addition, as shown in
Figure 4, for networks of different node densities, the ANDH
consistently results in lower average latency than that obtained
with the MNDH, which was introduced in [10].

As an additional note, for each of the trials considered in
this set of experiments, we ran the gradient based approach
for finding the locally optimal P values to minimize overall
network latency twice, one using random initial values, and
one using values seeded by the ANDH. In all cases the two
runs converged to the same result.

B. Performance under varying Load and Propagation Delay

For this test, we control the traffic load by assigning each
node a probability that the node has a data packet given to
its MAC layer at the beginning of each time slot. We selected
T-Lohi [20] for comparison because this protocol represents

a typical example of using lightweight control packets (i.e.,
it uses a RTS control packet only). Our implementation of
the T-Lohi algorithm is as described in ‘Algorithm 1’ of [20]
using a single time slot as the duration of a contention round.

As shown in Figure 5(a), T-Lohi performs better than
LiSS under light traffic load, because T-Lohi employs con-
trol messages for media access. Nevertheless, LiSS performs
much better under heavy traffic load. This demonstrates that
using control packets may not be ideal for some underwater
acoustic communication scenarios, since the propagation delay
is determined by the pair-wise distance between the two
communicating nodes, whose locations may be uncertain. The
resulting randomness in delay can make the effective use of
control packets challenging.

In Figure 5(a), in order to investigate the average transmis-
sion delay, we assumed a very large queue size to avoid buffer
overflow. It can be seen that the average transmission delay
of LiSS with the ANDH is quite stable under various traffic
load. The average transmission delay with T-Lohi, however,
increases drastically under heavy traffic load. To further study
how many packets could be delivered within a given time
constraint, we changed the queue size to one. In other words,
if the queue already contains a pending packet then any
additional packets to be sent are dropped. Figure 5(b) shows
the average percentage of a node’s neighbors that receive a
packet sent by that node, under different traffic loads. We
can also see that the performance of LiSS with the ANDH
outperforms T-Lohi when traffic load becomes heavy.

The results shown in Figures 5(a) and (b) are obtained by
setting the propagation delay much smaller than the length of a
time slot. We then increase the propagation delay considerably
to further investigate its impact. In particular, we set the max
propagation delay in the network to three times the length of a
time slot. Under these conditions, we simulate T-Lohi sending
RTS control packets, but do not assume that the protocol
knows in advance the per link propagation delay. Figure 5(c)
shows the results under this set of tests. Comparing Figure 5(b)
and Figure 5(c), it can be seen that LiSS is almost un-affected,
but the T-Lohi protocol suffers considerably. This is due to the
fact that the RTS control packets used by the T-Lohi protocol
may fail to reserve the channel due to propagation latency.
In this set of experiments the average transmission delay and
the percentage of packets delivered were empirically measured
using our simulation framework.

To summarize, the stochastic nature of our approach makes
it well suited for applications where propagation delay is
long and random. For such applications, when traffic load
becomes heavy, protocols that rely on control packets to
resolve medium contention may not perform well.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we present and evaluate the concept of using
a lightweight variant of slotted ALOHA in conjunction with a
stochastic scheduling approach, called LiSS, in which network
nodes transmit according to some probability each slot. We
consider how to assign the transmission probabilities in order
to minimize the overall network latency or maximize the
overall network reliability. We obtain a closed-form solution
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Fig. 5. (a) Average time from queuing a packet until its delivery (T-Lohi vs. LiSS using the ANDH); (b) Percentage of successful packet transmissions over
all links as a function of traffic load; and (c) the same as as (b) but under the condition of long propagation delay. Results were averaged over 100 trials of
100-node networks using a communication ratio α = 0.25. Error bars depict one standard deviation.

for the maximization of overall network reliability and show
that geometric programming can be used to minimize the
overall network latency. We also present distributed algorithms
that can be used to find suitable transmission probabilities.
Performance results demonstrate that even without using any
control signaling, LiSS works well for UWSNs where propa-
gation delay is not negligible.

Modeling channel fading of underwater acoustic communi-
cations is another interesting research challenge, and a cross-
layer optimization considering channel fading and dynamic
channel states will be our research work.
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APPENDIX

Using a detailed example, we explain why (2) could be used
to calculate rij , oblivious to the propagation delay.

We assume that the propagation delay between two nodes
does not change over time if their distance is fixed. Let us
assume that the propagation delay between two nodes, i and j,
is a discrete number of time slots and is specified by dij . This
is a good approximation because the time slot is practically
much smaller than the propagation delay for underwater
acoustic communication. For example, transmission speed of
an underwater transceiver could be 40 kbps [18]. Assume that
the maximum frame size is 1 kb. If we set the time slot as
the maximum time for transmitting one frame, a time slot is
about 25 ms. Depending on the depth, the salinity, and other
factors, propagation speed of acoustic wave under water may
vary, but we may assume a commonly-acceptable value of
1500 m/s. For two wireless nodes with the distance of 10 km
(a reasonable value for underwater sensor networks such as
that in the Neptune project [2]), the propagation delay is 6.6
seconds, much larger than the time slot 25 ms.

Consider node i in Fig. 1 as an example. Three conditions
must hold such that at time slot t node i receives a frame from
node j1: (1) at time slot t− dj1i node j1 transmits the frame,
(2) at time slot t, node i does not transmit and receive the
frame, and (3) at time slot t− dj2i node j2 does not transmit
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Fig. 6. Time relationship illustrating the conditions that node i receives a
message from node j1.

since otherwise two frames would collide at node i at time
slot t. The time relationship is illustrated in Fig. 6.

Therefore, if we assign pml to be the transmission probabil-
ity of node l at time slot m, the probability that at time slot
t node i receives a frame from node j1, denoted as rtj1i, can
be calculuated as

rtj1i = p
t−dj1i

j1
(1 − pti)(1− p

t−dj2i

j2
), (23)

where the terms p
t−dj1i

j1
, (1−pti), and (1−p

t−dj2i

j2
) correspond

to the first, the second, and the third conditions, respectively.
Since we assume a static assignment to P values, e.g.,
p
t−dj1i

j1
= pj1 for all time slots. The above equation can be

rewritten as:

rj1i = pj1(1− pi)(1− pj2). (24)

That is, the propagation delay does not influence the calcu-
lation of rj1i.
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