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a b s t r a c t

During the service life of structures, breathing-fatigue cracks may occur in structural

members due to dynamic loadings acting on them. These fatigue cracks, if undetected,

might lead to a catastrophic failure of the whole structural system. Although a number

of approaches have been proposed to detect breathing-fatigue cracks, some of them

others suffer from a lack of sensitivity. In this study, a simple and efficient approach

to detecting breathing-fatigue cracks is developed based on dynamic characteristics of

breathing cracks. First, considering that breathing cracks introduce bilinearity into

structures, a simple system identification method for bilinear systems is proposed by

taking best advantage of dynamic characteristics of bilinear systems. This method

transfers nonlinear system identification into linear system identification by dividing

impulse or free-vibration responses into different parts corresponding to each stiffness

region according to the stiffness interface. In this way, the natural frequency of each

region can be identified using any modal identification approach applicable to linear

systems. Second, the procedure for identifying the existence of breathing fatigue cracks

and quantifying the cracks qualitatively is proposed by looking for the difference in the

identified natural frequency between regions. Third, through introducing Hilbert

transform, the proposed procedure is extended to identify fatigue cracks in

piecewise-nonlinear systems. The proposed system identification method and crack

detection procedure have been successfully validated by numerical simulations and

experimental tests.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

During the service life of structures, fatigue cracks may occur in structural members due to dynamic loadings acting on
them. If the static deflection due to such loadings as dead loads is smaller than the vibration amplitude caused by dynamic
loadings, these fatigue cracks alternately open and close with time [1], exhibiting a breathing-like behavior. Various
theoretical and experimental studies have shown that breathing-fatigue cracks cause smaller changes in dynamic
characteristics than open cracks with the same size, and thus are more difficult to be detected. Fatigue cracks, if
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undetected, might lead to a catastrophic failure of the whole structural system [2–4]. Therefore, the detection of fatigue
cracks has been extensively studied since the 1940s and a number of methods have been proposed.

Local detection methods using lamb waves [5,6] and laser ultrasound [7] as well as acoustic emission techniques [8]
have been explored to detect fatigue cracks. These methods have been proven to be accurate. However, they typically
require either a long-time inspection process due to a small inspection area at one time or a temporary interruption of
operational conditions for carrying out inspections. To overcome these disadvantages, crack detection based on nonlinear
dynamic behaviors of breathing-fatigue cracks has been actively studied. For example, Tsyfansky and Beresnevich [9]
identified fatigue cracks in flexible, geometrically nonlinear beams using the presence of super harmonic components in
responses; Bovsunovskya and Surace [10] took both sub- and superharmonic resonances of responses as indicators of the
presence of a crack; Leonard et al. [11] employed the frequency spectrogram and a criterion based on the coherent power
of amplitude modulation to detect fatigue cracks in a cantilever beam; Rivola and White [12] detected the existence of a
fatigue crack by means of bispectral analysis, which was a subset of higher-order statistical analysis; Surace et al. [13]
applied higher order Frequency Response Functions (FRFs) which are based on the Volterra series to detect cracks in beam-
like structures; Loutridis et al. [14] proposed a crack identification method based on the instantaneous frequency which
was obtained by performing Hilbert transform on the obtained modes using the empirical mode decomposition of
responses. Ryue and White [15] investigated the feasibility of attractor-based measurements under a chaotic excitation to
detect cracks in a structure.

Due to the breathing behavior of fatigue cracks, the system stiffness changes at the instant of crack opening and closing,
and thus the system with breathing-fatigue cracks exhibits bilinear stiffness characteristics. This has been validated by
Gudmundson [16] using experimental tests and validated by Ibrahim using numerical analysis [17]. However, the system
with breathing cracks, as a bilinear system, behaves linearly in each stiffness region. In this study, a simple and efficient
approach to detecting breathing-fatigue cracks is developed based on dynamic characteristics of systems with fatigue
cracks. First, considering the linear characteristic in each stiffness region and the bilinear characteristic in the whole
system, a simple system identification method for bilinear systems is proposed. The central idea of the proposed method is
as follows: the responses associated with different stiffness regions are first separated from one another, and then the
natural frequencies in each region can be identified from the respective separated responses using any approach proposed
for linear systems. In this way, the problem of nonlinear system identification is transferred into that of linear system
identification. Second, by looking for the difference in the identified natural frequency between stiffness regions, the
fatigue crack can be directly identified and further quantified when the damage location is known.

This paper is organized as follows. In Section 2, a system identification method for bilinear systems is proposed.
In Section 3, how to apply the identified parameters to detect fatigue cracks is discussed, and the procedure for identifying
the existence of breathing cracks and quantifying the cracks qualitatively is developed. Section 4 presents how to extend
the proposed procedure to identify breathing cracks in piecewise-nonlinear systems. In Sections 5 and 6, the performance
of the proposed method and procedure is demonstrated by numerical simulations and experimental tests, respectively.
2. A system identification method for bilinear systems through separating global responses

In this section, dynamic characteristics of bilinear systems are first studied. Then, a system identification method is
proposed for bilinear systems by separating the impulse or free-vibration responses at the stiffness interface. This method
takes best advantage of dynamic characteristics of bilinear systems.
2.1. Dynamic characteristics of bilinear systems

