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a b s t r a c t

Based on the relationship between Archimedean copulas and l1-norm symmetric distributions, we
propose amethod to not only estimate the copula parameter but also select the copulamodel through the
observation data in this paper. The strong consistency of the estimator is proved, and a Radial Information
Criteria (RIC) is provided to select the appropriate Archimedean copula model fitting the data best. It can
be extended to the multivariate cases conveniently because the selection is achieved by using the one-
dimensional radial distribution to capture the dependence structure for multivariate data. The Monte
Carlo simulation experiments illustrate that the proposed approach works well in parameter estimation
andmodel selection for both bivariate andmultivariate cases. An application inmodelling the dependence
structure of real stock indices is carried out with good performance as well.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

A copula is a joint distribution function of standard uniform
random variables (Nelsen, 2006). For a continuous random
vector X = (X1, . . . , Xd) with marginal distribution functions
F1(x1), . . . , Fd(xd), by the famous Sklar’s theorem (Sklar, 1959),
there is a unique copula function C such that the cumulative
distribution function

F(x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
.

Recently, copula theory has been raising the interest inmany prac-
tical applications, such as survival analysis, actuarial science, hy-
drology etc. Especially in finance, notably in the problems of asset
pricing and actuarial risk management, appropriate models for de-
pendence between risks are obviously important. Fortunately, the
copula function characterizes the dependence structures among
the random variables so that it is convenient for modelling differ-
ent types of dependence continuously from negative dependence
through independence up to positive dependence. Therefore, it be-
comes an important tool in financial research (e.g. Embrechts et al.
(1997), Cherubini et al. (2004), Denuit et al. (2005), McNeil et al.
(2005) and Mendes and Souza (2004)).
A versatile subclass of copulas, called Archimedean copulas

which is introduced in Kimberling (1974), is an important class
of multivariate dependence model with attractive stochastic
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properties. It involves a non-parametric component ϕ(·), called
generator, which is a univariate function and completely describes
the dependency structure of the entire d-dimensional vector
X. This brings the essential simplification to inference for
Archimedean copula. In practice, the Archimedean models are
commonly used, especially in survival analysis (e.g. Oakes (1989),
Faraggi and Korn (1996) and Klugman and Parsa (1999)).
However, in practice, we do not know fromwhich copula family

the data come in advance, thus the essential is how to select an
appropriate copula family and estimate the parameters to fit the
data best. In fact, the model selection in copulas is not easy owing
to their complexities, especially for multivariate cases. Genest and
Rivest (1993) provided a graphical method to select Archimedean
copula based on the Kendall process

Kn(t) =
√
n
(
Kn(t)− K(θn, t)

)
,

by using the distribution function K(·) of random variable
C(U1,U2), where Kn(·) and K(θn, ·) represent the non-parametric
and parametric estimates of K(·) respectively, and U1 and U2 are
uniformly distributed random variables on [0, 1]. A goodness of fit
test based on the Kendall process was proposed in Genest et al.
(2006), which requires a ‘‘good’’ estimator of the parameter θ
firstly. In Chen and Fan (2005), the pseudo-likelihood ratio test
was proposed to select the appropriate parameterized copula. A
Bayesian method to select the most probable copula family among
a given set was suggested in Huard et al. (2006), which treats the
copula parameters as nuisance variables based on a priori Kendall’s
τ . However, when the closed-form relation between Kendall’s
τ and the copula parameter is unavailable, taking the family of
Joe copula for example, it does not work; and it needs the prior
information which may be inaccessible in applications.
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For the Archimedean copulas, an open question was proposed
in Nelsen (2005): If an Archimedean copula is appropriate for a given
data set, are there statistical procedures for choosing a particular
family? In Wang and Wells (2000), model selection procedures
for bivariate survival models for censored data generated by
the Archimedean copula family were proposed. In route to
constructing the selectionmethodology, it developed estimates for
some time-dependent associationmeasures, and then estimate the
copula parameter from these measures.
In recent research, it is shown that the class of d-dimensional

Archimedean copulas exactly coincides with the class of survival
copulas of d-dimensional l1-norm symmetric distributions that
place no point mass at the origin McNeil and Neŝlehová (2009).
This is a very important and useful discovery because it establishes
a direction to analysis multi-dimensional distributions focusing on
the corresponding l1-norm symmetric distributions.
In this paper, under the some assumption that the d-

dimensional data can be suitably modelled by a d-dimensional
Archimedean copula on the d-unit cube, we decompose the
multi-dimensional randomvariables following l1-norm symmetric
distribution into two independent parts, i.e., the radial part and
the uniform simplex part. Then, we utilize the uniform simplex
parts to do the estimation and the radial parts to set up a criteria
for realizing the model selection. In result, we achieve the twofold
purpose. First, a unified method is presented which could not only
estimate the copula parameter but also select the copula model
among Archimedean copula families for bivariate cases. Second,
it is extended to multivariate Archimedean copula parameter
estimation and model selection. This is a meaningful generation
because in practice, such as riskmanagement,wemay interested in
the dependence structure among more than two risks. To the best
of our knowledge, there is no efficient model selection method for
multivariate Archimedean copulas at present.
This paper is organized as follows. In Section 2, we present

some basic concepts andmain results about Archimedean copulas,
Archimedean generators, and l1-norm symmetric distributions. In
Section 3,we introduce an optimal parameter estimator in terms of
minimizing the Cramér–von Mises distance and a Radial Informa-
tion Criteria (RIC) to realize the model selection in Archimedean
copulas. We present some Numerical examples including Monte
Carlo simulation experiments to illustrate the efficiency of the pro-
posed approach in Section 4, and Section 5 provides a conclusion.

2. Archimedean copulas and the characterizations

2.1. Archimedean copulas and Archimedean generators

Following Ling (1965) and McNeil and Neŝlehová (2009), the
related concepts considered in this paper are given as follows.

