
J Supercomput
DOI 10.1007/s11227-011-0608-2

A VMM-based intrusion prevention system
in cloud computing environment

Hai Jin · Guofu Xiang · Deqing Zou · Song Wu ·
Feng Zhao · Min Li · Weide Zheng

© Springer Science+Business Media, LLC 2011

Abstract With the development of information technology, cloud computing be-
comes a new direction of grid computing. Cloud computing is user-centric, and pro-
vides end users with leasing service. Guaranteeing the security of user data needs
careful consideration before cloud computing is widely applied in business. Virtual-
ization provides a new approach to solve the traditional security problems and can be
taken as the underlying infrastructure of cloud computing. In this paper, we propose
an intrusion prevention system, VMFence, in a virtualization-based cloud computing
environment, which is used to monitor network flow and file integrity in real time,
and provide a network defense and file integrity protection as well. Due to the dynam-
icity of the virtual machine, the detection process varies with the state of the virtual
machine. The state transition of the virtual machine is described via Definite Finite
Automata (DFA). We have implemented VMFence on an open-source virtual ma-
chine monitor platform—Xen. The experimental results show our proposed method
is effective and it brings acceptable overhead.

Keywords Grid computing · Cloud computing · Virtualization · Intrusion
prevention · File integrity

1 Introduction

Grid computing [1] is an effective computing model to aggregate computing and stor-
age resources in a distributed environment, and cloud computing [2] is regarded as

H. Jin · G. Xiang · D. Zou (�) · S. Wu · F. Zhao · M. Li · W. Zheng
Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
e-mail: deqingzou@hust.edu.cn

H. Jin
e-mail: hjin@hust.edu.cn

mailto:deqingzou@hust.edu.cn
mailto:hjin@hust.edu.cn

H. Jin et al.

a new direction of grid computing. Cloud computing is a new term for a long-held
dream of computing as a utility, which has recently emerged as a commercial real-
ity [1]. Foster et al. give the definition of cloud computing: A large-scale distributed
computing paradigm that is driven by economies of scale, in which a pool of ab-
stracted, virtualized, dynamically-scalable, managed computing power, storage, plat-
forms, and services are delivered on demand to external customers over the internet
[2]. Cloud computing radically changes the usage mode of traditional hardware and
software resources. There is no need for enterprises/organizations to purchase such
expensive resources and spend much energy on configuration and maintenance of a
system environment. Data center, a popular cloud computing application, possesses
huge computing and storage resources, which gives cloud users the illusion of infinite
computing and storage resources available on demand.

According to the statistical report [3] on the buzzword from Google, cloud com-
puting becomes more popular than grid computing with the vigorous push of virtu-
alization [4–6]. At the same time, the security of cloud computing brings us a large
challenge due to its main applications in electronic commerce. The sensitive data and
applications of end users are transferred to the cloud, so how to guarantee the security
of such user information is a critical issue. Virtualization provides a new approach to
solve the traditional security problems, and it also brings new security issues to com-
puter systems [7]. The security of virtualization-based cloud computing come down
to that of virtualization itself.

Virtualization is taken as the underlying infrastructure of cloud computing, and it
can resolve certain security problems occurring during the evolution of cloud com-
puting. The advantages of virtualization are described as follows:

(1) Smaller Trusted Computing Base (TCB): The code size of Virtual Machine Moni-
tor (VMM) is far less than that of the traditional Operating System (OS). It means
that VMM has less bugs and better robustness than the traditional OSes.

(2) Better Isolation: Virtualization provides better isolation than the traditional OSes.
The applications in each Virtual Machine (VM) locate in a different address space
on a single platform.

End users request for various services which are deployed in the cloud by the service
providers. Services are deployed into different VMs separately, which are isolated
from each other by VMM. Similar to a normal file, a VM can be easily migrated from
one platform to another. The states of a virtual machine, such as suspend, destroy,
migrate, and so on, vary with time. It is necessary to deploy traditional security tools
with the consideration of the dynamicity of VM, such as the Intrusion Detection
System [8] (IDS), firewall, File Integrity Monitoring Tool [9] (FIMT), and antivirus
utilities.

In the traditional security area, the Intrusion Prevention System [10] (IPS) is one
of important tools to detect and prevent illegal access. Intrusion detection and preven-
tion are the two functions of IPS. Except for detecting network packets, file integrity
monitoring is an effective approach to prevent the attacks from modifying the sensi-
tive files.

In cloud computing environments, we propose a customizable defense system,
called VMFence [11], deployed with distributed IPS and FIMT, which has the high

A VMM-based intrusion prevention system in cloud computing

efficiency of detection and response. Detection processes, residing in the privileged
VM, run in parallel, each of which detects the information flow from or to a VM.
A detection process will be launched automatically when a new VM starts locally or
is migrated from other hardware platforms. VMFence prevents malicious attacks in a
virtualization based cloud computing environment.