Consider a Single-Degree-Of-Freedom (SDOF) bilinear system in which the change in stiffness occurs at its static
equilibrium position x¼0, as shown in Fig. 1. Physically, each time the oscillator crosses the interface between the two
stiffness regions (x¼0), the stiffness of the system changes. The equation of motion of the system under free vibration can
m
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Fig. 1. Physical model and stiffness characteristic of a bilinear oscillator: (a) physical model of a bilinear oscillator and (b) restoring force model of the

bilinear oscillator.
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Fig. 2. Displacement responses under free vibration of the bilinear oscillator. Note: T1 and T2 represent the oscillation periods corresponding to the two

regions, respectively.
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be described as

m €xþc1 _xþk1x¼ 0, xZ0 ðaÞ

m €xþc2 _xþk2x¼ 0, xo0 ðbÞ

(
(1)

where x is the displacement of the bilinear oscillator; m and c are its mass and damping coefficients, respectively; k1 and k2

are the stiffness coefficients in the two stiffness regions.
Nondimensionalizing Eq. (1) with mass m yields

€xþ2x1o1 _xþo2
1x¼ 0, xZ0 (2a)

€xþ2x2o2 _xþo2
2x¼ 0, xo0 (2b)

where o1 and o2 denote the circular frequencies of each stiffness region, respectively. Herein o1oo2. x1 and x2 are the
modal damping ratios of each stiffness region.

Free-vibration responses of this bilinear oscillator can be obtained by solving Eq. (2a) and Eq. (2b) for responses in each
of the two stiffness regions, and matching the responses in the two regions through the continuity of both displacement
and velocity at the stiffness interface [3,18].

Fig. 2 presents the free-vibration responses of the bilinear oscillator. From this figure, the free-vibration responses are
periodical and the vibration period during the whole vibration duration keeps constant, designated T0. It seems that the
vibration period (and accordingly, the vibration frequency) of a bilinear system does not vary with time or amplitude,
unlike other nonlinear systems. The vibration period T0 and vibration frequency o0 can be expressed as [3]

T0 ¼
T1

2
þ

T2

2
where T1 ¼

2p
o1

and T2 ¼
2p
o2

(3)

o0 ¼
2p
T0
¼

2o1o2

o1þo2
(4)

Here, o0 is called the bilinear frequency [3], which represents the free-vibration frequency of the bilinear oscillator and
satisfies o1oo0oo2. Eq. (4) holds rigorously true only for an undamped system. For a damped system, o1 and o2 should
be replaced by the damped circular frequencies of each region. However, because the damping ratio is usually small in
practice, Eq. (4) still holds true for a damped system.

Based on the above observation, Fourier transform is applicable to the global free-vibration responses. The peaks in the
auto power spectral density (PSD) of the global responses correspond to the bilinear frequency o0 and its higher
harmonics which are caused by the presence of stiffness bilinearity. However, the natural frequency of each region cannot
be obtained from o0, i.e., directly extracting the natural frequency of each region from the global responses does not seem
possible. This motivates the present attempt to identify the natural frequencies of both regions from their respective local
responses, as is explained below.

From Fig. 2, although the vibration period of the system obtained from the global responses does not vary with time,
the time durations of the two half-sine waves in each period (T1/2 and T2/2, respectively) are different (to be exact,
T1/24T2/2, which is consistent with o1oo2). However, the time durations of all of the half-sine waves in the upper
region (displacementZ0) are exactly the same and it is the same case for all of the half-sine waves in the lower region
(displacemento0). This suggests that although the system exhibits a nonlinear behavior in each entire vibration period, it
still behaves linearly in each stiffness region. This can be easily understood by reconsidering Eq. (1). Actually, all positive
responses are calculated from Eq. (1a) and all negative ones are calculated from Eq. (1b), and global responses are obtained
by matching the two parts of local responses at the stiffness interface (displacement¼0).



Fig. 3. Separation of global responses into two parts at the stiffness interface (displacement¼0).
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2.2. Identification of natural frequency in each region

Based on the above analysis, positive responses only include information on the parameters of the stiffness region xZ0
(parameters in Eq. (1a)), and negative responses only include information on the parameters of the stiffness region xo0
(parameters in Eq. (1b)). If the parameters of the region xZ0 are to be determined, only the positive responses are needed,
and vice versa. Based on this observation, a novel, simple method is proposed to identify the modal parameters of each
region.

First, the measured global impulse or free-vibration responses are divided into two parts at the stiffness interface
(displacement¼0). Fig. 3 presents the separated responses above and below the axis of displacement¼0. This simulates that
only a half-sine wave in each vibration period is acquired during measurement.

Then, the half-sine waves in each region are assembled together so as to reconstruct a signal in which only the half-sine
waves in the respective region are involved (the black graph in Fig. 4). In this paper, the assembled signal is called the local
responses corresponding to each region, ‘‘local responses’’ for short. Because the period of the half-sine wave in each set of
local responses does not vary with time, Fourier transform or any other linear modal identification approach can be
applied to identify modal parameters in the respective region. System parameters associated with the region xZ0 can be
extracted from the local responses in the upper region (above the axis of displacement¼0), and the system parameters
associated with the region xo0 can be extracted from the local responses in the lower region (below the axis of
displacement¼0). By separating global responses into two parts, the problem of nonlinear system identification is
transferred to that of linear system identification. Actually, the frequency obtained from this assembled signal is twice the
natural frequency of the associated region, and some higher harmonic components may occur.