Definition 1. A non-increasing and continuous function
ϕ : [0,∞) → [0, 1] which satisfies the conditions ϕ(0) = 1,
limx→∞ ϕ(x) = 0 and is strictly decreasing on [0, ϕ−1(0)) is called
an Archimedean generator, where ϕ−1(t) = inf{x : ϕ(x) = t}. If
ϕ−1(0) = ∞, we say that ϕ is a strict generator. A d-dimensional
copula C is called Archimedean if it has the representation

C(u1, . . . , ud) = ϕ
(
ϕ−1(u1)+ · · · + ϕ−1(ud)

)
, 0 ≤ ui ≤ 1. (1)

Definition 2. A real function f is called d-monotone on (a, b),
where a, b ∈ R and d ≥ 2, if
(a) f is differentiable on (a, b) up to order d−2, and the derivatives
satisfy

(−1)kf (k)(x) ≥ 0, x ∈ (a, b) (2)

for k = 0, 1, . . . , d− 2;
(b) (−1)d−2f (d−2)(x) is non-increasing and convex on (a, b).
Moreover, a real function f is called completelymonotone on (a, b)
if it has derivatives of all orders on (a, b) and inequality (2) holds
for all integers k.

The function f is called d-monotone (completely monotone)
on a closed interval [a, b] if it is continuous on [a, b] and if f
restricted to (a, b) is d-monotone (completely monotone). The
following lemma gives the necessary and sufficient condition that
an Archimedean generator induces a d-dimensional copula by
means of (1), which was proved in McNeil and Neŝlehová (2009,
Theorem 2).

Lemma 1. Let ϕ be an Archimedean generator, then the function C
given by (1) is a d-dimensional copula if and only if ϕ is d-monotone
on [0,∞).

Because a variety of different generators can provide dif-
ferent dependence structures, the dependence properties of an
Archimedean copula reduce to analytical properties of its gen-
erator ϕ. Therefore, the problem of the model selection among
Archimedean copulas becomes that of the selection of the genera-
tors in nature. Somemain types of Archimedean copula generators
are listed as follows, the corresponding Archimedean copulas can
be constructed by (1).

(1) Clayton copula with generator

ϕθ (x) = (1+ θx)
−1/θ
+ , θ 6= 0, where a+ = max{a, 0}.

(2) Gumbel copula with generator

ϕθ (x) = exp(−x1/θ ), θ ≥ 1.

(3) Frank copula with generator

ϕθ (x) = −
1
θ
ln
(
exp(x)+ exp(−θ)− 1

exp(x)

)
, θ 6= 0.

(4) Ali–Mikhail–Haq (AMH) copula with generator

ϕθ (x) =
1− θ

exp(x)− θ
, θ ∈ [−1, 1).

(5) Joe copula with generator

ϕθ (x) = 1− (1− exp(−x))1/θ , θ ≥ 1.

It can be verified that the Clayton generator is strictwhen θ > 0,
and d-monotone for d ≥ 2 if and only if θ ≥ −1/(d−1). The others
listed above are strict and completely monotone.
A common feature of the first three systems listed above is

that they include a special case of the independence distribution,
i.e., Cϕ(x, y) = xy, as well as the so-called upper Fréchet
bound (Nelsen, 2006). More discussions and properties of these
copulas can be found in Clayton (1978); Frank (1979) and Gumbel
(1960). Since the Clayton, Gumbel and Frank copulas can model
different tail dependence structures, most of the previous research
in Archimedean copula model selection mainly consider above
three one-parameter families (e.g. Genest and Rivest (1993), Wang
andWells (2000)). In order to show the general adaptability of the
method presented below, we consider additionally another two
families of Archimedean copulas, i.e. AMH copulas and Joe copulas.

2.2. Archimedean copulas and l1-norm symmetric distributions

In order to build up the relationship of Archimedean copulas
and l1-norm symmetric distributions, we need the following
lemmas.

Lemma 2. For a continuous random vector X = (X1, . . . , Xd)
with marginal survival functions F̄1(x1), . . . , F̄d(xd), where F̄i(xi) =
P
{
Xi > xi

}
, let H̄ be the survival function of X, i.e.
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H̄(x1, . . . , xd) = P
{
X1 > x1, . . . , Xd > xd

}
,

then there is a unique copula function C, which is referred to as the
survival copula of X such that

H̄(x1, . . . , xd) = C
(
F̄1(x1), . . . , F̄d(xd)

)
.

Lemma 2 is the restate of the original result by Sklar (1959)
in terms of survival functions. The well-known Bernstein–Widder
theorem (see Widder, 1946) indicates that an Archimedean
generator is completely monotone on [0,∞) precisely when it is
a Laplace transform of a non-negative random variable. However,
Archimedean generator that is not completely monotone is able to
appear as a survival copula of random vectors following l1-norm
symmetric distributions. This kind of distributions, introduced
by Fang and Fang (1988), is formally defined as follows:

Definition 3. A random vector X on Rd
+
= [0,∞)d follows

an l1-norm symmetric distribution if there exists a non-negative
random variable R independent of Sd, where Sd is a random vector
distributed uniformly on the unit simplex

Sd = {x ∈ Rd
+
: ‖x‖1 = 1},

so that X permits the stochastic representation

X d
= RSd.

The random variable R is referred to as the radial part of X and its
distribution is called as the radial distribution.

The relationship between Archimedean copulas and l1-norm
symmetric distributions is themain result inMcNeil andNeŝlehová
(2009, Theorem 3(ii)), which is described by the following lemma:

Lemma 3. Let U be distributed according to the d-dimensional Ar-
chimedean copula C with generator ϕ. Then (ϕ−1(U1),. . . ,ϕ−1(Ud))
has an l1-norm symmetric distribution with survival copula C and the
radial distribution function FR satisfying

FR(x) = 1−
d−2∑
k=0

(−1)kxkϕ(k)(x)
k!

−
(−1)d−1xd−1ϕd−1+ (x)

(d− 1)!
, (3)

where x ∈ [0,∞).

