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Dynamic equations describing the attitude motion of flexible
spacecraft with scissored pairs of control moment gyroscopes are
established. A nonlinear controller is designed to drive the flexible
spacecraft to implement three-axis large-angle attitude maneuvers
with the vibration suppression. Singularity analysis for three
orthogonally mounted scissored pairs of control moment gyros
shows that there exists no internal singularity in this configura-
tion. A new pseudo-inverse steering law is designed based on the
synchronization of gimbal angles of the twin gyros in each pair.
To improve the synchronization performance, an adaptive nonlin-
ear feedback controller is designed for each pairs of control
moment gyros by using the stability theory of Lyapunov. Simula-
tion results are provided to show the validity of the controllers
and the steering law. [DOI: 10.1115/1.4006368]

1 Introduction

Control of flexible spacecraft usually requires a controller to
provide a control effort for targeting or station-keeping with the
simultaneous vibration suppression. Control moment gyros
(CMGs) have been used effectively for these tasks [1,2], essen-
tially because of their large momentum-exchange capability and
no need of fuel expending. As a redundant CMG cluster, pyramid-
type CMG system is normally used for full three-axis control of a
spacecraft. However, one of the principal difficulties in using this
CMG cluster is the well-known singularity problem in which no
control torque is generated for the commanded control torque
along a certain direction. As evidenced in Refs. [1–4], many
researchers have been focusing on the development of singularity-
avoidance steering logics; nevertheless, these approaches usually
produce torque errors during the escaping from singular states.

Analysis has shown that the parallel-type CMGs system has a
significant ability to avoid singularity [5]. Thus, a pair of CMGs is
sometimes configured into a scissor which maintains equal-
magnitude and opposite-sign gamble angles for two CMGs with
parallel gamble axes (see Fig. 1). A scissored pair of CMGs, like
any array of CMGs, provides attitude control torque via momen-
tum exchange with the body on which it is mounted. Most
researches with this device as actuators are focused on the single-
axis attitude control of the spacecraft. The Skylab-ear Astronaut

Maneuvering Research Vehicle used scissored pairs for single-
axis maneuver control [6]. Japanese satellite called Astro-G also
employed two scissored pairs for two-degrees of freedom rest-to-
rest rotational maneuvers [7]. In this brief, we study the three-axis
large-angle rotational motion control of flexible spacecraft with
three orthogonally mounted scissored pairs of CMGs (shown in
Fig. 2). A controller is designed to ensure a rapid attitude maneu-
ver of the spacecraft while suppressing the vibration of flexible
appendages. Moreover, the singularity of the system consisting of
the three orthogonally mounted scissored pairs of CMGs is ana-
lyzed. Based on the analysis, a new pseudo-inverse steering law is
proposed. To improve the synchronization performance of the in-
dependent scissored pair, an adaptive controller is designed for
each pair of CMGs.

2 Dynamic Modeling and Attitude Controller Design

of Flexible Spacecraft

2.1 Kinematic Equations. The kinematics are parameterized
by means of the unitary quaternions q0, q [8] with
q ¼ q1 q2 q3½ �T , where q0 ¼ cos U=2, qi ¼ ei sin U=2,
ði ¼ 1; 2; 3Þ subject to the constraint

P3
i¼0 q2

i ¼ 1. Herein, U
denotes the rotation angle of the spacecraft’s main body about the
Euler’s axis, which is determined by the unitary vector
e ¼ e1 e2 e3½ �T . Then, the kinematic equations take the form

_q0

_q

� �
¼ 1

2

�qT

R qð Þ

� �
x (1)

where x ¼ xx xy xz½ �T is the angular velocity of the rigidi-
fied spacecraft, and

Fig. 1 Configuration of scissored pair of CMGs

Fig. 2 Configuration of three orthogonally mounted scissored
pairs of CMGs
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R qð Þ ¼
q0 �q3 q2

q3 q0 �q1

�q2 q1 q0

2
4

3
5

For any vector x ¼ ½ x1 x2 x3 �T , ~x represents the skew symmet-
ric cross product matrix.

