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a b s t r a c t

In this paper, a mathematical model of a tubular packed-bed catalytic reactor, which is
modeled by a system of strongly nonlinear second-order partial differential equations with
incompatible boundary conditions, will be solved. By properly using the boundary condi-
tions and correctly choosing the solution search direction, approximate analytic solutions
for the model can be obtained by the Adomian decomposition method. When the values of
the dimensionless parameters in the system are assigned within a suitable range, the solu-
tions describe objectively the distributions of the temperature and key reactant concentra-
tion in the reactor.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

For many years, classical partial differential equations or systems of equations arising from mathematics and physics have
been very well known [1–6]. The solutions of these equations or systems are often existent and unique under the given initial
and boundary conditions. However, the situation may be different in the applied sciences and engineering [7–9]. For in-
stance, in catalytic and electrochemical engineering, certain problems which are modeled by second-order partial differen-
tial equations or systems of equations often involve boundary conditions matching one or both of the following descriptions:
(i) the given boundary conditions in a coordinate direction are nonstandard [10]; (ii) the given boundary conditions in dif-
ferent coordinate directions are incompatible, meaning that the solutions of the equations or systems of equations cannot
simultaneously satisfy all the given boundary conditions in different coordinate directions [8,9] exactly. In [10], the authors
have pointed out that condition (i) cannot ensure the existence and uniqueness of the solutions for the model. As will be seen
later, condition (ii) will give rise to a situation in which exact solutions for the model do not exist. In spite of this, it is still
possible to search for rational and objective solutions for the model by properly using the given boundary conditions
according to the degree of their effect on the objective solutions.

The mathematical model of the packed (or Fixed) bed catalytic reactor (PBCR) is a classical one in chemical reaction engi-
neering [8,9], it is difficult to be solved numerically for a theoretical analysis due to its strong nonlinearity. Large numbers of
catalytic reactions are exothermic reactions, which have been widely used in basic chemical and petrochemical industries
[8], such as chemicals synthesis, hydrocarbon oxidation or hydrogenation, and coal to synthetic oil etc. Industrial PBCRs
are usually in a cylindrical form, however, for highly exothermic gas–solid catalytic reactions the PBCR must be in a tubular
form (TPBCR) because of its large area and short distance for heat transport and it can remove the reaction heat through the
. All rights reserved.
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reactor wall in a timely manner to prevent the catalysts from overheating and losing activity [9, p. 136]. For such cases there
is a need for a model which involves the resistance to heat and mass transfer in the radial direction, so as to predict a more
detailed temperature and concentration pattern in the reactor.

Actual reaction processes in industrial reactors are very complex; hence reasonable simplification for modeling is neces-
sary. A dimensionless model with universality is required for a theoretical analysis. Referred to the classic PBCR models in
Ref. [8,9, p. 538, p. 134], a dimensionless TPBCR model which describes the distributions of the dimensionless temperature
h(r,z) and key reactant concentration cA(r,z) in the catalytic reactor is written as:
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where r and z are the dimensionless radial and axial distances respectively, f is the aspect ratio of the cylindrical reactor,
f > 100 was adopted for the tubular form in this model solution; Pem is the mass-transfer Peclet number, Peh is the heat-
transfer Peclet number, Dam is the mass-transfer Damköhler number, Dah is the heat-transfer Damköhler number, e is the
dimensionless activation energy, and all of these are positive constants. A simpler kinetic expression for an irreversible reac-

tion with first order was used for this dimensionless model rðc; TÞ ¼ k0 exp � Ea
Rg T

� �
c ,then it forms into the nonlinear term

NðcA; hÞ ¼ exp � e
h

� �
cA. It should be noted, there is a coefficient 1

r with a singularity[11] for the cylindrical (or tubular) geom-
etry of the reactor.