To get the correct natural frequency of the associated region, an extra procedure may be performed on each set of local
response data. That is, every second half-sine wave is inverted to form entire sine waves (the red dashed graph in Fig. 4).
Actually, this procedure generates a signal representing the responses of a linear system which has the same natural
frequency as the system in each region, but has a different damping ratio from the system in each region, which can be
reflected by the difference between the graph with the mark of ‘‘x’’ and the one with the mark of ‘‘o’’, as shown in Fig. 4.
The identification of the damping ratio in each region is to be discussed in another paper. Compared with the nonlinear
system identification methods reviewed by Farrar et al. in Ref. [19], the proposed method is much simpler.
3. Crack detection by comparing identified natural frequencies in two stiffness regions

In this section, the procedure for identifying the presence of fatigue cracks and quantifying the cracks qualitatively is
developed based on the system identification results using the method proposed in Section 2.

A cantilever beam containing a breathing crack (shown in Fig. 5) is considered to illustrate the proposed procedure.
When the beam moves downwards, the upper fibers are stretched and the crack opens; when the beam moves upwards,
the upper fibers are compressed and the crack closes. The stiffness coefficient of the system varies during vibration.
Therefore, this beam is a bilinear system.

Recall that vibration responses of a structure can be taken as the superimposition of weighted mode shapes and under
each mode the structure can be taken as an SDOF system [20]. Therefore, if the beam vibrates under a specific mode, it can
be simulated as an oscillator with bilinear stiffness [24]. Assuming that the crack is fully opened and closed during
vibration and the crack does not change the mass and damping of the system, the equation of motion of the cracked beam
under each mode can be expressed as Eq. (1) or (2). Here the mass and stiffness coefficients should be the generalized mass
and stiffness for the specified mode [24].



Fig. 4. Generation of local response data for system identification: (a) response data in region xZ0 and (b) response data in region xo0.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. A cantilever beam with a breathing crack.
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In particular, k1 and k2 denote the generalized stiffness coefficients when the crack opens and closes, respectively.
Accordingly, o1 and o2 represent the system circular frequencies of the two stiffness regions. k2 is exactly the same as the
stiffness coefficient of the associated uncracked beam. Assuming that the crack introduces a local flexibility, k1 can be
obtained by Fracture Mechanics. k1 changes with the size and location of the crack. More details about obtaining k1 and k2

will be introduced in Section 5.2.
Each time the beam vibration crosses the undeformed point (x¼0), the system stiffness changes, and thus the natural

frequency in each region changes accordingly. The natural frequency in each region can be identified from the
corresponding set of local responses separated from global responses, as proposed in Section 2. By looking for the
difference in the natural frequencies extracted from the two regions, one can tell whether a breathing crack occurs or not.
If the beam is not cracked, the difference will be zero. If a breathing crack occurs, the natural frequency of one region will
deviate from that of the other region.

In addition, the size and location of the fatigue crack determine the stiffness k1, affecting the natural frequency
in the associated stiffness region and thus affecting the difference in natural frequencies between the two regions.
Therefore, if the damage location is found, crack severity can be reflected from this difference. The procedure for detecting
breathing cracks in a beam is summarized in Fig. 6. The crack identification and quantification could be obtained for



Fig. 6. Flowchart of detection of breathing cracks by comparing identified natural frequencies in two stiffness regions.
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Multiple-Degree-of-Freedom systems, with only slight modifications of the proposed procedure, but this objective exceeds
the scope of the present paper.

The procedure proposed in this paper for identifying and quantifying breathing cracks has the following three
advantages:
(1)
 it does not require the baseline data (the responses measured from the intact beam). Only the responses in the current
state are required to be measured;
(2)
 it avoids the influences of the differences in environmental factors (such as temperature and humidity), boundary
conditions and/or measurement errors [21] before and after damage, because the local responses from which the
natural frequency of each region is extracted are obtained by separating the same global responses measured in the
current state. On the contrary, traditional approaches which compare the natural frequencies of structures (bilinear
frequencies for systems with breathing cracks) before and after damage are often affected by the factors mentioned
above. Therefore, the change in bilinear frequencies caused by these factors may be greater than that caused by
damage.
(3)
 the proposed procedure (comparing the natural frequencies between the two regions) is more sensitive than
traditional approaches (comparing the bilinear frequencies, o0, before and after damage, which are extracted from
global responses). Even though a severe breathing crack occurs, the change in o0 may be very small. This is because
the breathing crack just affects the responses and natural frequency in one region, and the bilinear frequency is
extracted from the responses of both regions, which would underestimate the damage. To further demonstrate this,
the sensitivity analysis is performed as follows.
Before a breathing crack occurs in a beam, the natural frequencies in the two regions are equal, i.e., o1¼o2 and their
values are set to be o, and thus the bilinear frequency can be computed using Eq. (4)

o0 ¼
2o1o2

o1þo2
¼

2oo
oþo

¼o (7)

Once a crack occurs and breathes during vibration, the natural frequency of the region xZ0 (o1) is reduced and it is
assumed to be reduced to ao, while o2 remains unchanged and is equal to o. Accordingly, the breathing crack necessarily
results in a change in the bilinear frequency. Suppose that o0 reduces to bo, which can be expressed in terms of the
natural frequencies in the two regions using Eq. (4)

bo¼ 2aoo
aoþo

¼
2ao
1þa

(8)

Then, the change in the bilinear frequency before and after damage, Do0, can be obtained as

Do0 ¼ ð1�bÞo¼o�
2ao
1þa ¼

ð1�aÞo
1þa (9)

where (1�a)o denotes the difference in natural frequency between the two regions, designated as Do.