2.2 Dynamic Equations. The total angular momentum of the
flexible spacecraft can be written as

n ¼ JbxþH þ dT _g (2)

where Jb is the symmetric inertia matrix of the spacecraft’s main
body, d is the coupling matrix between the elastic and the

rigid structures, g is the modal coordinate vector, and H ¼
P6

i¼1

CT
i JgCixþ Jg _ri þ h
� �

is the angular moment of the three scis-

sored pairs of CMGs system, where Ci is a direction cosine matrix
orienting the gimbal frame with respect to the body frame, Jg is
the symmetric inertia matrix of each gyro, _ri is the gimbal angular
velocity vector of the ith CMG, and h is the rotor angular momen-
tum of each gyro.

By the Euler’s theorem, the hypothesis of small elastic defor-
mations [8] and the neglect of Jg, the dynamic equations can be
obtained as follows:

Jb _xþ dT €g ¼ �x� JbxþHc þ dT _g
� �

� D _r (3a)

€gþ C _gþ Kg ¼ �d _x (3b)

where Hc ¼
P6

i¼1 CT
i h. C ¼ diagf2fixni; i ¼ 1;…;Ng and

K ¼ diagfx2
ni; i ¼ 1;…;Ng are the damping and stiffness matri-

ces, respectively, where xni is the natural frequency and fi is
the associated damping of the ith mode. In Eq. (3a), D _r ¼P6

i¼1 CT
i
~_rih is the output torque of the CMG array. Let

ur ¼ D _r (4)

The total velocities of the flexible appendages w ¼ dxþ _g are
introduced as new variables, dynamic equation (3) thus can be
written as

_x ¼ �J�1
m ½x� JbxþHc þ dT _g

� �
� dT Cwþ Kg� Cdxð Þ þ ur�

(5a)

_g ¼ w� dx (5b)

_w ¼ �Cw� Kgþ Cdx (5c)

where Jm ¼ Jb � dTd.

2.3 Controller Design. For the attitude maneuvers of flexible
spacecraft, the desired states are ½q0r; qr� ¼ ½1; 0� and xr ¼ 0. The
final r is free. Let ĝ and ŵ denote the estimates of modal varia-
bles, and eg ¼ g� ĝ and ew ¼ w� ŵ denote estimate errors. We
propose the following controller and estimator

ur ¼ kpI; dT K
C

� �
� P1

I
�C

� �� �T� � q

ĝ

ŵ

2
64

3
75þ kdx (6a)

_̂g

_̂
w

" #
¼ 0 I
�K �C

� �
ĝ

ŵ

� �
� I
�C

� �
dx

þ P�1
2

K
C

� �
� P1

I
�C

� �� �
dx (6b)

where Pi ¼ PT
i (i¼ 1, 2) are positive-definite matrices, and kd ,

kp are positive constants.

We choose a candidate Lyapunov function as

V ¼ kp q0 � 1ð Þ2 þ qTq
h i

þ 1

2
xTJmxþ 1

2
gT ;wT
� 	

P1

g

w

� �

þ 1

2
eT
g ; e

T
w

h i
P2

eg

ew

� �
(7)

Differentiating Eq. (7) along the trajectories of Eqs. (5) and (6),
and letting the matrix Pi be the solution of

Pi
0 I
�K �C

� �
þ 0 I
�K �C

� �T

Pi ¼ �2Qi i ¼ 1; 2

for any given Qi ¼ QT
i > 0 result in

_V¼�xT kdIþdTCd
� �

x� gT ;wT
� 	

Q1

g

w

� �
� eT

g ;e
T
w

h i
Q2

eg

ew

� �
� 0

(8)

According to the LaSalle invariance principle [9], x! 0, g! 0,
w! 0, g! ĝ, and w! ŵ as t!1 and q! 0 along the trajec-
tories of the controlled system _x ¼ �J�1

m 0þ kpq
� 	

¼ 0 as
t!1.