From Lemma 3, it is clear that once the random vector
U follows the distribution of an Archimedean copula C with
generator ϕ, there must exist a corresponding l1-norm symmetric
distribution for the random vector (ϕ−1(U1), . . . , ϕ−1(Ud)). Since
the problem we consider in this paper is ‘‘If an Archimedean
copula is appropriate for a given data set, are there statistical
procedures for choosing a particular family?’’, which guarantees
that there exists a corresponding l1-norm symmetric distribution
being appropriate. On the other side, if a survival copula of random
vector is not following any l1-norm symmetric distribution, it
is impossible being an Archimedean copula, which is not in the
consideration of this paper.
Let ϕ(x) be a d-monotone function on [0,∞) and FR be the

radial distribution function associated with ϕ by Eq. (3). If Sd is
uniformly distributed on Sd and R ∼ FR is a random variable
independent of Sd, then the distribution of RSd is just the l1-
norm symmetric distribution associated with ϕ, and ϕ(RSd) is
distributed according to the d-dimensional Archimedean copula
C with generator ϕ. The relationship discussed above can be
concluded in the following lemma (see McNeil and Neŝlehová,
2009, Proposition 11):

Lemma 4. Let U be distributed according to the d-dimensional
Archimedean copula C with generator ϕθ , where θ is the parameter
of the generator. Then
d∑
i=1

ϕ−1θ (Ui) and

 ϕ−1θ (U1)
d∑
i=1
ϕ−1θ (Ui)

, . . . ,
ϕ−1θ (Ud)
d∑
i=1
ϕ−1θ (Ui)


are independent. Moreover, the random variable

Vθ (U1, . . . ,Ud) =

1− ϕ−1θ (Uj)
d∑
i=1
ϕ−1θ (Ui)


d−1

is uniformly distributed on [0, 1] for any j = 1, . . . , d.

Lemma 4 is actually a decomposition of random vector U which
follows an Archimedean copula C into two independent parts, the
first part follows the radial distribution FR and the second part is in
fact is a random vector distributed uniformly on the unit simplex.
An important application of this result is constructing a method
of stochastic simulation for Archimedean copulas (see McNeil and
Neŝlehová, 2009, pp. 24–25).
For the Archimedean copula model, an important application

of it in insurance and finance is the frailty models which have
been introduced by Lancaster (1979) and Vaupel et al. (1979) and
have been popularized by Oakes (1989). The basic idea is using
an unobserved random variable to introduce dependence between
survival times, and finally the corresponding copula is a special
case of anArchimedean copulawhere the generatorϕ is the inverse
of a Laplace transform.
In the follows, we concentrate on the model estimation and

selection for a given data set, the radial part is a one-dimensional
function which reflects different dependence structure, so it is
appropriate being used to set up an criteria for model selection;
and the uniform simplex part is completely the same for any
Archimedean copula, which could be used to estimate the copula
parameter.

3. Archimedean copula estimation and selection in terms of
radial information criteria

Definition 4. An Archimedean copula generator ϕθ (x) is called
compositionallymonotonic if for a constant k > 0 the composition
function ϕθ

(
k×ϕ−1θ (y)

)
is uniformly monotonic on the parameter

θ , and strictly monotonic for y ∈ (0,M) where M = inf{y :
ϕθ (k× ϕ−1θ (y)) = 0}.

Remark 1. If the generator ϕθ is strict, then M = 1. Otherwise,
such as the Clayton family when θ < 0,M = ϕθ (−(kθ)−1).

Proposition 1. The Archimedean copula generators of Clayton,
Gumbel, Frank, AMH and Joe are compositionally monotonic.

Proof. We denote Gθ (x) = ∂ϕθ (x)
∂θ
, and Hθ (y) =

∂ϕ−1θ (y)
∂θ

.
(1) For Clayton family:

Gθ (x) =

(1+ θx)
−1/θ
·
(
ln(1+ θx)− θx/(1+ θx)

)
/θ2,

1+ θx > 0,
0, 1+ θx ≤ 0.

Because 1t + ln(t) ≥ 1 when t > 0 and the equality achieves at
t = 1, ln(1+ θx)− θx/(1+ θx) keeps positive if 1+ θx > 0. Thus,
ϕθ (x) is strictly monotonic on θ for x ∈ (0,∞) if θ > 0 and for
x ∈ (0,−1/θ) if θ < 0. In addition,

Hθ (y) =
(
1− y−θ (θ ln(y)+ 1)

)
/θ2.
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Then Hθ (y) > 0 (y ∈ (0, 1)) because
∂Hθ (y)
∂y = y

−1−θ
· ln(y) < 0

and Hθ (1) = 0 for y ∈ (0, 1). It implies that ϕ−1θ (y) is strictly
monotonic on θ for fixed y ∈ (0, 1). Finally, the composition
function ϕθ

(
k × ϕ−1θ (y)

)
is a strictly monotonic function on θ for

y ∈ (0, 1) if θ > 0 and for y ∈ (0, ϕθ (−(kθ)−1)) if θ < 0.
(2) For Gumbel family: From

ϕθ
(
k× ϕ−1θ (y)

)
= exp

(
ln(y) · k1/θ

)
,

and the fact that k1/θ is a strictly monotonic function of θ , we
know the function ϕθ

(
k × ϕ−1θ (y)

)
is strictly monotonic on θ for

y ∈ (0, 1).
(3) For Frank family: From

Gθ (x) = ln
(
exp(x)+ exp(−θ)− 1

exp(x)

)1/θ2
+

exp(−θ)

θ
(
exp(x)+ exp(−θ)− 1

) ,
we have Gθ (0) = 0 and limx→∞ Gθ (x) = 0. Because

∂Gθ (x)
∂x

=
(1− (1+ θ) exp(−θ)) · exp(x)− (1− exp(−θ))2

θ2(exp(x)+ exp(−θ)− 1)2

has only one zero point on (0,∞) and

∂Gθ (x)
∂x

∣∣∣∣
x=0
=
(1− θ) exp(θ)− 1

θ2
< 0,

Gθ (x) keeps negative on (0,∞). Therefore, ϕθ (x) is strictly mono-
tonic on θ . In addition,

Hθ (y) =
y

1− exp(θy)
−

1
1− exp(θ)

< 0, y ∈ (0, 1)

because Hθ (1) = 0, and

∂Hθ (y)
∂y

=
1− (1− θy) exp(θy)(
1− exp(θy)

)2
is positive when y ∈ (0, 1). It implies that ϕ−1θ (y) is strictly mono-
tonic on θ for fixed y ∈ (0, 1). In result, the composition function
ϕθ
(
k× ϕ−1θ (y)

)
is strictly monotonic on θ for y ∈ (0, 1).