Fig. 7. A system with piecewise-nonlinearities and its stiffness characteristic: (a) cantilever beam with a large deflection, (b) simplified model of the

cracked beam, and (c) restoring force model of the cracked beam.
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The relationship between Do and Do0 can be obtained by rearranging Eq. (9)

Do0

Do
¼
ð1�bÞo
ð1�aÞo

¼
1

1þa
(10)

where 0oao1, and thus Do0 must be less than Do, i.e., the change in the bilinear frequency is less sensitive to a
breathing crack than the proposed procedure. Therefore, the severity of the crack will be underestimated by traditional
approaches which are based on the bilinear frequency.

4. Crack detection for systems with piecewise-nonlinearities

The crack detection procedure proposed in Section 3 is applicable to systems which are linear in each stiffness region.
For systems which are nonlinear in each stiffness region, an extended approach is developed by introducing Hilbert
transform. The extended procedure is illustrated in this section using a cantilever beam with a large deflection (shown in
Fig. 7(a)). This system possesses geometrical nonlinearity in its intact state, which can be simulated by cubic stiffness. If a
breathing crack occurs in this beam, it cannot be modeled by a piecewise-linear system any more, but a piecewise-
nonlinear system, as shown in Fig. 7(b) and (c).

To be exact, under a specific mode, the beam with a large deflection can be taken as an SDOF system with cubic stiffness
nonlinearity. Accordingly, the cracked beam can be modeled as an SDOF system with both bilinear and cubic stiffness, as
shown in Fig. 7(b) and (c). The governing equation of motion can be written as

m €xþc1 _xþk1xþkc1x3 ¼ 0, xZ0

m €xþc2 _xþk2xþkc2x3 ¼ 0, xo0

(
(11)

where x is the displacement response; m is the system mass; c1 and c2 are the damping coefficients in the two regions,
respectively; k1 and k2 are the linear stiffness coefficients in the two regions, respectively; kc1 and kc2 are the nonlinear
stiffness coefficients. Nondimensionalizing Eq. (11) yields

€xþ c1
m
_xþo2

1xþ kc1
m x3 ¼ 0, xZ0

€xþ c2
m
_xþo2

2xþ kc2
m x3 ¼ 0, xo0

8<
: (12)

where o1 and o2 are the circular frequencies of the underlying linear system in each region.
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Fig. 8. Separation of global responses into two parts for a piecewise-nonlinear system.
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Herein, the opening and closing of the fatigue crack during vibration result in the difference in linear stiffness between
the two regions, which introduces bilinearity into the system, the same as in Section 3. However, in each region, the
system is no longer linear, exhibiting cubic stiffness nonlinearity when the displacement response x is large enough.
Therefore, the cracked beam exhibits the characteristics of both bilinearity and cubic nonlinearity at the same time.

Assuming that breathing cracks affect only the linear stiffness, the critical step for detecting breathing cracks is to
identify the natural frequency of the underlying linear system in each region, o1 and o2. First, the local response data
corresponding to each region is obtained by separating global responses into two parts at the stiffness interface, the same
as in Section 2. The obtained local responses only include information on cubic nonlinearity.

Second, o1 and o2 are identified from the associated set of local response data. Because the system exhibits cubic
stiffness nonlinearity in each stiffness region, o1 or o2 depends on the vibration amplitude [22]. In each region, the
relationship between the instantaneous frequency (IF) and the instantaneous vibration amplitude (IVA) is as follows

oIðtiÞ ¼olþ
3AðtiÞ

2

8m

kc

ol
(13)

where ol is the circular frequency of the underlying linear system in each region, i.e., o1 or o2; oI(ti) and A(ti) denote the
IF and IVA at each sampling instant ti in the associated region. For positively damped systems whose IVA decays with time,
the characteristic of amplitude-dependency results in the variation of the IF with time, as shown in Fig. 8. Obviously,
Fourier spectrum of the responses during the whole sampling duration in each region cannot accurately represent the
dynamic characteristics of each region. On the contrary, the IF at each sampling instant can completely capture the
dynamic characteristics of each region.

From Eq. (13), if A(ti) at the sampling instant ti is sufficiently small, the influence of cubic nonlinearity is small enough
to be negligible, and thus the oI(ti) can be taken as the linear natural frequency in each region, ol [23]. Therefore, towards
the end of the decaying vibration where the vibration amplitude A(ti) is small, the IF tends to be a constant and to be equal
to the natural frequency of the underlying linear system in each region, i.e., ol¼oI(ti). However, at the very end of the
decaying vibration where A(ti) approaches to zero, the extracted IF may experience significant fluctuations due to a low
signal-to-noise ratio. Therefore, the IFs associated with the very end of the vibration cannot be used as an estimate of the
natural frequency of the underlying linear system. Herein, Hilbert transform is performed on each set of local response
data to extract the IF of each region as follows:
(1)
 the corresponding analytic signal Y of the local response data y is obtained using Hilbert transform

Y ¼ yþ iHðyÞ (14)

where H(y) is Hilbert transform of the response data y.

(2)
 the IF at the sampling instant ti can be obtained through differentiating the phase of Y with respect to time t as

oIðtiÞ ¼
dcY ðtÞ

dt

����
t ¼ ti

(15)
Third, the natural frequency of the underlying linear system in each region, ol, can be obtained by calculating the mean
value of the IFs in the range towards the end of vibration.