3 Singularity Analysis and Steering Law of Scissored

Pairs of CMGs System

3.1 Singularity Analysis. In Eq. (4), D is the Jacobi matrix
of the three orthogonally mounted scissored pairs of CMGs sys-
tem, which can be written as

D ¼ h
0 0 cos r3 cos r4 � sin r5 sin r6

� sin r1 sin r2 0 0 cos r5 cos r6

cos r1 cos r2 � sin r3 sin r4 0 0

2
4

3
5

(9)

Suppose the twin gyros in each pair are completely synchronous.
Hence, the condition of gimbal angles’ synchronization can be
written as

N _r ¼ 0 (10)

where

N ¼
1 �1 0 0 0 0

0 0 1 �1 0 0

0 0 0 0 1 �1

2
4

3
5 (11)

With Eqs. (9)–(11), the Jacobi matrix D and the rate vector of
gimbal angles _r can be simplified as

D ¼ 2h
0 cos r3 0

0 0 cos r5

cos r1 0 0

2
4

3
5; _r ¼ _r1 _r3 _r5½ �T (12)

The singularity occurs whenever rankðDÞ < 3, i.e., detðDÞ
¼ 2h cos r1 cos r3 cos r5 ¼ 0. Hence, there exist no internal sin-
gular states in this system and only the saturation singularity
occurs whenever ri ¼ 6p=2.

3.2 Steering Law. The synchronization of the gimbal angles
of each pair of gyros is the precondition of avoiding the internal
singularity and is viewed as a constraint on designing the steering
law. Then, a pseudo-inverse steering law can be derived by mini-
mizing _rT _r=2 from Eqs. (4) and (10)

_r ¼ ½DT � NTðNNTÞ�1NDT �½DDT � DNTðNNTÞ�1NDT ��1ur

(13)
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4 Dynamic Equations and Controller Design for

Scissored Pairs of CMGs

The redundant CMG system is usually selected as an actuator
for 3D attitude control of the spacecraft, because its extra
degrees of freedom may reduce the possibility of encountering
singular states and maintain the capability of outputting 3D tor-
que by reconfiguration if one or more CMGs are invalid.
Although a constrained scissored pair has relative merits on the
internal torque cancelation and the resulting power savings as
compared with an independent scissored pair [10], considering
the gimbal restrict of the constrained scissored pair for reconfigu-
ration, we employ the independent scissored pair in this work.
Yang et al. [11,12] investigated the synchronization control strat-
egy of independent scissored pair, proposed a feedforward/feed-
back moment-gyro control method in the slewing motion control
of a flexible truss arm, and applied the cross-coupling adaptive
synchronization control scheme to two gyros’ synchronous pre-
cession. In their article, the slewing motion control is imple-
mented in the open loop, whereas the synchronous precession
control of twin gyros is realized in the closed loop. To deal with
the effect of external disturbances acting on gimbal axis, in this
section, a closed loop adaptive nonlinear synchronization control
law is presented.

4.1 Dynamic Equations. According to the momentum
moment theorem, the dynamic equation of the ith CMG can be
expressed as

Jg €ri þ ~_rihþMi ¼ Li (14)

where Mi ¼ JgCi _x � Jg
~_ri Cix þ Ci ~x CT

i JgCix þ ~_ri JgCix
þCi ~xCT

i Jg _ri þ Ci ~xCT
i h and Li ¼ ui þ di, where ui represent

the input torque vector, and di represent the disturbance torque
vector.

Writing the vectors in Eq. (14) in the gimbal frame, we obtain
Jg €ri ¼ 0 0 Jz €ri½ �T , ~_rih ¼ 0 _rih 0½ �T , ui ¼ 0 0 ui½ �T ,
and di ¼ 0 0 di½ �T . Equation (14) thus can be rewritten as

Mix ¼ Lix

_rihþMiy ¼ Liy

Jz €ri þMiz ¼ Liz

8>><
>>:

where Lix and Liy are the two components of the reaction torque
and Liz ¼ ui þ di is the sum of the control torque and the disturb-
ance torque.