The given boundary conditions are:
z ¼ 0; cAðr;0Þ ¼ 1; ð2Þ

z ¼ 0; hðr;0Þ ¼ 1; ð3Þ

r ¼ 0;
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r ¼ 0;
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@r
ð0; zÞ ¼ 0; ð5Þ

r ¼ 1;
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@r
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r ¼ 1;
@h
@r
ð1; zÞ ¼ �Bi½hð1; zÞ � hw�; ð7Þ
where Bi is the heat transfer Boit number and hw is the dimensionless wall temperature.
Eqs. (1)–(7) constitute a dimensionless mathematical model for a packed-bed catalytic reactor. It should be noted that

mathematically exact solutions for this model may not exist, meaning that there are no cA(r,z) and h(r,z) which are contin-
uous on the closed region {(r,z)j0 6 r 6 1,0 6 z 6 1} and satisfy exactly Eqs. (1)–(7) and whose second-order partial deriva-
tives are continuous in the region {(r,z)j0 < r < 1,0 < z < 1}. To find the most realistic possible distribution of the key reactant
concentration and temperature in the reactor, the boundary conditions (2)–(7) need to be satisfied in varying degrees: some
should be satisfied accurately, some should be satisfied approximately, and some are regarded only as reference conditions.
When the first-order partial derivative of cA(r,z) is continuous on the closed region {(r,z)j0 6 r 6 1,0 6 z 6 1}, the boundary
condition (4) must be satisfied; otherwise, this will lead to 1

r
@cA
@r !1ðr ! 0þÞ in the first equation of (1). In like manner, the

boundary condition (5) must also be satisfied. In addition, the heat transfer on the boundary has a great impact on the var-
iation of cA(r,z) and h(r,z), so condition (7) should be satisfied. When the boundary conditions in the z-direction ((4), (5), and
(7)) are satisfied, the conditions in the r-direction ((2), (3)) can be satisfied only approximately; otherwise, there may not
exist solutions that fully satisfy these five boundary conditions because of their incompatibility. Condition (6) describing
the boundary variation of cA(r,z) in a natural state can be regarded as a reference condition. Through the appropriate use
of these boundary conditions, an approximate analytical solution for this model using the Adomian decomposition method
will be sought, as described in the following discussion.

2. Theoretical derivation of approximate analytic solutions by ADM

In an operator form, the system of Eq. (1) can be written as:
LzcA ¼ f
Pem
ðLrrcA þ 1

r LrcAÞ � DamcANðhÞ;
Lzh ¼ f

Peh
ðLrrhþ 1

r LrhÞ þ DahcANðhÞ;

(
ð8Þ
where Lz, Lr and Lrr are linear operators which are defined as Lz ¼ @
@z ; Lr ¼ @

@r and Lrr ¼ @
@r2 and N(h) represents the strong

non-linear function expð� e
hÞ.
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To obtain solutions satisfying (4), (5), and (7), the r-direction is chosen as the solution search direction and the inverse
operator L�1

rr is defined as follows:
L�1
rr ð�Þ ¼

Z r

1

Z u

0
ð�Þdt

� �
du: ð9Þ
Applying the inverse operator L�1
rr to both sides of the first and second equation of (8) respectively yields:
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where A(z), B(z), C(z),andD(z) are the undetermined functions. Performing the partial derivative operations with respect to r
on both sides of (10) and using the boundary condition r ¼ 0; @cA

@r ð0; zÞ ¼ 0, the result is A(z) = 0. Then, letting r = 1, 0 6 z 6 1
on both sides of (10), cA(1,z) = B(z), 0 6 z 6 1. Similarly, according to (11) C(z) = 0, 0 6 z 6 1 is obtained using the boundary
condition r ¼ 0; @h