Finally, by comparing the natural frequencies of the two regions, one can tell whether a breathing crack is occurring or
not and how serious the crack is if the crack location is identified.
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5. Numerical simulations

5.1. A bilinear oscillator

This example is to demonstrate the effectiveness of the proposed system identification method for bilinear systems.
Consider a bilinear oscillator whose motion was governed by Eq. (1). The system parameters were chosen as m¼1 kg,
k2¼3�104 N m�1, and k1¼ak2. Here a represented the stiffness ratio and it is equal to 0.5 in this case. The natural
frequencies in the regions xZ0 and xo0 were 19.49 Hz and 27.57 Hz, respectively. Assume that the damping ratios in the
two regions were 0.14% and 0.20%, respectively.

A numerical algorithm based on a fourth-order Runge–Kutta integration scheme was employed to calculate
acceleration responses. To simulate an impact excitation, the initial displacement was set to 0 and the initial velocity
was set to 1 m/s. The response time history was assumed to be acquired at the sampling frequency of 512 Hz and the
acquisition duration was 20 s. To investigate the effectiveness of the proposed method in the presence of measurement
noises, Gaussian white noises with the mean value of zero and the RMS (root-mean-square) equal to 5% and 10% of that of
responses were added to the obtained acceleration responses.

Fig. 9(a) plots the calculated acceleration response data. It is found that the response amplitudes are not symmetric
about the axis of displacement¼0, which is a time-domain distortion caused by bilinearity. In the auto power spectral
density of global acceleration responses shown in Fig. 9(b), the peaks correspond to the bilinear frequency (23 Hz) and one
higher harmonic component (46 Hz), which is the consequence of the presence of bilinearity.

To use the proposed method, the global acceleration responses were first separated into two parts, forming two sets of
local response data. Positive acceleration responses correspond to the region xo0, and vice versa. This corresponding
relationship exists because the phase difference between acceleration and displacement responses is p. Then, within each
set of local response data, through finding the transition points whose slopes change signs, each second half-sine wave was
inverted. For example, for the acceleration responses in the region xo0 (positive acceleration responses), the transition
points were those whose slope signs change from xo0 to x40. Third, the auto power spectral density associated with
each region was obtained by performing Fourier transform on each set of local response data, as shown in Fig. 9(c) and (d).
Fig. 9. Acceleration responses and auto power spectral density of global and local response data: (a) acceleration time history, (b) power spectral density

of global responses, (c) power spectral density of local responses associated with the region xZ0, and (d) power spectral density of local responses

associated with the region xo0.



Table 1
Identified natural frequency of the bilinear oscillator (Hz).

Analytical Identified results

Without noise 5% noise 10% noise

From global responses 22.84 22.84 22.84 22.84

From the responses x40 19.49 19.49 19.45 19.45

From the responses xo0 27.57 27.47 27.65 27.78

G. Yan et al. / Journal of Sound and Vibration 332 (2013) 407–422416
The only peak is associated with the natural frequency of the associated region. The identified natural frequencies are
listed in Table 1. In all tables in the paper, ‘‘Analytical’’ results denote results obtained by performing eigenvalue
decomposition of system mass and stiffness matrices, and ‘‘Identified’’ results denote results extracted from simulated
acceleration responses.

From Table 1, it is found that the identification accuracy is all very high under different measurement noise levels using
the proposed method. However, although the identified accuracy of the bilinear frequency from the global responses is
also high, the natural frequency of each region cannot be obtained from the identified bilinear frequency.

5.2. A beam with a breathing crack

This example is to illustrate the advantages of the proposed procedure for detecting breathing cracks over traditional
approaches.

A cantilever beam with a single edge breathing crack, as shown in Fig. 5, was considered. Its geometry dimensions were
taken as L¼1 m, w¼0.015 m and b¼0.050 m. Young’s modulus of E¼206 GPa and a mass density of 7850 kg m�3 were
assumed as material properties. The breathing crack was located near the clamped end and the distance of the crack from
the free end lc was 0.95L.

It was assumed that the beam vibrated predominantly under its first mode. The details on the determination of
parameters k1, k2 and m in the governing equation of motion is referred to Ref. [24]. The generalized mass and stiffness
under this mode when the crack is close are obtained as

m¼ 0:228m0L, k2 ¼
EIp4

32L3

where m0 is the mass per unit length.
To get the generalized stiffness coefficient when the crack is open (k1), the change in the flexibility due to the presence

of the crack is first determined as

Df ¼
72l2cpð1�n2Þ

Ewb4
j

where n is Poisson’s ratio, and the function j can be determined by

j¼ 19:60
a10

b8
�40:69

a9

b7
þ47:04

a8

b6
�32:99

a7

b5
þ20:30

a6

b4
�9:98

a5

b3
þ4:60

a4

b2
�1:05

a3

b
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where a is the depth of the crack. Then, the total flexibility when the crack is open is computed as

f 1 ¼ f þDf

where f is the flexibility when the crack is closed, and f¼1/k2. Accordingly, the stiffness when the crack is open is obtained as

k1 ¼
1

f 1

It was assumed that the beam had orthogonal viscous damping, and the damping ratio of the considered mode was 0.5%. The
acceleration responses under an impact force (x¼ 0, _x ¼ 1 m=s) were calculated by the Runge–Kutta method. To simulate the
real measurement field, Gaussian white noises with a mean value of zero and a RMS of 5% of the responses were added to the
acceleration responses.