The rest of this paper is organized as follows: Sect. 2 introduces the related work
and background. In Sect. 3, we show the architecture of VMFence, and model the
detection process through DFA. Section 4 presents the implementation of VMFence
in detail. The evaluation of VMFence is described in Sect. 5. Finally, we give the
conclusion and future work in Sect. 6.

2 Related work and background

In this section, virtualization is firstly introduced, and the basic mechanism of Xen
[12–14] is explained in detail. Next, we present the related work about intrusion de-
tection and file integrity monitoring.

2.1 Virtualization

The concept of virtualization was firstly introduced by IBM in the 1960s to provide
concurrent, interactive access to a mainframe computer—IBM 360, which supports
many instances of OSes running on the same hardware platform [4]. Virtualization
technology, which can fully utilize the high performance of multicore [15], becomes
a hot topic in both academia and industry recently. At the same time, virtualization
gets support on the hardware layer from some manufacturers, such as Intel [16] and
AMD [17]. Virtualization technology supports multiple OSes running on a single
hardware platform, and provides a convenient means to manage the OSes. The OS
and applications running on the virtualization management platform are considered
as VMs. Normally, VMs are divided into two major types: process VMs and system
VMs [5]. In this paper, we only discuss system VMs. The virtual machine monitor is
the core component of system VM, which provides the abstract layer of underlying
hardware for each OS running on it, such as Xen [12, 13], VMware [26], and Virtual
PC [27].

Xen is a thin lay of system software on X86 architecture, and it locates on bare
hardware to expose hardware abstraction slightly different from the underlying hard-
ware [12, 14]. There are two different virtualization modes provided by Xen: full-
virtualization and para-virtualization. Guest OSes run on Xen without any modifi-
cation under full-virtualizaiton, while guest operating systems need to be modified
under para-virtualizaiton for high performance. In order to utilize peripherals effi-
ciently, the split device model is introduced and implemented in Xen architecture.
Figure 1 shows the structure of split network driver and blktap architecture. The fron-
tend (FE) and backend (BE) reside in isolated VMs, and communicate with each
other by I/O ring and event channel mechanisms [14].

H. Jin et al.

Fig. 1 The mechanisms of Xen

2.2 Intrusion detection

The concept of intrusion detection was first proposed by Anderson in 1980, which
did not blossom until Denning published her seminal intrusion detection model in
1987 [8]. Intrusion detection involves determining that some entity, an intruder, has
attempt to gain, or worse, has gained unauthorized access to the system. According
to the source of detected data, IDS can be classified into Host-based IDS (HIDS) and
Network-based IDS (NIDS). HIDS, such as OSSEC [28], collects the characteristics
of system states, including the integrity of file systems, audit logs, network events,
and the sequence of system calls. While NIDS, such as Snort [29], captures data
packets by monitoring network traffic, it then analyzes the packets to make decisions
whether they contain the malicious codes or not.

Dunlap et al. presented a system named ReVirt [18] that uses a virtual machine log
and replay to analyze attacks including any nondeterministic events. ReVirt gives us
a new direction to investigate intrusions as a result of reasonable time and space over-
head. Garfinkel and Rosenblum firstly introduced the concept of the Virtual Machine
Introspection (VMI) in Livewire [19]. Livewire is a new architecture for building
IDS with the merits of both semantic-rich view and high resistance via VMI. Intro-
Virt [20] uses introspection and replay to improve security by detecting intrusions
that occurred before the vulnerability was disclosed.

Kourai and Chiba have proposed a system called HyperSpector [21] which is a
distributed, virtualization-based monitoring system in distributed computer systems.
Using traditional multiple IDSes to protect distributed systems could lead to the in-
creasing of unsafe points. HyperSpector has overcome such problem without any
additional hardware by using virtualization.

2.3 File integrity monitoring

File integrity monitoring is an important component in HIDS, and it is used for the
administrator to discover malicious behaviors. Tripwire [9] is an outstanding example
of FIMT. There are four modes in Tripwire: init, check, update, and test. In init mode,
the significant files are configured by the administrator, and it gives a snapshot of

A VMM-based intrusion prevention system in cloud computing

these files. The administrator can verify whether these files are tampered in the check
mode. Tripwire compares the current hash values of files with the previous values
stored in database. Pennington et al. [22] proposed a storage-based intrusion detection
system which allows the storage systems to watch for data modification characters.

I3FS [23] intercepts file system calls and injects its integrity checking operations in
the kernel mode. It performs checksum comparison in the critical path. XenFIT [24]
is a file integrity monitor which is implemented on Xen. In XenFIT, the breakpoints
are inserted in the monitored system, and intercept file system calls, for example,
open, close, and write. It records the system call log, and sends it to the privileged
VM. It is necessary to put an intercepting system call module in the monitored VM,
which is easily disabled by the attackers.

3 The architecture of VMFence

First, we discuss an application scene of VMFence in cloud computing. Next, the
architecture and components of VMFence are described in detail, which provide the
function of intrusion prevention and file integrity monitoring in a cloud computing
environment. At last, the state transition of detection process based on the state of the
monitored VM is explained through Definite Finite Automata (DFA).