@r ð0; zÞ ¼ 0 and h(1,z) = D(z), 0 6 z 6 1 is obtained by letting r = 1, 0 6 z 6 1 on both sides of (11). Now Eqs.
(10) and (11) can be rewritten as:
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According to Adomian’s decomposition method, the unknown functions cA(r,z) and h(r,z) can be decomposed into the infinite
series:
cAðr; zÞ ¼
X1
n¼0

cnðr; zÞ; ð14Þ

hðr; zÞ ¼
X1
n¼0

hnðr; zÞ: ð15Þ
To implement the following recursive algorithm in the ADM, using the double decomposition method [12], we can also
decompose B(z) and D(z) into infinite series:
BðzÞ ¼
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dnzn; ð17Þ
where
b0 ¼ Bð0Þ ¼ cAð1;0Þ ¼ 1; ð18Þ
d0 ¼ Dð0Þ ¼ hð1;0Þ ¼ 1: ð19Þ
The nonlinear function N(h) can be decomposed into an infinite series of Adomian’s polynomials
NðhÞ ¼
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An; ð20Þ
where the Adomian’s polynomials An are generated according to the following formula [13]:
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It is therefore possible to write:
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Then N(h)cA can be represented in the form of an infinite series of Adomian’s polynomials
NðhÞcA ¼
X1
n¼0

An; ð23Þ
where the An are determined by the following computation:
Anðc0; c1; . . . ; cn; h0; h1; . . . ; hnÞ ¼
Xn

k¼0

ckAn�k: ð24Þ
According to (12), (13), (18), and (19), it is possible to choose the values of the zeroth components h0 and c0 and to write
recursive relations as follows:
h0 ¼ 1; ð25Þ
c0 ¼ 1; ð26Þ
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where n P 1. For later numerical computation, assume the expressions
cA ¼ cAðr; z; f; Pem;Dam; Peh;Dah; e; b1; b2; . . . ; b7; d1; d2; . . . ;d7Þ

¼ 1þ
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which denote the seven-term approximation to c and h respectively. Given a set of values of the dimensionless parameters f,
Pem, Dam, Peh, Dah, e, Bi, and hw, Eqs. (29) and (30) can be rewritten as:
cA ¼ cAðr; z; f; Pem;Dam; Peh;Dah; e; b1; b2; . . . ; b7; d1; d2; . . . ;d7Þ ¼ cAðr; z; b1; b2; . . . ; b7;d1;d2; . . . ; d7Þ
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Substituting (32) into the mixed boundary condition (7) yields:
X7
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@hn
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" #
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The left side of (33) is a polynomial of degree 7 in z, so (33) can be rewritten as:
Pðz; b1; b2; . . . ; b7;d1;d2; . . . ; d7Þ ¼
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By comparing the coefficients of z on both sides of (34), a nonlinear system of algebraic equations can be obtained:
Pð0; b1; b2; . . . ; b7; d1; d2; . . . ;d7Þ ¼ 0;
1
n!

@nP
@zn ð0; b1; b2; . . . ; b7;d1;d2; . . . ;d7Þ ¼ 0 ðn ¼ 1;2; . . . ;7Þ:

(
ð35Þ
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To satisfy the boundary conditions (2) and (3) approximately, let
1þ
X7

n¼1

cnðr;0; b1; b2; . . . ; b7;d1;d2; . . . ;d7Þ ¼ 1 ð36Þ
and
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The left sides of (36) and (37) are polynomials of degree 14 in r, so by comparing the coefficients of r on both sides of (36) and
(37) respectively,
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By solving the systems of Eqs. (35), (38), and (39), it is possible to obtain all valves of b1,b2, . . . ,b7,d1,d2, . . .,d7 which satisfy
(35) exactly and satisfy (38) and (39) approximately. Finally, setting
cAðr; zÞ ¼ cAðr; z; b1; b2; . . . ; b7;d1;d2; . . . ;d7Þ ð40Þ
and
hAðr; zÞ ¼ hAðr; z; b1; b2; . . . ; b7;d1;d2; . . . ; d7Þ; ð41Þ
leads to approximate analytic solutions of cA(r,z) and h(r,z).

3. Concrete expressions and graphs of approximate analytic solutions

As in [10], MATLAB is used as a tool for symbolic and numerical operations, and relative data for a tubular fixed-bed cat-
alytic reactor (TFBCR) [8] have been chosen as the basis for determining the values of the dimensionless parameters in the
model.