Consider the intact case (a¼0) and the following three damage cases with different crack depths, a¼0.5b, a¼0.3b and
a¼0.1b, where a and b denote the depth of the crack and the beam. The procedure presented in Fig. 6 was employed to
identify the breathing crack and to quantify the crack qualitatively. After obtaining the local responses corresponding to
each region, the Eigenvalue Realization Algorithm (ERA) was carried out to identify the natural frequency of each region.
Please note that same identification results can be obtained by simpler approaches such as peak-picking of a PSD
estimation. The identified results are listed in Table 2. Compared with the analytical results obtained by eigenvalue
decomposition, the natural frequencies in all cases were obtained with high accuracy. Then the difference in the natural
frequency between the two regions is calculated and listed in the last column of Table 2. When the crack depth is half of



Table 2
Identified results from global responses and local responses corresponding to each region of the beam (Hz).

o0 of entire system o2 in region xo0 o1 in region xZ0 o0,i�o0,d

o0,i

o2�o1
o2

Analytical Identified Analytical Identified Analytical Identified

a¼0 43.00 43.00 43.00 42.71 43.00 43.32 1.42%

a¼0.5b 39.12 39.12 43.00 42.96 35.89 36.02 9.02% 16.15%

a¼0.3b 41.77 41.77 43.00 42.86 40.61 40.76 2.87% 4.90%

a¼0.1b 42.86 42.86 43.00 43.06 42.72 42.66 0.33% 0.91%
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the beam depth, the natural frequency of the region xZ0 (o1) deviates seriously from that of the region xo0 (o2) and the
percentage change is 16.15%. One can easily tell that a breathing crack has occurred in this beam.

For an intermediate crack depth a¼0.3b, the percentage change is 4.90%. Prior research has suggested that
environmental factors could lead to the percentage change of up to 5% in the natural frequency even without any damage
[19]. However, the percentage change of 4.90% obtained by the proposed approach can still tell that a breathing crack has
occurred, because this percentage change is calculated from two sets of local response data separated from the same
measured responses and thus the difference in environmental factors before and after damage has been avoided.

For comparison, a traditional approach which compares the bilinear frequencies before and after damage was also
applied and the results are listed in Table 2. For each case, the bilinear frequency was identified from the global responses
and then the difference between the identified bilinear frequencies before and after damage was calculated. For the case of
a¼0.5b, although the bilinear frequency before and after cracking does change, its percentage change (9.02%) is much
smaller than that obtained by the proposed procedure (16.15%), which verifies the sensitivity analysis in Section 3. This
trend can be observed in the other two damage cases. This means that the traditional approach could underestimate the
crack depth even if it can identify presence of the crack, which might be very dangerous. For the intermediate crack depth
a¼0.3b, the traditional approach failed to identify the presence of the crack due to the small percentage change. In
addition, the baseline data is required in the traditional approach. However, the baseline data may be difficult to obtain in
most practical applications.

For the case with a smaller crack depth a¼0.1b, although the percentage change in the natural frequency between two
regions is much greater than the percentage change in the bilinear frequency before and after damage, it is difficult to tell
that a crack occurs using the proposed procedure. This is because the identification error may be greater than the
percentage change in natural frequencies between the two regions (0.91%) caused by the breathing crack. Actually, the
crack with this depth just introduced the stiffness reduction of 1.31%. The traditional approach was not able to identify this
small crack either.

As can be seen from Table 2, the percentage change in the natural frequencies between the two regions decreases
monotonically as the crack depth decreases, which suggests that the proposed procedure can provide a qualitative
indication of crack size. The greater the difference, the more severe the crack.

5.3. A beam with a large deflection

This example is to investigate the performance of the proposed procedure for detecting fatigue cracks for systems
which are nonlinear in each region, i.e., piecewise-nonlinear systems.

Consider the same beam as used in Section 5.2 except that a concentrated mass of (100–1.34 kg, herein 1.34 kg is the
self-weight of the beam) was added at the free end. The concentrated mass induced the beam to produce a large deflection,
introducing cubic stiffness nonlinearity into the beam. The motion of the beam under the first mode can be governed by
Eq. (11). Assume that the coefficient of cubic stiffness in each stiffness region was 10% of the linear stiffness of the intact
beam, and the damping ratio of the considered mode was 1%. Gaussian white noises with the mean value of zero and the
RMS of 5% of the responses were added to the calculated acceleration responses.

Due to a large deflection, the intact beam exhibited cubic stiffness nonlinearity. Once a breathing crack occurred, the
beam exhibited the characteristics of both the bilinearity and cubic stiffness nonlinearity, to be more precise, piecewise-
nonlinearity.

Assume that the breathing crack occurred at the same location as in Section 5.2. The intact case and the same damaged
cases (a¼0.5b, a¼0.3b and a¼0.1b) studied in Section 5.2 were considered here. The acceleration responses under an
impact excitation (x¼ 0, _x ¼ 300 m=s) in each case were calculated using the Runge–Kutta method.

For the intact case, a Hilbert transform was first performed on the global responses and two sets of local responses. The
three graphs in Fig. 10 represent the extracted IFs. In each figure, it is observed that: (1) due to the existence of cubic
nonlinearity, the graphs of the IF decrease with time; (2) the graphs of the IFs are smooth. Then, to get a good estimation of
frequency, the average of IFs between Second 12 and Second 18 in the global responses was calculated to estimate o0; and
the average of IFs between Second 6 and Second 9 in each set of local response data was calculated to estimate o1 or o2.
Because a crack does not exist in this case, the estimated o1 and o2 data are equal, which can be reflected from the middle
and bottom graphs in Fig. 10. In addition, the estimated o1 and o2 are equal to the estimated o0.