3.1 Application scene

Cloud computing is supported from a mass of high-performance hardware resources,
and virtualization decouples the dependency between the underlying resources and
system software.

Figure 2 shows an application scene in cloud computing environment, and there
are four levels as follows:

(1) Hardware platform layer: The hardware platform in cloud computing environ-
ment consists of a few geographical distributed data centers connected by high
speed network with each other; each of which has huge computing and storage
resources.

(2) Virtualization layer: This layer is used to abstract and integrate the underlying
resources as lots of independent entities, such as virtual machines or virtual clus-
ters.

(3) System platform layer: Based on the interface provided by the virtualization layer,
system software and application execution environment are configured and man-
aged in this layer and can adapt to all kinds of hardware platforms.

(4) Application layer: It is unnecessary for the cloud users to know the accurate
location of the resources. Various applications can be deployed and executed in
the cloud, such as MPI program, ftp service, web service, and so on.

Except for these VMs providing services for cloud users, other privileged VMs
are used to enhance the security of the cloud. The privileged VM just does control
and management tasks, and has no user applications running on it. The reason is
that the privileged VM is the security bottleneck of the whole platform. So, the less

H. Jin et al.

Fig. 2 An application scene in cloud computing environment

applications are installed in the privileged VM, the better is the security of the whole
platform. A detection process executes in the privileged VM, which is responsible for
the security of a VM. We mainly consider the state transition of a detection process
in the privileged VM when the state of the corresponding VM changes. In this paper,
the privileged VM and VMM are the TCB of the whole system, which is the same as
other research projects [18–21].

3.2 The components of VMFence

VMFence is designed to provide flexibility and convenience to manage network pack-
ets detection and file integrity monitoring in cloud computing environment. Network
intrusion detection and file integrity monitoring are the two functions of our design.

VMFence exploits the fact that the privileged VM is able to capture all network
packets to or from other service VMs, thus the privileged VM has the ability to detect
all packets without installing an instance of IDS in each service VM.

In the virtualization-based computing environment, the communication between
service VMs must pass through the virtual bridge in the privileged VM, so the virtual
bridge can be monitored by VMFence. The security can be assured by the isolation
provided by VMM. When new VM starts or migrates from other node, or the existed
service VM stops, the traditional network IDS cannot adapt itself to this dynamic sit-
uation. The IDS cannot utilize the multicore resource even if the underlying hardware
holds huge computing power. When the network is busy, the drop rate will increase
sharply.

In addition, file integrity monitoring is absolutely required for the security of user
data. Traditional FIMT are deployed in the monitored system, which is probable to be
tampered or masked by malicious attackers. Through the blktap architecture provided

A VMM-based intrusion prevention system in cloud computing

Fig. 3 The components of VMFence

by Xen, FIMT resides in the privileged VM. It is out of the catch of intruders, but can
monitor file operations that occurred in the monitored VM.

We have proposed the architecture of VMFence in Fig. 3. The main process run-
ning in the privileged VM detects the VM created locally or migrated from other
hosts. A new detection process starts with default or customized configuration. When
there are some attacks, the main process will notify the administrator and send them
to the backend node. According to the alert times during this period of time, new
firewall rules will be created, and send it to the service VMs by the communication
module. The frontend in service VMs listen to the backend and update local firewall
policies. The detection process is paused if the corresponding VM is blocked be-
cause of waiting for I/O or suspending by the administrator, and it will continue the
detection work if the VM runs again. When a VM is migrated or shut down by the
administrator, the detection process for the VM will be killed by the main process at
the same time. The states of the detection processes in VMFence vary with those of
the corresponding VMs, and are adaptive to the state transition of VMs automatically.

FIMT in the privileged VM inspects the reading/writing operations in real time.
When the sensitive files defined by cloud users are changed, alerts are generated to
notify the cloud provider.

There are five components in VMFence:

(1) Detection Component: It has the main process to capture all network packets, and
dispatches them to other detection processes according to its MAC address. Each
detection process does a detection task according to the rules for the correspond-
ing VM. There are some default rules for each service VM, and the administrator
can customize these rules. When a new VM starts and the detection rules are

H. Jin et al.

Fig. 4 The state transition of
VM in Xen

configured for the VM, a detection process launches. When a VM migrates from
another hardware platform, the configuration file will be transmitted at the same
time, and the detection process will be started on the destination node.

(2) Policy Updating Component: This component is used for intrusion response. The
main process collects all the alerts from detection processes, notifies the admin-
istrator, and sends them to the backend console in the distributed environment.
Besides, firewall policies in a service VM must be updated if attacks on the VM
are detected. If these measures do not work, the administrator can take other
steps, such as pause or shutdown the attacked VMs.