Assigning a set of values for the dimensionless parameters f, Pem, Dam, Peh, Dah, e and Bi e.g. f = 155.2, Pem = 282.46,
Dam = 109.89, Peh = 248.3, Dah = 75, e = 9, and Bi = 1.5, and substituting these values into (31) and (32) respectively yields:
cAðr; z; b1; b2; . . . ; b7; d1; d2; . . . ; d7Þ ¼ 1þ 0:123r2 þ b1zþ
X7

n¼2

cnðr; z; b1; b2; . . . ; b7;d1;d2; . . . ;d7Þ ð42Þ
and
hAðr; z; b1; b2; . . . ; b7;d1;d2; . . . ;d7Þ ¼ 1� 0:0074r2 þ d1zþ
X7

n¼2

hnðr; z; b1; b2; . . . ; b7; d1;d2; . . . ; d7Þ; ð43Þ
According to the definition of a partial derivative and the boundary condition (3),
@h
@r
ð1;0Þ ¼ lim

Dr!0�

hð1þ Dr;0Þ � hð1; 0Þ
Dr

¼ 0: ð44Þ
Combining the mixed boundary condition (7) and the results obtained above in (19) and (44) yields hw = 1; otherwise,
boundary condition (3) in the r-direction and condition (7) in the z-direction will be clearly incompatible.

After all the parameter values have been determined, a search is conducted for a solution of Eq. (35) near the initial point
ðb1; b2; b3; b4; b5; b6; b7;d1;d2;d3;d4;d5;d6;d7Þ ¼ ð�0:3;�0:2;�0:1;0;0;0;0;0:3;0:2;0:1;0;0;0;0Þ; ð45Þ
using the MATLAB function fsolve () to find the solution
ðb1; b2; b3; b4; b5; b6; b7;d1;d2;d3;d4;d5;d6;d7Þ ¼ ð�0:3006;�0:0822;�0:0591;0:0450;0:0385;0:0253;0:0;
0:2264;0:1205;0:0613;�0:0119;�0:0035;0:0007;0:0Þ: ð46Þ
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Substituting (46) into the left-hand side of the first equation of (38) yields �0.2107. Evidently, (46) cannot satisfy approx-
imately the system of Eq. (38). A search for a solution of the system of equations composed by the system of Eq. (35) and the
first equation of (38) near the initial point (45) yields:
ðb1; b2; b3; b4; b5; b6; b7; d1; d2; d3; d4; d5; d6;d7Þ ¼ ð�0:3024;�0:0996;�0:0375;0:0398;0:0354;0:0234;0:0;
0:2287;0:1204;0:0620;�0:0120;�0:0035;0:0007;0:0Þ: ð47Þ
Fig. A. Distribution of dimensionless temperature h(r,z).

Fig. B. Distribution of dimensionless key reactant concentration cA(r,z).
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Substituting (47) into the left-hand side of every equation of systems (38) and (39) yields a maximum absolute value of
0.0572. It can therefore be concluded that (47) is not only the solution of (35), but also an approximate solution of (38)
and (39). Substituting (47) into (42) and (43) respectively yields an expression for the approximate analytic solutions cA(r,z)
and h(r,z). These expressions are very long, so their values are plotted in Figs. A and B.

The TPBCR model aims to determine the coupled influence of various transport and kinetics parameters and to show how
they influence the operating performance of the reactor. The predicted dimensionless temperature and concentration (con-
version rate of reaction) distributions will provide a theoretical basis for designing and optimizing the TFBCR. For instance,
the design would be directed towards avoiding eventual detrimental over temperatures in the axis of the reactor.

4. Conclusion

Second-order partial differential equations or systems of equations with incompatible boundary conditions often appear
in engineering problems. When exact solutions for this type of problems do not exist, solutions satisfying the given boundary
conditions to various degrees according to the degree of impact of these conditions on the objective solutions can be sought,
so that rational solutions can be obtained. The Adomian decomposition method provides approximate analytic solutions
which can satisfy the given conditions to various degrees. This method can also be applied to similar problems involving
higher-order partial differential equations or systems of equations.
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