Fig. 10. Instantaneous frequency (IF) for the intact beam.

Linear natural frequency in this region

Linear natural frequency in this region

Fig. 11. Instantaneous frequency (IF) for the beam with a breathing crack (a¼0.5b).
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The same procedure was applied to the damage case a¼0.5b. The upper graph in Fig. 11 represents the IFs extracted
from the global responses. It is observed that the IF not only decreases with time, but also oscillates with time, unlike the
smooth graph in Fig. 10 associated with the uncracked beam. Actually, the decreasing trend of the IF is caused by the cubic
stiffness nonlinearity, and the oscillation trend is caused by the bilinear stiffness nonlinearity. The linear stiffness varies
from one region to the other region periodically, and accordingly the natural frequency of the underlying linear system
varies periodically, which is why oscillations exist in the IF graph even at the end of the decaying vibration. Actually, the
greater the variation in the linear stiffness, the stronger the bilinearity, and the larger the oscillation amplitude in the IF
graph. In the upper graph, the average of the IF towards the end of the decaying vibration (between Second 12 and Second
18) was obtained as the estimation of the bilinear frequency.

The middle and bottom graphs in Fig. 11 represent the IFs extracted from each set of local response data. It can be seen
that only the decreasing trend of IFs exists and the oscillation trend of IFs does not exist. This is because each set of local
response data includes only the information on the cubic stiffness nonlinearity of each region. The average of the IFs
between Second 6 and Second 9 was calculated to obtain the estimate of the natural frequency of the underlying system in
each region, o1 or o2, as listed in Table 3.

For the other two cases, o1 and o2 were obtained in the same way, and are listed in Table 3. The percentage change of
the natural frequency between the two regions is listed in the last column for each case. For comparison, the change in the
bilinear frequency between the intact beam and the cracked beam is also listed. Similar results to the example in Section
5.2 were obtained. The proposed procedure was able to identify the two damage cases, a¼0.5b and a¼0.3b and to provide
a qualitative indication of crack depth. However, only the severe crack a¼0.5b was identified using the traditional bilinear
frequency-based method.



Table 3
Identified results from global responses and local responses corresponding to each region of the beam with a large deflection (Hz).

o0 of entire system o2 in region xo0 o1 in region xZ0 o0,i�o0,d

o0,i
(%) o2�o1

o2
(%)

Analytical Identified Analytical Identified Analytical Identified

a¼0 4.30 4.30 4.30 4.30 4.30 4.31 0.00

a¼0.5b 3.91 3.93 4.30 4.31 3.59 3.60 8.60 16.35

a¼0.3b 4.18 4.18 4.30 4.30 4.06 4.07 2.94 5.34

a¼0.1b 4.29 4.29 4.30 4.30 4.27 4.27 0.34 0.70

x

Vises

Beam

Concentrated mass

Accelerometer

Fatigue crack

5 mm

x
O

Fig. 12. Experimental setup and simulated damage scenario.
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6. Experimental validation

6.1. Experimental setup

The proposed procedure for detecting fatigue cracks was further validated by experimental tests on a cantilever beam
with a fatigue crack, as shown in Fig. 12. The beam is 275 mm long, 8 mm wide and 4 mm thick. It was made of aluminum
(7075-T651). A concentrated mass of 0.5 kg was mounted at the free end. The beam was clamped at the upper end to
ensure that the stiffness interface in the restoring force model is at x¼0.

The fatigue crack on the beam was simulated as a single crack through the thickness, as shown in Fig. 12. The crack was
located 5 mm away from the clamped end. The tested beam was machined from a big piece of aluminum plate with a
fatigue crack produced by Professor Alten F. Grandt at Purdue University. Details on making the fatigue crack can be found
in Chapter 3 of Ref. [25].

An accelerometer (PCB three-axial M356A25) was deployed at the free end of the cantilever beam to measure the
acceleration responses in the horizontal (x) direction, as shown in Fig. 12. Free-vibration responses can be generated by
either an initial displacement at the free end or by exciting the beam at the free end using a sinusoidal signal with a
frequency close to the first natural frequency of the beam for a while and then stopping the excitation. Herein, an initial
displacement was employed. The COMPASS dynamic signal analyzer (Nicolet) was used to acquire acceleration responses at
a sampling frequency of 160 Hz. The acquisition duration was 50 s.

6.2. Finite element model

The finite element models of the uncracked and cracked beams were developed using MATLAB and modal analysis was
performed to obtain the analytical natural frequencies, as listed in the 2nd and 3rd rows of Table 4. In addition, the
percentage change of the bilinear frequency before and after damage was calculated to be 6.29%, which is much smaller
than the percentage change in the natural frequency between the two regions (11.30%).

6.3. Results and discussions

The measured acceleration responses are plotted in Fig. 13. It can be observed that: (1) the global responses are not
symmetrical about the axis of acceleration¼0, which is the consequence of the existence of bilinearity; (2) the response
curve is not smooth, which could be caused by measurement noises. Table 4 lists the bilinear frequency identified by
performing Fourier transform on the measured global responses. The identified result, 8.79 Hz, matches that obtained from
the finite element analysis.