(3) Frontend and Backend Communication Component: This component is designed
to communicate between frontend and backend. When the policy updating com-
ponent has created a new firewall policy for the service VM, the backend com-
ponent must transfer this policy to the service VM and notify it. There is a fron-
tend component in each service VM, which is responsible for allocating memory
shared with the privileged VM. The frontend component will listen to the back-
end to determine whether there are updating firewall rules or not.

(4) File Integrity Monitoring Component: There is a great deal of service VMs for
cloud users. They can customize the sensitive data of their own. FIMT is used
to observe reading/writing operations in the backend. If the modified files be-
long to the protected set, the alerts are passed to the cloud provider through the
notification component.

(5) Notification Component: It receives the service type and sensitive files defined
by cloud users. At the same time, it collects the basic information about the VMs
servicing for cloud users, and then sends it to them. Except for these, it collects
alert information to notify the cloud provider.

3.3 The states of detection processes

The states of detection processes in the privileged VM vary with the transition of
VM. The states of VM are relevant to the specific virtualization software. We take
the case of Xen, and the state transition of VM in Xen is highlighted in Fig. 4. There
are 6 states for a Xen VM:

• State R (Running): The domain is currently running on a CPU.
• State B (Blocked): The domain is blocked, usually is waiting for I/O information.
• State P (Paused): The domain is paused, usually because the administrator runs

the command xm pause.
• State D (Dying): The domain is in process of dying, but has not completely been

shutdown or crashed.
• State S (Shutdown): The domain is closed by the administrator.
• State C (Crashed): The domain is crashed because of a violent ending.

A VMM-based intrusion prevention system in cloud computing

Fig. 5 The state transition of
detection process

When the administrator runs xm create, a VM’s state transfers to R. When the
administrator runs xm destroy or xm shutdown on the VM, its state transfers to C

or S.
This transition of detection process can be expressed by DFA in Fig. 5.
The DFA is described by a tuple M = (Q,

∑
, δ, q0,F) where Q = {Start, q1, q2,

q3, q4, q5,End} is the finite set of states,
∑ = {e1, e2, e3, e4, e5, e6, e7, e8} is the input

element, δ : Q × ∑ → Q gives the set of transition, q0 ∈ Q is the initial state, Start
in Fig. 5, and F ⊆ Q is the final state, End in Fig. 5.

There are 7 states of a detection process. Start state is the initial state when VMM
and control VM boot correctly. End state represents that this platform has been shut
down. Other 5 states are depicted as follows:

• State q1: a VM starts in local platform, or is migrated from another platform, but
there is no detection process for the VM.

• State q2: The detection process is running, q2 = {R}.
• State q3: The detection process is paused, because the VM is blocked or paused,

q3 = {B,P }.
• State q4: VM is destroyed or migrated, while the detection process continues.
• State q5: The detection process is killed, q5 = {D,S,C}.
When the states of a VM change, the detection process for the VM will be adaptive
to this transition. There are 8 events which trigger the transition between these states.

• Event e1: The administrator creates a VM, but does not configure detection rules
for the VM.

• Event e2: The administrator configures detection rules for the VM.
• Event e3: The domain is blocked because of I/O, or paused by the administrator.
• Event e4: The domain’s state changes to R.
• Event e5: When the detection process is running, the VM is migrated to another

platform, or destroyed by the administrator.
• Event e6: When the detection process is paused, the VM is destroyed or migrated

by the administrator.
• Event e7: The detection process is killed by the main process.
• Event e8: The whole VMM platform has been shut down by the administrator.

There are two unstable states: q1 and q4, because the relationship between a VM
and a detection process is not always one-to-one mapping. The main process will
explore this abnormity, and create or kill the detection process. States q2, q3, and q5
are steady, and the states of the detection process will transform along with that of the
corresponding VM. For example, the current state of a VM is q1, and the main process
will notify the administrator to configure rules for the VM. After the administrator
configures detection rules for the VM (Event e2), the corresponding detection process
for the VM starts (State q2). The state transition can be described as δ : q1 × e2 → q2.
Figure 5 can reveal all situations of state transition.

H. Jin et al.

In traditional IDSes, the detection will be terminated. In out prototype, however,
state q3 has been introduced to the system, which represents the detection process
is paused corresponding to the VM’s state. When a VM is in state q2, event e3 hap-
pens. The detection process will convert to state q3 (δ : q2 × e3 → q3). After the VM
continues (Event e4), the detection process gets back to state q2 (δ : q3 × e4 → q2).
State q3 reflects the relationship between a detection process and the corresponding
monitored VM.

4 The implementation of VMFence

We build the experiment environment on Xen, an open-source VMM. But the meth-
ods mentioned in this paper can also be implemented on other virtualization plat-
forms, such as VMware and Virtual PC. The reasons that we chose Xen are as fol-
lows:

• VMs running on Xen in the para-virtualization mode can have a similar perfor-
mance as the operating systems running on native physical nodes.

• Xen supports almost all device drivers on Linux.
• Unmodified application binaries can run on guest OS.