4.2 Controller Design. With the first scissored pair of CMGs
as an example, we define the gimbal angle tracking errors
e1 ¼ r1 � r1r , e2 ¼ r2 � r2r , where rir (i¼ 1, 2) are the desired
gimbal angles. By the steering law (13), we can obtain the desired
angular velocities of gyros 1 and 2, i.e., _rir (i¼ 1, 2). Then inte-
grating _rir with zero initial values gives rir . In the presence of dis-
turbances d1 and d2, the synchronization error defined by the
difference of the two gimbal angles, i.e., e ¼ e1 � e2, must be sup-
pressed by a feedback strategy. Introducing the integral of the syn-
chronization error into the system as a new independent variable,
we choose state variables of the synchronization control system
as x1 ¼

Ð t
0
edt, x2 ¼ e1, x3 ¼ e2, x4 ¼ _e1, and x5 ¼ _e2. The state

equations are then given by

_X ¼ AX þ Buþ 0 U½ �T þ Bd (15)

where X¼ x1 x2 x3 x4 x5½ �T , u¼ u1 u2½ �T , d¼ d1 d2½ �T ,

A¼ A1 A2

0 0

� �
, B¼ 0

C

� �
,

U ¼
�€r1r �

M1z

Jz

�€r2r �
M2z

Jz

2
664

3
775 with A1 ¼

0 1 �1

0 0 0

0 0 0

2
64

3
75;

A2 ¼
0 0

1 0

0 1

2
64

3
75; C ¼

1=Jz 0

0 1=Jz

� �

In an adaptive controller design, we consider canceling the influ-
ence of the constant components of d1 and d2. It is easy to check
the controllability of the system _X ¼ AX þ Bu by using the well-
known controllability criterion for linear time invariant systems.

The adaptive estimate of the disturbance vector is denoted by d̂
and the estimate error vector is defined by ed ¼ d � d̂. We design
the following adaptive controller for scissored pair of CMGs:

u ¼ �KX � C�1U� d̂ (16a)

_̂
d ¼ cBTPX (16b)

to ensure the global asymptotic stability of the system (15), where
c is a symmetric positive define matrix, and K ¼ R�1BTP is the
feedback gain matrix. Matrix P is the solution of matrix Riccati
equation ATPþ PA� PBR�1BTP ¼ �Q, where R and Q are the
given symmetric positive-definite matrices.

Construct a Lyapunov function for the system represented by
Eqs. (15) and (16) as

V ¼ 1

2
XTPX þ 1

2
eT

d c�1ed (17)

The time derivative of V along the trajectories of the system is
given by

_V ¼ � 1

2
XTQX � 1

2
XTPBR�1BTPX � � 1

2
XTQX � 0 (18)

According to the Barbalat lemma [9], we know that X approaches
zero asymptotically; therefore, the system has the global asymp-
totic stability. The first term in the controller (16a) is the linear
quadratic optimal control for the system _X ¼ AX þ Bu, which
minimizes the linear quadratic performance

Ð 1
0
ðXTQXþ

uTRuÞdt. As a state variable, the integral of the synchronization
error is independently penalized by the corresponding entry in the
weighting matrix Q such that the synchronization performance
may be improved.

5 Simulations

The satellite consists of a rigid main body with three scissored
pairs of CMGs and a flexible appendage. The parameters of the
satellite are given by

Jb ¼
980 29 11:5

29 390 11:3

11:5 11:3 630

2
64

3
75; d ¼

10 0:5 0:2

0:5 2 0

0:1 10:9 0:8

1 0:5 0:5

2
6664

3
7775;

