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An absolute test for axicon surfaces
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We present a method for absolute testing of axicon surfaces in a null test setup. The absolute test exploits the sym-
metry of axicons, which allows us to introduce a shift of the surface under test in both the axial and rotational
directions while still maintaining the null test condition. With two shifts of the surface under test and four
measurements, the interferometer and null optics error can be removed. The absolute surface local deviation
can be obtained by wavefront reconstruction with a double-side spiral-path direct integration method. A simulation
of the method, including typical systematic as well as statistical errors as input, is presented to estimate the error
propagation. Experimental absolute test results of a 90° axicon surface are given. © 2011 Optical Society of

America

OCIS codes: 120.3180, 120.6650.

Axicon elements have been used in numerous applica-
tions due to their unique optical properties [1,2]. There-
fore, investigations to improve their characterization are
pursued with much attention [3-5]. The interferometric
null test is one of the standard methods when high accu-
racy is required. Null testing of nonflat surfaces requires
a null optic, such as a computer generated hologram
(CGH), that adapts the plane wave of the interferometer
to the surface under test. The obtained wavefront mea-
surement contains contributions from the surface under
test @,xicon and from the interferometer error ¢, as well
as unavoidable statistical errors ¢, and misalignment
€rrors s

(D(p, 6) = Paxicon (.07 6) + ¢sys (pv 6)
+ ¢noise<p79) +¢mis(p’ 9) (1)

In the following, we will skip for the sake of simplicity
the statistical error, considering it later in the simulation
and the choice of numerical methods. ¢, contains errors
introduced by the interferometer, such as errors of the
reference surface or errors of the null lens. The separation
ofthese errors from the measurement is required to obtain
an absolute measurement result. Solutions have been
reported based on CGH that reconstruct multiple
wavefronts [6,7]. Recently, a novel method was proposed
as a simple absolute test for flat surfaces [8]. The separa-
tion of test surface errors from interferometer errors is
obtained by shifting the surface under test by small
amounts in two orthogonal directions. The difference
between the measurements gives a measure of the test
surface’s slope that can be integrated numerically to yield
the absolute shape. In this contribution, we present the
extension of this method to the absolute test of axicon
surfaces. Shifting methods require that the surface under
test can be shifted or rotated without losing the null test
condition. Although axicon surfaces are highly aspheric,
their linear generatrix allows this extension: it can be
rotated and shifted along the optical axis.

The method requires four measurements in two inde-
pendent groups (Fig. 1): two measurements with the test
surface shifted axially by +AZ [Fig. 1(b)] and rotating it
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by +A# [Fig. 1(c)]. Since only the surface under test is
moved, the interferometer error ¢, remains constant.

Equation (2) gives the measured wavefronts for the
rotational direction shift +A0:

DF2(p, 0) = Payicon(p. 0 £ AO) + ¢y (p.0).  (2)

For the axial translation AZ, Fig. 2 shows a specific
characteristic of this null test configuration, here
illustrated with a CGH as the null optics. The gradient
singularity in the tip of the axicon leads to a ring-shaped
interferogram and, correspondingly, to a ring-shaped
CGH with inner and outer radius 7; and 7,,. These dimen-
sions depend on the distance Z, between the CGH and
the vertex of the axicon, as well as the axicon geometry:

r; = Zy x tan(a/2), (3)

7, =2 x h x tan(a/2) + r;, (4)

with the axicon cone angle @ and height k. The width of
the ring remains independent of Z. If the vertex of the
surface under test touches the CGH, the ring becomes a
circle with diameter 7,.

The axial shift AZ translates into a radial shear with a
constant shearing distance. The wavefronts we measure
are given as

(I):I:Az(p’ 9) = d)axicon(p + AZ x COt(Ol/Z), 9) + ¢sys(p~ 9)'

axicon under test

Fig. 1. (Color online) Shifting positions required for the abso-
lute test. Test setup for testing an axicon in reflection with (a) a
null lens, (b) axial translation, and (c) rotation.
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Fig. 2. Measurement configuration of CGH and axicon
surface. Effective rays of CGH with 7; and r, as the boundaries’
radii.

In a stable setup, the system error stays the same for all
four measurements. It is removed by using Egs. (6) and
(7), leading to wavefront differences in two orthogonal
directions (rotational and radial):

D (p,0) - ©29(p,0) = p(p,0 + AY) - p(p, 0 - AD),
(6)

DA% (p,0) - D2%(p,0) = P(p + Ap,6) — p(p - Ap,6).
(7)

In principle, only three measurements would be re-
quired to obtain the gradient in two directions. It has,
however, been shown in practice that it is beneficial to
take two separate pairs of measurements for each shift-
ing direction, since then the stability requirement for the
setup is minimal. It only needs to span the time between
two subsequent measurements.

The choice of shifting distance influences the absolute
surface reconstruction. It is a trade-off between informa-
tion reconstruction in the frequency domain and suppres-
sion of error propagation (noise and misalignment). In
order to simplify the surface reconstruction process,
we project the obtained rotational and radial differences
into differences in the X and Y directions, following the
sampling directions of the camera. The transformation
follows Eq. (8):

(o )= (0 ) (o )
(osaran) ®

Note that this projection requires a known center of
rotation in camera pixel coordinates. An error will show
as a twisted wavefront component after the subsequent
integration. Since this kind of error is unlikely to occur
in real optical surfaces, it can be utilized to detect an
incorrect center of rotation.