A domain is the integration of guest OS and the applications running on it. The
privileged VM on Xen takes responsibility for VM management, such as create, de-
stroy, pause, restore, and we call it Dom0. Other service VMs in which services
run are called DomU (Unprivileged Domain). All data in or from DomU must pass
through Dom0, which plays the role of an agent, when DomU accesses the underlying
hardware.

All DomUs run on the same machine, and they share the same physical resources.
Xen provides an isolation mechanism for different DomUs which can share resources
with each other if Xen permits. Xenstore is a storage system managed by Dom0. There
is some configuration information in Xenstore, such as domain identification, domain
name, and VM states. Dom0 can get all such information, but DomUs can only see
the information about itself for security.

4.1 Detection component

The detection component consists of one main watching process and some detection
processes. The main process runs as a daemon taking charge of basic control and
management tasks. The detection processes inspect the network flow through the
VMs.

The first thing is to find the domain list running on this platform inspected by the
main process. A kernel module, called getdom, in Dom0 is registered as a character
device, and the interface of this module is accessed by getdom_read, whose purpose
is to read the list from Xenstore by xenbus_directory. Because we cannot use it in the
user space, another function in the user space opens this character device and calls
the function read.

When the main process gets the domain list, a data structure is defined to describe
the domain. Figure 6 represents the domain structure in Dom0, and all the domain

A VMM-based intrusion prevention system in cloud computing

Fig. 6 The domain structure typedef struct_ Domain
{

pid_t pid; // the process id
char mac[6]; // mac address of DomU
int domain num; // domain num
char config_filename[100]; // configure file name
struct _RuleList *rulelist //point to rule list
struct _Domain *next; // point to next domain

} Domain;

Fig. 7 The detection rule list

structures are organized as a list. In Dom0, the domain structure includes the domain
identification of the detection process and the domain num. When a domain is created
or migrated, the main watching process will insert a new item into the list. When a
domain is migrated or stopped, the main watching process will delete it from this list.
The main watching process carries out the updating operation on this domain list.

In VMFence, we adopt Snort as IDS, and Iptables as a firewall. Snort is an open-
source IDS with high performance. The detection rules in Snort are organized as a
three-level list: the actions (Action, Dynamic, Alert, Pass, Log), the protocol (IP, TCP,
UDP, ICMP), and the rule head. Function ProcessPacket is the detect part in Snort.
Packets captured from physical network will be dispatched to each detect process
according to the domain’s MAC address, and every detect process runs as an instance
of ProcessPacket. Figure 7 shows the modification to the traditional rule list, a new
classification of domains will be done before the action. Each detection process sends
alerts to the main process when alerts appear, and the main process will collect these
alerts by select.

The states of detection processes are controlled by the main watching process.
When the service VM is blocked by I/O requests or paused (State q3) by the ad-
ministrator, the main process sends a signal, named SIGSTOP, to the corresponding

H. Jin et al.

Fig. 8 The execution flow of the main process during migration

detection process. The detection process will be paused. After a service VM changes
to the running state (State q2), the main process sends the signal SIGCONT to the
detection process. The detection process will continue to inspect network packets.

The migration process of VMFence varies from the implementation in Xen, since
VMFence must adapt to the movement of VM. After the service VM is migrated
successfully, the main process should reply to such change. The detection process is
killed on the source node, and booted on the destination node. If detection rules have
been configured for the VM, the configuration will be transferred before the detection
process starts on the destination node. The whole process is highlighted in Fig. 8.

4.2 Policy updating component

After a detection process sends alerts to the main process, the main process gathers
these alerts by select. The main process can get all the alerts on this platform from all
detection processes, which is a benefit to do the global decision.

The main process can also get the information that some attacks have occurred on
one VM, and get an overview of the whole system. Using this information, the main
process makes decisions for each VM, and notifies the communication component
between the frontend and backend. The communication component will take charge
of updating firewall policies.

4.3 Frontend and backend communication component

When the policy updating component wants to update the firewall policies, it is es-
sential to transfer data through the communication component between the frontend
and backend.

The communication process between the frontend and backend is described in
Fig. 9, and it can be described as follows:

• The frontend in DomU allocates memory (usually one page) in order to communi-
cate with Dom0.

• The frontend grants the reference of shared pages to Dom0 by gnttab_grant_for-
eign_access_ref.

A VMM-based intrusion prevention system in cloud computing

Fig. 9 The communication
between frontend and backend

• The frontend writes the page reference of shared page to Xenstore.
• When new firewall policy has been created, the backend reads the shared page

reference from Xenstore.
• The backend writes the new firewall policy file to this shared space.
• The backend notifies the frontend by the event channel.
• The frontend reads the policy from the shared page and updates local policies.

After all the above steps are accomplished, the Iptables of DomU will be updated.
The policy updating process is implemented by the page sharing mechanism, and is
faster than the traditional response by network.

4.4 File integrity monitoring component

File integrity monitoring is based on the blktap mechanism in Xen. Blktap is a driver
in the user mode, and can directly manage disk activities with small performance
overhead.