(4) For AMH family: Noticing that

Gθ (x) =
1− exp(x)(
exp(x)− θ

)2 < 0, x ∈ (0,+∞),

Hθ (y) =
y− 1

θ × (y− 1)+ 1
< 0, y ∈ (0, 1),

we know that ϕθ
(
k × ϕ−1θ (y)

)
is strictly monotonic on θ when

y ∈ (0, 1).
(5) For Joe family: From

Gθ (x) =
(
1− exp(−x)

)1/θ
· ln
(
1− exp(−x)

)
/θ2 < 0,

x ∈ (0,+∞),

Hθ (y) =
(1− y)θ · ln(1− y)
1− (1− y)θ

< 0, y ∈ (0, 1),

we know that ϕθ
(
k×ϕ−1θ (y)

)
is also strictly monotonic on θ when

y ∈ (0, 1). �

3.1. Bivariate Archimedean copula estimation and selection

Suppose that there is an i.i.d. sample (X1t , X2t) (t = 1, . . . , n)
from a joint distribution with the marginals F1 and F2. The K com-
peting models in a finite set areM1, . . . ,MK with corresponding
generator families ϕ1θ , . . . , ϕ
K
θ . In the next, we introduce a general

method to estimate and select the dependence structure among
the set of competing models, i.e., find an appropriate Archimedean
copula generator ϕθ such that joint distribution function of the
variables can be expressed as:
F(x1, x2) = Cϕθ (F1(x1), F2(x2))

= ϕθ
(
ϕ−1θ (F1(x1))+ ϕ

−1
θ (F2(x2))

)
.

In the next, we denote the random variable Fi(Xi) by Ui.
By Lemma 4, the random variable

Vθ (U1,U2) = 1−
ϕ−1θ (U2)
2∑
i=1
ϕ−1θ (Ui)

=
ϕ−1θ (U1)

ϕ−1θ (U1)+ ϕ
−1
θ (U2)

(4)

should be uniformly distributed on [0, 1]. So the estimation proce-
dure consists of estimating the parameter value θ̂n that minimizes
the Cramér–von Mises distance:

d(θ) = n
∫ 1

0

(
V nθ (t)− U(t)

)2
dU(t), (5)

where V nθ (t) and Vθ (t) are respectively the empirical distribu-
tion function and distribution function of the random variable
Vθ (U1,U2), and U(t) is the uniform distribution function on [0, 1].
In the next, we discuss the consistent property of the estimate θ̂n.

Theorem 1. Let (U1,U2) distribute according to an Archimedean
copula with generator ϕθ0(θ0 ∈ 2). If the generator is compos-
itionally monotonic, then Vθ1(U1,U2) and Vθ2(U1,U2) given by (4)
for parameters θ1 and θ2 respectively follow the same distribution if
and only if θ1 = θ2.

Proof. The sufficiency is clear, so we only need to prove the neces-
sity.
We assume θ1 6= θ2, and without loss of generality, suppose

θ1 > θ2. For any c > 0, we have

Pθ0{Vθ (U1,U2) ≤ c} = Pθ0

{
ϕ−1θ (U1)

ϕ−1θ (U1)+ ϕ
−1
θ (U2)

≤ c

}

= Pθ0

{
ϕ−1θ (U1)

ϕ−1θ (U2)
≤

c
1− c

}

=

∫ 1

0

∫ ϕθ

(
1−c
c ϕ−1θ (u1)

)
0

p(u1, u2)du2du1,

where p(u1, u2) denotes the density function of (U1,U2). Since
the density function is continuous in [0, 1] × [0, 1], there exist
one point q = (u01, u

0
2) and its neighborhood O(q, r) such that

p(u1, u2) > ε > 0 for any (u1, u2) ∈ O(q, r).
By Proposition 1, ϕθ ( 1−cc ϕ

−1
θ (u1)) is a strictly monotonic func-

tion on θ for any u1 ∈ (0, inf{y : ϕθ ( 1−cc ϕ
−1
θ (y)) = 0}). We sup-

pose that it is strictlymonotonic increasingwithout loss of general-
ity, soϕθ1

( 1−c
c ϕ
−1
θ1
(u01)

)
>ϕθ2

( 1−c
c ϕ
−1
θ2
(u01)

)
ifϕθ1(

1−c
c ϕ
−1
θ1
(u01))>0.

Because ϕθ1
( 1−c
c ϕ
−1
θ1
(u01)

)
is continuous on c , there exists a c0

such that ϕθ1
( 1−c0
c0
ϕ−1θ1 (u

0
1)
)
= u02. Therefore, the intersection of

O(q, r) and
{
(u1, u2) : 1 ≥ u1 ≥ 0, ϕθ1

( 1−c
c ϕ
−1
θ1
(u1)

)
≥ u2 ≥

ϕθ2
( 1−c
c ϕ
−1
θ2
(u1)

)}
must have a positive Lebesguemeasure denoted

as D. It implies

Pθ0{Vθ1(U1,U2) ≤ c0} − Pθ0{Vθ2(U1,U2) ≤ c0}

=

∫ 1

0

∫ ϕθ1

(
1−c0
c0

ϕ−1θ1
(u1)
)

ϕθ2

(
1−c0
c0

ϕ−1θ2
(u1)
) p(u1, u2)du2du1 ≥ Dε > 0.

This contradicts with that Vθ1(U1,U2) and Vθ2(U1,U2) follow the
same distribution. So there must be θ1 = θ2. �
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Lemma 5. Let

D(θ, t) = {(u1, u2) : Vθ (u1, u2) ≤ t, 0 ≤ ui ≤ 1, i = 1, 2},

then C = {D(θ, t) : θ ∈ 2, t ∈ (0, 1)} is a class of convex sets.