If Ax and Ay are set to be 1 pixel, then the problem is
changed to a standard problem in wavefront reconstruc-
tion. For this problem, many approaches have been
published, e.g., iterative estimation algorithms for gener-
al shaped pupils [9,10], and a linear least squares method
from annular Zernike polynomials for annular wave-
fronts [11]. However, these algorithms show problems
at the boundaries of narrow annular wavefronts or are
ineffective for larger array sizes of 200 x 200 pixels or

more. Direct integration methods, such as integration
by many orbits (IMO [12]), have been shown to be robust
in terms of error propagation. We developed a direct
integration method adapted to the integration of annular
areas, which we call spiral-path direct integration (SDI).
A specific of SDI is that, for each point, we select two
paths, clockwise and anticlockwise. This makes all
points in the integration area have a similar average
integration path, which is important in suppressing
effects of error propagation.

Figure 3 illustrates the basic calculation method of
SDI, with the two integration paths L and R from the com-
mon starting point s to a target point ¢. The paths follow
Archimedes spiral lines and thus always remain inside
the annulus area, avoiding the above-mentioned bound-
ary problems. The two paths are averaged. This gives a
similar integration length over the entire area, decreasing
efficiently the nonuniformity of the reconstruction error
in the tangential direction.

To estimate the performance of the method, we simu-
lated the measurement of an imperfect sample in an
imperfect setup and compared the result of the recon-
struction with the known sample deviations. For our
simulation, typical aberrations found in CGHs written
in polar coordinates [13] are taken into account, as well
as the alignment errors of the sample and white noise, to
consider random errors, such as sensor noise of the
interferogram registration. The simulated alignment
errors include +1um of translation uncertainty and
415 arcsec of rotation uncertainty. The aberrations from
the CGH contain spoke-type errors from the fabrication
of the CGH and an astigmatism contribution from a small
amount of tilt that is introduced to prevent backreflec-
tions from the CGH substrate. A part of the astigmatism
is motivated with electromagnetic effects that show
when linearly polarized light from the interferometer
interacts with the high line density (approximately
1117 line pairs/mm) rotationally symmetric grating struc-
tures. Figure 4(a) shows the total system error we have
used for the simulation, while Fig. 4(b) shows the errors
of the simulated surface under test, which we have
chosen to be similar to the spoke-shaped error of the
CGH, to test the capability of our method to separate
the different error sources. Figure 4(c) shows the differ-
ence between the reconstructed surface under test and
the known sample deviations we used for the simulation.
Simulations with no noise and smaller shifting distances
show that the small residual error of the reconstructed
wavefront can be explained mainly by the added noise
and derivatives approximations.
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Fig. 3. (Color online) SDI diagram. Red point at left, starting
point of the integration; blue point at upper right, target point of
the integration.
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Fig. 4. (Color online) (a) Simulation of an absolute axicon
measurement on a model interferometer with system error
and (b) measuring a surface under test with errors, yielding
the (c¢) reconstruction error.
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Fig. 5. (Color online) (a) Experimental result is split into the
(b) systematic error and the (c) surface topography error.

To test the principle, we carried out the experiment
with a commercial interferometer (FISBA pyPhase 2HR,
PZT phase-shift, plane reference surface, mounted on
a two-stage mechanical frame ALI 200 from Schneider
Optikmaschinen). The collimated wavefront from the in-
terferometer is transformed to an axicon wavefront with
a high-line-density CGH [14], fabricated with scanning
beam interference lithography, a special laser writing
technique suitable for the efficient generation of high-
resolution periodic structures. The CGH is a radial
grating with a constant grating period of 894.943nm,
corresponding to a deflection angle of 45° required to test
the axicon surface with a cone angle of 90° in a null test.
To prevent substrate backreflections, the CGH is used
under a small tilt angle. A linear alignment grating
structure simplifies the correct tilt alignment.

The mechanical alignment of the axicon surface is rea-
lized by high-resolution micrometer calipers provided by
the ALI 200 (axis translation) and an additional rotation
air bearing (rotation about the symmetry axis). All axes
are equipped with encoders (1 ym axis translation and
0.2 arc x min rotation). A fine alignment minimizing the
difference between each pair of shifts in terms of tilt
and coma ensured that the misalignment term ¢, re-
mained constant between the measurements and, there-
fore, it is subtracted in the evaluation procedure. Figure 5
depicts the measurement results, showing that the mea-
surement [Fig. 5(a)] contains a considerable amount of
systematic interferometer error [Fig. 5(b)]. The absolute
test reveals that the non-rotationally symmetric errors
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seen in the individual measurements are not caused by
the surface under test but can be almost entirely attrib-
uted to the measurement setup. The surface under test
shows almost perfect rotational symmetry [Fig. 5(c)].

In conclusion, we presented a method for the absolute
test of axicon surfaces. The basic idea follows the simple
measurement procedure proposed for plane surfaces [§],
where accuracies of better than 1/100 peak to valley are
expected for well-controlled conditions. Shifting the
surface under test in the axial direction and rotating it
by a small amount allows us to subtract the system error.
Together with SDI, a novel wavefront reconstruction al-
gorithm for narrow annular interferograms, this testing
method provides a simple and robust method to obtain
the axicon surface in an absolute manner. In our experi-
ments, we achieved a repeatability of better than 2nm
rms with an instrument short-term repeatability of about
1nm rms.

Leaving the simple geometry of plane surfaces adds
some issues. Because of the integration involved, it is
not possible to obtain the cone angle of the axicon sur-
face in an absolute way. We have addressed this problem
recently elsewhere [14]. Also, as for all interferometric
measurements, the unavoidable misalignment of the
surface introduces wavefront terms that are typically
subtracted numerically and hence cannot be detected,
such as tilt and coma.
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