When a guest VM is started, a monitoring program running on the backend of the
block device driver located in Dom0 can observe file operations, and it parses the file
operations occurring within the guest VM. In this paper, we will take the ext2 file sys-
tem for example. The super block and group descriptor shows the basic information
about the file system. The sensitive file directory is defined for protection by cloud
users, and it is detected in the backend. The data block numbers of the monitored files
are copied to the memory and sorted in alphabetical order. When there is a read/write
operation in the frontend, the corresponding data block is sent to the blktap driver.
The data block number is parsed, and the monitoring program can determine if the
file belongs to the monitored directory. If the data block is from the disk to the mem-
ory, it represents read operation. Otherwise, if there is new data block, it represents
the write operation. In order to observe a write operation in real time, we set the disk
flush time [25] to 0 by command echo “0” > /proc/sys/vm/dirty_expire_centisecs.
The file integrity monitoring process is described in Fig. 10.

4.5 Notification component

Cloud users specify the service type and the directory/file which needs protection, and
such information is transferred to the backend. Global policies, in regard to protecting

H. Jin et al.

Fig. 10 The file integrity monitoring process

the objects, are made by cloud service providers. At the same time, the notification
component gets the configuration and state information about the VMs deployed with
services, and shows it to the cloud users.

On the other hand, the component collects all alert information related to VMs on
a platform, and then all alert information is sent to the backend. After global policy is
released by the providers, the component applies a new policy on this platform. The
main function of this module is used for communicating with the backend.

5 Experiments and evaluation

In this section, we present the experiments which have been implemented on Xen 3.2,
and then give our evaluation about VMFence.

5.1 The experiments

In our experiments, there are two nodes (NodeA, NodeB) and a backend node in the
distributed environment. The hardware devices of NodeA and NodeB are two Pentium
Quad-Core processors, 4 GB of memory, and Intel Gigabit Ethernet Controller. The
frontend console is 2.0 GHz Pentium 4 processor, 512 MB of memory, and Realtek
RTL8139 NIC.

Xen 3.2 and Fedora Core 8 have been preinstalled on each NodeA and NodeB.
The backend console takes charge of collecting the alerts. There are 3 VMs running
on NodeA: HTTPVM running http service, FTPVM running ftp service and SSHVM
running SSH service at the initial state, and there is no service VM on NodeB. These
service VMs have the same operating system as Dom0. During the execution, the
three service VMs can migrate between NodeA and NodeB. Figure 11 shows the
experiment environment in which we carry out our test.

A VMM-based intrusion prevention system in cloud computing

Fig. 11 The experiment environment

In order to simulate real network environment, we employ DARPA98, which is
the intrusion detection dataset distributed by MIT Lincoln Laboratory. We rewrite
the source address (NodeB) and destination address (NodeA) of network packets by
tcpprep.

After three VMs has booted on NodeA, and configured with proper detection rules
by the administrator, we replay DARPA98 dataset on NodeB.

We test the drop rate, and compare the result with Snort. Snort is an excellent net-
work intrusion detection system with low drop rate, but when the packet arrival rate
is more than 45,000 packets per second, the drop rate increases sharply. VMFence,
however, has a lower drop arrival rate, compared with traditional Snort. The drop rate
about VMFence and Snort is depicted in Fig. 12(a). The reason is that the detect rules
are configured for the services running in VMs, rather than all intrusion detection
rules. And most important of all, the main process just captures all the packets in
or from the virtual local network, and the detection work is done by other detection
processes. This parallel structure has improved the efficiency of capturing network
packets, and reduced the drop rate.

Then we measure the performance effect of VMFence. In the HTTPVM, Apache
2.2.6 is installed. We compare three results in different situations: (1) the base sys-
tem without any detection (Base), (2) VMFence as the detect tool (VMFence), and
(3) Snort as the detect tool (Snort). We take Apachebench as the testing tool of the
performance of web service.

There are two arguments we specify: n represents the request number, c represents
the concurrency degree. In our experiments, we choose n = 10000, c = 100. There
are 10,000 requests in all, and 100 concurrent connections at one time.

With the increasing of document length, the requests per second decrease. The
document length chosen by us is from 1 KB to 8 KB, and the requests per second are
presented in Fig. 12(b). The requests per second on base system are more than other
situations. Because there is no detect overhead, so the HTTPVM can deal with more
web requests. These results show that VMFence has less overhead than traditional
Snort, and it can respond to more requests than Snort. When the document length

H. Jin et al.

Fig. 12 The experiment results

increases, the requests per second drop gradually. From Fig. 12(b), we can find that
the gap among these three vanishes gradually.

In the FTPVM, vsftp 2.0.5 has installed. The performance of FTPVM is evaluated
by dkftpbench, which is an FTP benchmark program inspired by SPEC web99.