Proof. Note that

D(θ, t) =
{
(u1, u2) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ ϕθ

(
1− t
t
ϕ−1θ (u1)

)}
.

Denote the function g(x) = k ·ϕ−1θ (x)with k > 0. Because the gen-
erator ϕθ (x) is 2-monotonic, ϕθ (x) is a convex and non-increasing
function. Noticing that ϕθ (x) is strictly decreasing on [0, ϕ−1θ (0)),
we have

g ′′(x) = −k · ϕ′′θ (x)/(ϕ
′

θ (x))
2
≤ 0, x ∈ [0, 1],

so g(x) is concave. As a result, the composition function
ϕθ (

1−t
t ϕ
−1
θ (u1)) is concave for any t ∈ (0, 1) and θ ∈ 2.

Let (u11, u12) and (u21, u22) be arbitrary two points in D(θ, t). It
is clear that 0 ≤ λu11 + (1− λ)u21 ≤ 1 for any λ ∈ [0, 1], and

λu12 + (1− λ)u22

≤ λϕθ

(
1− t
t
ϕ−1θ (u11)

)
+ (1− λ)ϕθ

(
1− t
t
ϕ−1θ (u21)

)
≤ ϕθ

(
1− t
t
ϕ−1θ (λu11 + (1− λ)u21)

)
,

so
(
λu11 + (1− λ)u21, λu12 + (1− λ)u22

)
∈ D(θ, t). �

As in Rao (1962), a measure µ is said to be continuous (or non-
atomic) if theµ-measure of each single point set is zero and a set A
is said to be a continuity set for µ if A has a µ-null boundary. Then
we have the following lemma:

Lemma 6. Let (U1i,U2i) (i = 1, . . . , n) be an i.i.d. sample of
(U1,U2), which distributes according to an Archimedean copula with
generator ϕθ0(θ0 ∈ 2), then Pθ0{supθ∈2,0<t<1 |V

n
θ (t) − Vθ (t)| →

0} = 1.

Proof. Let µ be the joint distribution of (U1,U2) and µn be its
empirical distribution. It is clear thatµ is a non-atomicmeasure. By
Lemma 5, for any θ ∈ 2 and t ∈ (0, 1), D(θ, t) is convex. Noticing
that the boundary

∂D(θ, t) = {0 < u1 ≤ 1, u2 = 0} ∪ {u1 = 1, 0 ≤ u2 ≤ 1}

∪

{
0 < u1 ≤ 1, u2 = ϕθ

(
1− t
t
ϕ−1θ (u1)

)}
,

we have µ(∂D(θ, t)) = 0, therefore D(θ, t) is a continuity set for
µ. Let I(·) be the indicative function. Because

V nθ (t) =
1
n

n∑
i=1

I
(
Vθ (u1i, u2i) ≤ t

)
=
1
n

n∑
i=1

I
(
(u1i, u2i) ∈ D(θ, t)

)
= µn

(
D(θ, t)

)
,

Vθ (t) =
∫ 1

0

∫ ϕθ

(
1−t
t ϕ
−1
θ (u1)

)
0

p(u1, u2)du2du1

=

∫ 1

0

∫ 1

0
I
(
(u1, u2) ∈ D(θ, t)

)
· p(u1, u2)du2du1

= µ
(
D(θ, t)

)
,

this lemma thus holds from Rao (1962, Theorem 7.1). �
Lemma 7. Following the same conditions in Lemma 6, for any subset
20 ⊆ 2, denote an = infθ∈20

∫ 1
0

(
V nθ (t)− t

)2
dt, then

Pθ0

{
lim
n→+∞

an = inf
θ∈20

∫ 1

0

(
Vθ (t)− t

)2
dt
}
= 1.

Proof. Following the Lebesgue dominated convergence theorem,∫ 1

0

(
Vθ (t)− t

)2
= lim
n→+∞

∫ 1

0

(
V nθ (t)− t

)2
dt.

So it is clear that

Pθ0

{
lim
n→+∞

an ≤ inf
θ∈20

lim
n→+∞

∫ 1

0

(
V nθ (t)− t

)2
dt
}
= 1.

By Lemma 6, for ∀ε > 0, there exists an N such that for any n > N ,

Pθ0

{
sup

θ∈20,0<t<1
|V nθ (t)− Vθ (t)| ≤ ε

}
≥ Pθ0

{
sup

θ∈2,0<t<1
|V nθ (t)− Vθ (t)| ≤ ε

}
= 1.

Therefore,

Pθ0

{
sup
θ∈20

∣∣∣∣∫ 1

0

(
V nθ (t)− t

)2
dt −

∫ 1

0

(
Vθ (t)− t

)2
dt
∣∣∣∣ < 2ε}

≥ Pθ0

{
sup
θ∈20

∫ 1

0

∣∣∣(V nθ (t)− t)2 − (Vθ (t)− t)2∣∣∣ dt < 2ε}
= Pθ0

{
sup
θ∈20

∫ 1

0

∣∣(V nθ (t)− t)+ (Vθ (t)− t)∣∣
·
∣∣V nθ (t)− Vθ (t)∣∣ dt < 2ε}

≥ Pθ0

{
sup
θ∈20

∫ 1

0
2 ·
∣∣V nθ (t)− Vθ (t)∣∣ dt < 2ε}

≥ Pθ0

{
sup

θ∈20,0<t<1

∣∣V nθ (t)− Vθ (t)∣∣ < ε

}
= 1.

Denote Aε = {(u1i, u2i): there exists an N such that an ≥
infθ∈20

∫ 1
0

(
Vθ (t) − t

)2
dt − 3ε for n > N, i = 1, 2, . . .}. Then

Bε = {(u1i, u2i): there exist an N and θn ∈ 20 such that an ≥∫ 1
0

(
Vθn(t)− t

)2
dt − 3ε for n > N, i = 1, 2, . . .} ⊆ Aε . Because

Pθ0

{∫ 1

0

(
V nθn(t)− t

)2
dt ≥

∫ 1

0

(
Vθn(t)− t

)2
dt − 2ε

}
≥ Pθ0

{∣∣∣∣∫ 1

0

(
V nθn(t)− t

)2
dt −

∫ 1

0

(
Vθn(t)− t

)2
dt
∣∣∣∣ < 2ε} = 1,

Cε = {(u1i, u2i): there exist an N and θn ∈ 20 such that an ≥∫ 1
0

(
V nθn(t) − t

)2
dt − ε for n > N, i = 1, 2, . . .} ⊆ Bε . By the

definition of an, we have Pθ0{Cε} = 1. Therefore, Pθ0{Aε} = 1, and
then Pθ0

{
limn→+∞ an ≥ infθ∈20

∫ 1
0

(
Vθ (t)− t

)2
dt − 3ε

}
= 1.