Before performing the proposed procedure for detecting the fatigue crack, a short-time Fourier transform was
performed on the measured responses to identify the range of responses to be used for further analysis. The obtained



Table 4
Natural frequencies of experimental specimen (Hz).

o0 of entire system o2 in region xo0 o1 In region xZ0 o2�o1
o1

(%)

Analytical a¼0 9.47 9.47 9.47 0.00

Analytical a¼0.5b 8.91 9.47 8.40 11.30

Experimental a¼0.5b 8.79 9.38 8.30 11.49

Note: a and b denote the depth of the crack and the depth of the beam, respectively.

Fig. 13. Measured acceleration responses.

Fig. 14. Time–frequency diagram of measured responses.
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time–frequency diagram is plotted in Fig. 14. It can be seen that: (1) the fundamental bilinear frequency is 8.79 Hz; (2) the
higher harmonics of 8.79 Hz exist (please note that the frequency component of about 55 Hz could be caused by electric
current). However, the higher harmonics decay very quickly with the decay of responses. It suggests that the crack stopped
opening and no bilinearity was involved in the system when the responses were small. Therefore, the fatigue crack can
only be captured in the first few seconds of response data which involves the bilinearity information. Herein, the first five
seconds of response data was used for further analysis.

Before separating the selected range of responses to obtain local responses, interpolation was performed to ensure the
separation points to be as close to the axis of acceleration¼0 as possible. The sampling frequency of the interpolated data was 10
times the original sampling frequency 160 Hz, which was 1600 Hz. Then the interpolated data was divided at x¼0 and put
together to form two sets of local response data, which are plotted in Fig. 15. It is worth noting that the signs of acceleration and
displacement are opposite, and thus positive acceleration responses are associated with the region xo0, and vice versa.

By performing Fourier transform on the two sets of local response data respectively, the natural frequency of each
region can be obtained. The graphs of power spectral density of the two sets of local response data are plotted in Fig. 16.
The peak of the red dashed graph is 16.60 Hz, which is twice the natural frequency of the region xZ0, giving the natural
frequency of 8.30 Hz for the associated region. Likewise, the peak of the black graph gives the natural frequency of the
other region, 9.38 Hz. The percentage change of the natural frequencies between the two regions is 11.49%, which matches
the analytical results quite well. In addition, the bilinear frequency calculated from the identified natural frequency of each
region using Eq. (4) is 8.80 Hz, matching the natural frequency extracted from the global response data 8.79 Hz. The
identified natural frequencies are listed in the 4th row of Table 4. From the difference in the natural frequency between
two regions 11.49%, we can easily tell that a fatigue crack has taken place on the beam without knowing the baseline data.

7. Conclusions

An approach to detecting breathing-fatigue cracks was developed based on dynamic characteristics of breathing cracks.
This method offers a simple but effective technique for practical engineering structures. First, a system identification



Fig. 15. Local responses separated from global responses: (a) local responses associated with the region xo0 and (b) local responses associated with the

region xZ0.

16.60Hz 18.75Hz
2.15Hz

Fig. 16. Power spectral density of two sets of local response data. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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method for bilinear systems was proposed by separating impulse or free-vibration responses of the system into local
responses corresponding to each stiffness region. This method transfers nonlinear system identification into linear system
identification. Then, the procedure for identifying the existence of breathing cracks and quantifying the cracks
qualitatively was proposed by comparing the natural frequencies extracted from each set of local responses. Finally, by
introducing Hilbert transform, the proposed procedure was extended to identify breathing cracks in piecewise-nonlinear
systems. Only either acceleration or displacement responses are required to be measured.

The results from numerical simulations and experimental tests have shown that the proposed approach to detecting
fatigue cracks offers the following advantages over traditional approaches that are based on the bilinear frequency: (1) this
approach is more sensitive to breathing cracks than traditional approaches; (2) it does not require the baseline data,
because this approach compares the natural frequencies of different stiffness regions which are extracted from the
responses separated from the same global responses measured in the current state; (3) it is not affected by the difference
in measuring environmental factors, boundary conditions or measurement errors in different measurements, because the
natural frequencies of each region are obtained from the same responses measured at one time. Therefore, the proposed
approach is more reliable and effective for crack detection than traditional methods.

Because the proposed approach takes advantage of dynamic characteristics of breathing cracks, if a fatigue crack does
not breathe (always open), the proposed approach will fail to detect this fatigue crack. In this case, the baseline data is
required and damage can be identified using approaches proposed for detecting unbreathing cracks, for example, by
comparing the current natural frequencies and the baseline natural frequencies.

For breathing-fatigue cracks, the proposed approach will work well when the external excitation (dynamic loadings)
acting on the structure can be controlled. In some practical applications, however, no such controllable excitation is
permitted and only operational/ambient excitation is applied. In this situation, two cases are worth being discussed: (1) if
the operational/ambient excitation is not either a sinusoidal excitation with a frequency close to a natural frequency of the
structure in question or a broad-band random excitation, it may not be able to excite any natural frequency of the
structure. Then the natural frequencies in each region cannot be identified, which can render the proposed approach to fail
to detect fatigue cracks; (2) if the operational/ambient excitation is a broad-band random excitation, several natural
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frequencies of the structure can be excited. After separating the global responses into local responses, several natural
frequencies can be extracted from each set of local responses. The natural frequencies with the same order extracted from
a different set of local responses will be different if breathing cracks exist, which indicates the presence of fatigue cracks.
The validation and possible improvement of the present approach for use in this kind of application will be the objective of
future work.
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