We compile the source code of dkftpbench and its dataset. The test file is copied to
the public directory of anonymous user. We simulate 1,000 users fetching the default
file (×1000k.dat) from FTPVM repeatedly, and stop after 20 seconds. Figure 12(c)
shows the test results about FTPVM. When the simultaneous connections increase,
the alive connections are made considerable reduction.

In order to evaluate the performance impact of file integrity monitoring, the read-
ing/writing efficiency is tested by a well-known file system benchmark—iozone. The
command we use is iozone -a -s 512m -i 0 -i 1. It indicates that only the efficiency of
file reading and writing will be tested. The file size which we select is 512 MB, and
it is twice as the memory size of the monitored system.

We focus on both file reading and writing operations, and Fig. 12(d) shows the
speed of file reading and writing when the block size varies from 4 KB to 16384 KB.
The horizontal axis represents the block size (KB), and the vertical axis represents
the reading or writing speed (KB per second). As a whole, the writing performance
is lower than the reading performance. When the block size increases from 4 KB

A VMM-based intrusion prevention system in cloud computing

to 16384 KB, the overall efficiency improves gradually. According to all conditions
from Fig. 12(d), we know that the reading and writing detection overhead is sus-
tainable for most of systems. When the file block size is larger than 128 KB, the
performance overhead brought by VMFence is less than 20%.

5.2 The evaluation of VMFence

In virtualization-based cloud computing environment, there are several service VMs
running on the same hardware platform. Each service running in a specified VM has
better isolation than traditional OS. How to enhance the security of these VMs is the
primary issue we face to. VMFence is a VMM-based intrusion prevention system in
cloud computing environment, and it can monitor network packets and file integrity
in real time. The alert information are gathered and transferred to the backend, and the
backend makes global decisions. The response channel is implemented through page-
sharing mechanism, and quicker than network communication by which traditional
IPS adopts.

The features of VMFence include:

1. High adaptability: VMFence supports configuring distinct policies for each ser-
vice VM according to the style of services running on the VM. In the traditional
operating system, the crash of one process may affect other processes, and even
endanger the operating system itself. Virtualization provides better isolation than
the process in the operating system, and we can deploy a single service in one VM
to avoid interference from other services. These service VMs belong to different
cloud users, and they are unable to interfere with each other. When the states of
services VM change, the detection processes in the privileged VM adapt to this
transformation automatically.

2. High performance: VMFence makes the detection processes in parallel to raise
the detection efficiency. The privileged VM can capture all data from or to service
VMs, and we start multiple detection processes to analysis the collected packets
on multicore platforms. Otherwise, the file integrity monitoring brings little per-
formance overhead to the whole system.

3. Real time: VMFence combines intrusion detection with intrusion prevention
achieving real-time response when a crisis has been detected. New security rules
will be created and applied automatically when an attack occurs frequently. On
the other hand, the file operating information is output to the administrator in real
time.

6 Conclusion and future work

The motivation of this paper is to design and implement VMFence, providing a cus-
tomizable intrusion prevention system in avirtualization-based cloud computing en-
vironment. Cloud computing provides flexibility to utilize the underlying hardware
resources adequately. VMFence supplies the cloud provider with a general manage-
ment manner. The cloud provider can configure detection rules for each domain ac-
cording to the type of service running in each VM. VMFence can dynamically adjust

H. Jin et al.

detect processes by the number and the state of VMs, even VMs that migrate among
different hardware platforms. In addition, the file modification information is col-
lected in real time. We implement the VMFence by modeling the detection process
and illustrate the state transition by DFA. The results of the experiment show that this
method is useful for a virtualization-based cloud computing environment, especially
for multicore CPU.

In the future, we will focus on building a general defense system on Xen, which
includes IPS, the detection and behavior analysis of malware, and the secure risk
evaluation of a virtual machine. In order to improve the security of a cloud computing
environment, we will implement those through virtual machine introspection without
modifying the VMM.

Acknowledgements The work is supported by National 973 Basic Research Program of China under
grant No. 2007CB310900, National Natural Science Foundation of China under Grant No. 60973038,
No. 60673174, and No. 60803114, National High-tech R&D Program (863 Program) under the Grant
No. 2009AA01A402, Wuhan City Programs for Science and Technology Development under Grant No.
201010621211, Program for New Century Excellent Talents in University under Grant NCET-07-0334.

References

1. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual organiza-
tions. Int J High Perform Comput Appl 15:200–222

2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G (2009) Above the clouds: a
Berkeley view of cloud computing. Technical report, Electrical Engineering and Computer Sciences,
University of California at Berkeley

3. Buyya R, Yeo CS, Venugopal S (2008) Market-oriented cloud computing: vision, hype, and real-
ity for delivering IT services as computing utilities. In: 10th IEEE international conference on high
performance computing and communications. IEEE, Washington, pp 5–13

4. Rosenblum M, Garfinkel T (2005) Virtual machine monitors: current technology and future trends.
IEEE Comput 38:39–47

5. Smith JE, Nair R (2005) The architecture of virtual machines. IEEE Comput 38:32–38
6. Adams K, Agesen O (2006) A comparison of software and hardware techniques for x86 virtualization.