As ε can be arbitrarily small, we get

Pθ0

{
lim
n→+∞

an ≥ inf
θ∈20

∫ 1

0

(
Vθ (t)− t

)2
dt
}
= 1.

This lemma thus holds. �

Theorem 2. Let (U1i,U2i)(i = 1, . . . , n) be an i.i.d. sample from
the two-dimensional Archimedean copula with generator ϕθ0(θ0 ∈
2), and θ̂n be the optimal estimate of parameter θ0 in terms of
minimizing the Cramér–von Mises distance given by (5). If ϕθ (x) is
compositionally monotonic, then limn→∞ θ̂n = θ0 almost surely.
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Proof. Let

θ̂n = argmin
θ∈2
n
∫ 1

0

(
V nθ (t)− U(t)

)2
dU(t)

= argmin
θ∈2

∫ 1

0

(
V nθ (t)− t

)2
dt.

By Theorem 1, θ0 = argminθ∈2
∫ 1
0 (Vθ (t)− t)

2dt , so

Pθ0

{∫ 1

0

(
V n
θ̂n
(t)− t

)2
dt ≤

∫ 1

0

(
V nθ0(t)− t

)2
dt
}
= 1.

Denote Aε = {(u1i, u2i): there exists an N such that θ̂n ∈
[θ0− ε, θ0+ ε] for n > N, i = 1, 2, . . .}, so Acε ⊂ Cε = {(u1i, u2i) :
inf|θ−θ0|≥ε

∫ 1
0

(
V nθ (t) − t

)2
dt ≤

∫ 1
0

(
V nθ0(t) − t

)2
dt for infinitely

many n, i = 1, 2, . . .}. Then we have

Pθ0

{
lim
n→+∞

(
inf

|θ−θ0|≥ε

∫ 1

0

(
V nθ (t)− t

)2
dt

−

∫ 1

0

(
V nθ0(t)− t

)2
dt
)
≤ 0

}
a
= Pθ0

{
inf

|θ−θ0|≥ε

(
lim
n→+∞

∫ 1

0

(
V nθ (t)− t

)2
dt

−

∫ 1

0

(
V nθ0(t)− t

)2
dt
)
≤ 0

}
b
= Pθ0

{
inf

|θ−θ0|≥ε

(∫ 1

0

(
Vθ (t)− t

)2
dt −

∫ 1

0

(
Vθ0(t)− t

)2
dt
)
≤ 0

}
c
= Pθ0

{
inf

|θ−θ0|≥ε

∫ 1

0

(
Vθ (t)− t

)2
dt ≤ 0

}
d
= Pθ0

{
min

(∫ 1

0

(
Vθ0+ε(t)− t

)2
dt,

∫ 1

0

(
Vθ0−ε(t)− t

)2
dt
)
≤ 0

}
e
= 0,

where a
= follows from Lemma 7, b= follows from the Lebesgue

dominated convergence theorem, c= follows from Lemma 4, d=
follows from the definition of compositionally monotonic gen-
erator given in Definition 4, and e

= follows from Theorem 1. So
Pθ0{Cε} = 0, and then Pθ0{Aε} = 1, which implies limn→∞ θ̂n = θ0
almost surely. �

Theorem 2 guarantees the strong consistency of the estimator.
From Lemma 3, Archimedean copulas are characterized by the
radial distribution of the radial part. If (U1,U2) follows an
Archimedean copula with generator ϕ, we can express (U1,U2) =
ϕ(RSd)with Sd distributed uniformly on the unit simplex Sd. So it is
clear that the dependence information of (U1,U2) is concentrated
on the generator ϕ and the radial distribution of R. In addition, the
radial distribution of R depends only on the ϕ. Therefore, we can
reduce the selection of themultivariate Archimedean copulawhich
fits data best to a one-dimensional problem, by the following four
steps:

(1) Estimate the parameters for all competing models by mini-
mizing the Cramér–von Mises distance, and denote them as
θ̂1n , . . . , θ̂

K
n ;

(2) For k = 1, . . . , K , calculate the estimated radial distribution
functions F k

θ̂kn
(x) of Archimedean copulas with generators ϕk

θ̂kn
using Eq. (3);

(3) For k = 1, . . . , K , compute the observed experimental radial
cumulate distribution functions F̂ k

θ̂kn
(x) under the assumption

with generators ϕk
θ̂kn
;

(4) Determine the model from which the observed experimental
radial distribution function F̂ k

θ̂kn
(x) that is closest to the

according estimated distribution function F k
θ̂kn
(x).

From Eq. (3), we can compute the radial distributions of the l1-
norm symmetric distributions associated with the Archimedean
copulas conveniently. As both of F̂ kθ (x) and F

k
θ (x) are distribution

functions, we could select the ‘‘optimal’’ copula in terms of the
Radial Information Criteria (RIC) to minimize the distance:

dMk(θ) = ‖F̂
k
θ (x)− F

k
θ (x)‖, (6)

where the function ‖ · ‖ can be Kolmogorov distance, Hellinger
distance or lp-norm. Especially, for the l2-norm, dMk(θ) can be
expressed as:

N∑
t=1

(F̂ kθ (xt)− F
k
θ (xt))

2, (7)

where xt is the observed radial part, which can be calculated by
xt =

∑2
i=1 ϕ

k
θ

−1
(uit).

If the actual joint distribution of data follows an Archimedean
copula Cϕ(U1,U2), its experimental radial part of the l1-norm
symmetric distribution associated with this Archimedean copula
should follow the estimated radial distribution. Therefore, the
smaller dMk(θ) is, the better the modelMk fits to the data.