Jg ¼ diag 0:07 0:05 0:05f g; h ¼ 75 0 0½ �T

For the flexible appendage, the natural frequencies of the four
modes and the associated damping are given as xn1 ¼ 1:9,
xn2 ¼ 4:1, xn3 ¼ 5:8, xn4 ¼ 6, and f1 ¼ 0:05, f2 ¼ 0:04,
f3 ¼ 0:16, f4 ¼ 0:005. The initial attitude of the spacecraft is
described by the quaternions q0ð0Þ ¼ 0:17365, q1ð0Þ ¼ 0:91856,
q2ð0Þ ¼ �0:29544, and q3ð0Þ ¼ 0:19696. The initial angular
velocities of the spacecraft are zero. The initial gimbal angles of

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2012, Vol. 134 / 054502-3

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 01/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



the gyros and their rates are zero. All initial estimates are zero. A
large-angle maneuver mission is assigned to the flexible space-
craft such that its attitude is adjusted to the desired states
½q0r; qr� ¼ ½1; 0� and xr ¼ 0. In the mission, constant disturbances
d ¼ 0:03 �0:01 �0:02 0:01 �0:04 0:04½ �T are imposed
on the gimbal axes of the CMGs system. The parameters of the

attitude controller (6) are selected as kp ¼ 10, kd ¼ 50, Q1 ¼ I,
and Q2 ¼ 2:5I. In the CMGs controller (16), the weighting
matrices are selected as R ¼ diagð 1 1 Þ, Q ¼ diag
ð 106 103 103 102 102 Þ, and c ¼ I, where I represents a
2� 2 identity matrix. As observed, the first diagonal entry in
matrix Q is larger than the others so as to emphasize the synchro-
nization performance.

The time histories of attitude quaternions are plotted in Fig. 3.
The modal displacement of the first mode and that of the second
mode are plotted in Figs. 4 and 5, respectively. With the first pair
of CMGs as an example, the gimbal angles of the twin gyros are
plotted in Fig. 6; the synchronization error between them is plot-
ted in Fig. 7; and the estimates for the disturbances on the two
gyros are plotted in Fig. 8. As seen from Figs. 3–5, while the
spacecraft performs the attitude maneuver, the vibrations of the
flexible appendages are efficiently suppressed. In the attitude ma-
neuver process, the gimbal angles of the scissored pair of CMGs
are kept synchronous (see Fig. 6) and the synchronization error
between them asymptotically converges to zero (see Fig. 7).
Moreover, the adaptive estimates for the gyro disturbances, d̂1

and d̂2, converge to the real values of d1 and d2, respectively
(see Fig. 8).

6 Conclusions

Dynamic equations for the attitude motion of flexible spacecraft
with three scissored pairs of CMGs as actuators are presented.
Based on the second method of Lyapunov, a nonlinear output-
feedback controller, using the attitude quaternions and angular
velocity of the spacecraft, is proposed. Simulation results show
that the flexible spacecraft successfully performs large-angle atti-
tude maneuvers while suppressing vibrations by using the
controller.

The three scissored pairs of CMGs are suggested to be orthogo-
nally mounted. Singularity analysis shows that there exist no in-
ternal singular states in such a configuration if the gimbal angles
of each pair of CMGs are synchronized. As the precondition of
avoiding the internal singularity, the synchronization of the gim-
bal angles of each pair of gyros is viewed as a constraint on

Fig. 6 Gimbal angles r1 and r2

Fig. 7 Synchronization error e1

Fig. 8 Adaptive estimates d̂1 and d̂2

Fig. 5 Modal displacement g2

Fig. 4 Modal displacement g1

Fig. 3 Attitude quaternions
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designing the CMGs steering law, consequently, the new pseudo-
inverse steering law for this CMGs system is proposed. To
improve the synchronization performance of each pair of CMGs,
we introduce the integral of synchronization error into the gyros’
feedback control system as an additional state variable and then
design an adaptive controller for the synchronization control sys-
tem. With this adaptive controller, in the large-angle attitude
maneuvers task, the synchronization error between the gimbal
angles of the scissored pair of CMGs asymptotically tends to zero
in the presence of external disturbance, the synchronization per-
formance is significantly improved.
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