In: 12th international conference on architectural support for programming languages and operating
systems. ACM, California, pp 2–13

7. Garfinkel T, Rosenblum M (2005) When virtual is harder than real: security challenges in virtual
machine based computing environments. In: 10th workshop on hot topics in operating systems. IEEE,
Santa Fe, pp 20–25

8. Machado RB, Boukerche A, Sobral JBM, Juca KRL, Notare MSMA (2005) A hybrid artificial im-
mune and mobile agent intrusion detection based model for computer network operations. In: 19th
IEEE international parallel and distributed processing symposium. IEEE, Denver, pp 191–198

9. Kim GH, Spafford EH (1994) The design and implementation of tripwire: a file system integrity
checker. In: 2nd ACM conference on computer and communications security. ACM, Fairfax, pp 18–
29

10. Chrun D, Cukier M, Sneeringer G (2008) Finding corrupted computers using imperfect intrusion
prevention system event data. In: Computer safety reliability, and security, vol 5219, pp 221–234

11. Jin H, Xiang G, Zhao F, Zou D, Li M, Shi L (2009) VMFence: a customized intrusion prevention
system in distributed virtual computing environment. In: 3rd international conference on ubiquitous
information management and communication. ACM, Suwon

12. Barham P, Dragovic B, Fraser K, Harris SHT, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen
and the art of virtualization. In: 19th ACM symposium on operating systems principles. ACM, New
York, pp 164–177

13. Pratt I, Fraser K, Hand S, Limpach C, Warfield A, Magenheimer D, Nakajima J, Mallick A (2005)
Xen 3.0 and the art of virtualization. In: 2005 Linux symposium. USENIX, Ottawa, pp 65–77

A VMM-based intrusion prevention system in cloud computing

14. Chisnall D (2007) The definite guide to the Xen hypervisor. Prentice Hall, New York
15. Gelsinger PP (2001) Microprocessors for the new millennium: challenges, opportunities, and new

frontiers. In: 45th international solid state circuits conference. ACM, San Francisco, pp 22–35
16. Intel Staff. Intel 64 and IA-32 architectures software developer’s manuals. Intel Corporation, Novem-

ber 2008
17. AMD Staff. AMD64 architecture programmer’s manual. AMD Corporation, September 2007
18. Dunlap GW, King ST, Cinar S, Basrai M, Chen PM (2002) Revirt: enabling intrusion analysis through

virtual machine logging and replay. In: 5th symposium on operating systems design and implementa-
tion. USENIX, Boston, pp 211–224

19. Garfinkel T, Rosenblum M (2003) A virtual machine introspection based architecture for intrusion
detection. In: 10th network and distributed system symposium. IEEE, San Diego, pp 191–206

20. Joshi A, King ST, Dunlap GW, Chen PM (2005) Detecting past and present intrusions through
vulnerability-specific predicates. In: 20th ACM symposium on operating systems principles. ACM,
Brighton, pp 1–15

21. Kourai K, Chiba S (2005) HyperSpector: virtual distributed monitoring environments for secure in-
trusion detection. In: 1st ACM/USENIX international conference on virtual execution environments.
ACM, Chicago, pp 197–207

22. Pennington AG, Strunk JD, Griffin JL, Soules CAN, Goodson GR, Ganger GR (2003) Storage-based
intrusion detection: watching storage activity for suspicious behavior. In: 12th USENIX security sym-
posium. USENIX, Washington, pp 1–15

23. Patil S, Kashyap A, Sivathanu G, Zadok E (2004) I3FS: an in-kernel integrity checker and intrusion
detection file system. In: 18th USENIX large installation system administration conference. USENIX,
Atlanta, pp 67–78

24. Quynh NA, Takefuji Y (2007) A novel approach for a file-system integrity monitor tool of Xen virtual
machine. In: 2nd ACM symposium on information, computer and communications security. ACM,
Singapore, pp 194–203

25. Bovet DP, Cesati M (2005) Understanding the Linux kernel, 3rd edn. O’Reilly, Sebastopol
26. VMware Home Page. http://www.vmware.com
27. Virtual PC Home Page. http://www.microsoft.com/windows/virtual-pc
28. OSSEC Home Page. http://www.ossec.net
29. Snort Home Page. http://www.snort.org

http://www.vmware.com
http://www.microsoft.com/windows/virtual-pc
http://www.ossec.net
http://www.snort.org

	A VMM-based intrusion prevention system in cloud computing environment
	Abstract
	Introduction
	Related work and background
	Virtualization
	Intrusion detection
	File integrity monitoring

	The architecture of VMFence
	Application scene
	The components of VMFence
	The states of detection processes

	The implementation of VMFence
	Detection component
	Policy updating component
	Frontend and backend communication component
	File integrity monitoring component
	Notification component

	Experiments and evaluation
	The experiments
	The evaluation of VMFence

	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