3.2. Multivariate Archimedean copula estimation and selection

In this subsection, we extend the method of bivariate Archi-
medean copula estimation and selection to the multivariate cases.

Theorem 3. Let (U1, . . . ,Ud) be distributed according to the d-
dimensional Archimedean copula C with generator ϕθ (x)(θ ∈ 2).
Then, for any i 6= j, (Ui,Uj) is distributed according to the two-
dimensional Archimedean copula with the same generator ϕθ (x).

Proof. Since

C(u1, . . . , ud) = ϕθ (ϕ−1θ (u1)+ · · · + ϕ
−1
θ (ud)),

P(Ui < ui,Uj < uj) =
∫ 1

0
. . .

∫ ui

0
. . .

∫ uj

0
. . .

∫ 1

0
dC(U1, . . . ,Ud)

= C(1, . . . , ui, . . . , uj, . . . , 1)− C(0, . . . , 0)
= ϕθ (ϕ

−1
θ (ui)+ ϕ

−1
θ (uj)),

this theorem thus holds. �

Theorem 3 is very useful because we can take advantage of the
procedure of bivariate case conveniently formultivariate cases. Let
V nθij(t) be the empirical distribution function of Vθ (Ui,Uj), which is
uniformly distributed on [0, 1] for any 0 ≤ i < j ≤ d. So, the
estimation is achieved when θ̂n brings the minimal Cramér–von
Mises distance of

d(θ) = n
∑
i<j

∫ 1

0
(V nθij(t)− U(t))

2dU(t). (8)

The steps of model selection are same as those of bivariate cases to
select the ‘‘optimal’’ copula to minimize the distance given by (6).
The difference is that the radial distribution should be changed as
multi-dimensional caseswhich could be calculated byEq. (3). So far
we have accomplished the whole Archimedean copula estimation
and selection problem.

4. Numerical examples

In this section, some simulation experiments and a real data
example are provided to show the efficiency of our proposed
method.
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Table 1
Sample average biases (×100) and variances (×100) of three estimators of the
association parameter θ for Clayton’s family with bivariate distributions, γ =
ln(θ + 1).

γ θ̂n θ̃n θ̃∗n

Bias Var Bias Var Bias Var

0.1 5.65 2.43 1.915 2.35 4.09 1.54
0.2 2.93 3.74 0.99 2.93 3.81 2.37
0.3 2.78 4.83 1.08 3.57 4.58 3.04
0.4 3.05 6.13 1.13 4.59 5.88 4.03
0.5 4.21 7.31 3.25 5.87 7.53 4.84
0.6 3.74 8.51 1.28 6.94 6.37 5.86
0.7 5.57 9.90 3.26 8.81 7.98 7.26
0.8 5.38 11.95 3.07 10.51 7.81 9.07
0.9 5.64 14.12 2.97 13.71 7.29 10.37
1.0 6.31 16.83 5.37 16.05 7.38 13.40
1.1 6.24 19.66 4.94 19.78 6.92 16.10
1.2 6.73 24.07 6.15 24.39 7.32 20.62
1.3 7.63 30.51 8.89 31.98 6.79 25.08
1.4 9.15 37.23 11.37 39.04 6.84 30.89
1.5 3.50 42.54 8.69 42.56 −2.50 32.87
1.6 7.92 56.76 9.00 58.96 2.34 46.45
1.7 4.21 67.65 7.36 68.59 −2.06 53.52
1.8 5.12 84.70 13.59 91.04 −3.81 68.80
1.9 −5.81 99.67 10.25 106.94 −13.40 80.32
2.0 −5.02 116.41 17.25 126.02 −16.69 96.44

4.1. Two-dimensional simulation

In order to illustrate the performance of our method, we
select the five Archimedean copula families, i.e. Clayton, Gumbel,
Frank, AMH and Joe to form the competing model set. The data
(x1t , x2t), t = 1, . . . , n with exponent marginal distributions are
randomly generated from the five copula families of different sizes
and correlations by the Matlab program provided in Perkins and
Lane (2003). As in Genest et al. (1995) and the canonical maximum
likelihoodmethod in Durrleman et al. (2000), we take themarginal
empirical distributions as the marginal distributions.
Then we use the minimal Cramér–von Mises distance (5) to

get the estimation of the parameter for each Archimedean family.
Followed Genest et al. (1995), Table 1 reports the sample biases
and variances of θ̂n, along with those of two competing semi-
parametric estimators, based on 2000 random samples of size 100
fromClayton familywith various parameter values. Here, θ̃n and θ̃∗n
stand for the estimator based on Kendall’s τ in Genest and Rivest
(1993) and maximum pseudo-likelihood in Genest et al. (1995)
respectively.
From Table 1, we see that the biases of θ̂n are often smaller than

those of θ̃∗n . Especially, when γ are 1.9 and 2.0, the biases of θ̂n
are much smaller than those of the other two estimators. When
γ ≤ 1, the variances of θ̂n are a little larger than those of θ̃n and θ̃∗n ;
otherwise, the variances of θ̂n are smaller than those of θ̃n.
After the estimation, we use the RIC to do the model selection

following the four steps proposed in Section 4. In order to find the
Archimedean copula that fits the sample data best, the Eq. (7) is
used tomeasure the distance between the empirical and estimated
radial distributions. The results using Monte Carlo method to
simulate 1000 runs for τ = 0.2, 0.5 and 0.7 respectively, are listed
in Table 2.
It can be seen from Table 2 that the RIC gives a good model

selection from Clayton, Gumbel, Frank, AMH and Joe copulas,
and leads to more accuracy as the sample size increases. So the
RIC method converges to the right copula, i.e., the probability
of a successful model selection approaches one as n increases.
However, when τ approaches 0, larger samples are needed for a
successful identification.
The average biases and variances of the parameter estimators

for τ = 0.2 (n = 600), 0.5 and 0.7 (n = 300) are given in Table 3.
We can see that our method gives a quite accurate estimation of
the parameters.
Table 2
Percentage of successful model selection over 1000 runs for two-dimensional data.

Copula τ = 0.2 τ = 0.5 τ = 0.7
n n n
100 300 600 30 100 300 30 100 300

Clayton 56.9 75.6 85.6 66.9 91.5 99.4 73.7 95.6 99.9
Gumbel 35.7 57.9 73.1 41.2 67.1 89.8 47.9 79.5 97.7
Frank 35.9 50.7 65.8 51.6 78.7 95.2 62.0 88.2 98.8
AMH 29.7 51.4 65.8
Joe 60.4 73.6 84.7 51.6 75.7 92.3 55.5 82.2 97.4

Table 3
Average biases (×100) and variances (×100) of the parameter estimators over 1000
runs for two-dimensional data.

Copula τ = 0.2 τ = 0.5 τ = 0.7
Bias Var Bias Var Bias Var

Clayton 1.18 0.89 1.28 6.40 2.50 21.20
Gumbel 0.03 0.22 1.49 1.79 0.75 5.55
Frank −1.04 9.89 1.73 30.48 −1.44 70.04
AMH −1.00 0.72 . . .
Joe 0.58 0.67 0.96 5.84 −0.70 20.75

Table 4
Percentage of successfulmodel selection over 1000 runs for three-dimensional data.

Copula τ = 0.2 τ = 0.5 τ = 0.7
n n n
100 300 600 30 100 300 30 100 300

Clayton 88.3 99.2 100.0 86.2 97.4 100.0 80.8 98.2 100.0
Gumbel 80.1 89.5 96.7 72.4 92.0 100.0 69.4 93.5 100.0
Frank 66.3 84.5 95.1 71.9 88.6 98.4 79.6 93.5 99.8

Table 5
Average biases (×100) and variances (×100) of the parameter estimators over
1000 runs for three-dimensional data.

Copula τ = 0.2 τ = 0.5 τ = 0.7
Bias Var Bias Var Bias Var

Clayton −0.21 0.41 2.98 4.13 1.59 16.64
Gumbel −0.18 0.13 2.11 0.82 −0.56 3.48
Frank 0.28 4.49 3.63 7.97 −5.00 43.80

4.2. Three-dimensional simulation

Now, we consider three-dimensional situations for three key
Archimedean families: Clayton, Gumbel and Frank copulas. The
results of percentage of successful selections using Monte Carlo
method to simulate 1000 runs for the same sample sizes as two-
dimensional situations are listed in Table 4. The average biases and
variances of the parameter estimator for τ = 0.2 (n = 600), 0.5
and 0.7 (n = 300) are given in Table 5, where the τ represents the
dependence between the two out of three-dimensional data.
It can be seen from Table 4 that the RIC also gives a good model

identification from Clayton, Gumbel and Frank copulas, and leads
to more accuracy as the sample size increases. It is very useful
to model the data by selecting the Archimedean copula among
lower tail dependence, upper tail dependence and symmetric
dependence. Also, as we expected, it gives a considerably correct
estimation of the parameters.
From the above simulation experiments, we can see that

our method cannot only estimate the unknown parameter θ of
Archimedean generator to fit the data but also select the right
copula model. It is an efficient solution to the open question about
Archimedean copula selection shown in Section 1.

4.3. Real data example

In this subsection, a real data set which contains the time series
of three stock indices (Dow Jones, Nasdaq and Standard & Poor’s)
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Fig. 1. The scatter plots of samples of each pair of three stock indices (a)–(c) and the simulation of the selected models corresponding to them (d)–(f).
was analyzed for illustrative purpose. Let us consider the monthly
log returns from January 1999 to May 2009, for a total of n = 125
observations, which are obtained fromhttp://www.economy.com/
freelunch/default.asp. We use the empirical margins to map the
observations into the uniform space and the scatter plots of the
resulted data are illustrated in Fig. 1(a)–(c), from which we see
that the three stock indices have different dependence structures
between each other, so we should apply model selection for every
pair in order to capture the true dependence structures among
them.
Using the RIC method to do the model selection from

Archimedean copulas by the four steps proposed in Section 3, we
have the following results:
(1) For Dow Jones and Nasdaq indices, the RICs of the Clayton,
Gumbel, Frank, AMH and Joe copulas are 0.0640, 0.0447,
0.0575, 0.0280 and 0.0852 respectively, which implies that
the data are more likely coming from the AMH copula with
parameter θ = 0.9986;

(2) For Nasdaq and Standard & Poor’s indices, the corresponding
RICs are 0.0384, 0.0588, 0.0434, 0.0516 and 0.1163 respec-
tively, which implies that the data aremore likely coming from
the Clayton copula with parameter θ = 1.8181;

(3) For Dow Jones and Standard & Poor’s indices, the correspond-
ing RICs are 0.0317, 0.0221, 0.0298, 0.2997 and 0.0426 respec-
tively, which implies that the data aremore likely coming from
the Gumbel copula with parameter θ = 5.2003.

The scatter plots of stochastic simulation of the selected mod-
els with the same sample size of the observations are shown in
Fig. 1(d)–(f), which illustrate that our model selection method
could capture accurate dependence structure of the three stock in-
dices. Therefore, our method provides an effective and convenient
way to compare and justify which Archimedean copula model fits
the data best,which is different fromothermodel selectionmethod
that requires additional prior information such as the Bayesian
method (e.g. Huard et al. (2006)).

5. Conclusion

In this paper, using the relationship between Archimedean cop-
ulas and l1-norm symmetric distributions, we realize a decompo-
sition of the random vector into two independent parts which are
utilized respectively to estimate themodel parameter and select an
appropriate Archimedean copula based on radial information cri-
teria for a given data. Furthermore, it is extended to multivariate
cases conveniently.
The numerical simulations illustrate that the presentedmethod

cannot only precisely estimate the parameter but also select the
right copula family to fit the simulated data. The application in
modelling the real stock indices data shows that the proposed
approach can capture accurate dependence structures among
them. Although only somemost important families are considered
in the competing model set, the RIC method can be extended to
other Archimedean copula families without any difficulty.
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