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Mode Matching for the Electromagnetic Scattering
From Three-Dimensional Large Cavities

Gang Bao, Jinglu Gao, Junshan Lin, and Weiwei Zhang

Abstract—A new mode matching method is presented for the
electromagnetic scattering from large cavity-backed apertures.
The new method is based on the expansion of the field inside the
cavity by the standard modes, and a periodic extension of the field
on the cavity aperture to the whole ground plane. The computation
cost is low by solving only the coefficients of the modes. Numerical
examples are presented to show the efficiency of the approach.

Index Terms—Electromagnetic scattering, large cavities, mode
matching, radar cross section.

I. INTRODUCTION

T HE computation of the electromagnetic scattering from
open cavities has received a lot of attention in recent years

due to its important applications, such as the design of the jet
inlet for an aircraft. For the cavities with the size of several
wavelengths, standard techniques such as the method of mo-
ment (MoM) [7] or the finite element-boundary integral (FE-BI)
approach ([8], [9]) have been developed to solve the problem ef-
ficiently. However, for three dimensional large cavities, in par-
ticular when the size of the cavity aperture is comparable to one
hundred wavelengths or larger, such numerical methods are still
too expensive even for supercomputers nowadays.
In fact, up to now there are basically two types of method to

solve the scattering problem for very large cavities. The first
type applies the high frequency asymptotic techniques. These
include the Gaussian beam shooting [5], the bounding and
shooting ray method ([13], [14]), etc. Another type of method
expresses the field inside the cavity in terms of the waveguide
modes. It is also known as the modal approach. Usually, the
unknown modal coefficients are solved by the application of
the reciprocity relationship and the Kirchhoff’s approximation.
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Fig. 1. Geometry of the cavity. The cavity is embedded in the ground plane.

We refer the reader to [1], [6], [11], [12], [14] and references
therein for detailed discussions.
In the particular case when the cavity is very deep, a special

higher order finite-element method is proposed that uses min-
imal memory ([10], [15]). We also refer to our recent numerical
studies for the scattering from the two dimensional large open
cavities by an improved mode matching method [4] and a finite
difference schemewith fast algorithm [3]. For the rigorous study
on the existence and uniqueness of the solution to the three di-
mensional scattering problem, we refer to [2].
In this paper, we present a mode matching approach for large

cavities based on the periodic extension of the field on the cavity
aperture to the whole ground plane. The method has the advan-
tage of better accuracy for larger cavities. In particular, in the
extreme case when the size of the cavity aperture goes to in-
finity, the numerical solution converges to the exact solution.
In addition, it shares the low computational cost with the usual
modal approach. Only the coefficient of the eachmode is solved.
Numerical examples are provided to illustrate the efficiency of
the approach.

II. FORMULATION

Consider a time-harmonic (with dependence) electro-
magnetic wave that impinges on the cavity backed aperture (Fig.
1). The rectangular cavity is embedded in the ground (the xy)
plane, and both the cavity wall and the ground plane are assumed
to be perfect conductors (PEC). The aperture of the cavity is

, and the depth of the
cavity is denoted as . Here our attention is focused on the
case when and are large.
Let be the frequency of the electromagnetic wave, and

be the wavenumber, where and are the per-
mittivity and permeability of the vacuum respectively. The total
electric and magnetic fields consist of the incident wave

, the reflected wave by the ground plane and
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the scattered wave . The governing equations for
and are the Maxwell’s equations

For clarity, the fields above the ground plane and inside the
cavity are denoted by and respectively.
By assuming that and are constant inside the cavity, the
electric field and the magnetic field inside the cavity
takes the following form:

(1)

and

(2)

Here .
For the cavity with layered medium inside, a similar field

representation can be derived. In each layer, and are ex-
panded as the sum of the modes above, and the fields between
two neighboring layers may be connected by the field continuity
conditions.
Next, we calculate the fields above the ground

plane. By noting the PEC condition on the ground plane and the

continuity of the electric field on the cavity aperture, it is easily
seen that for the and components of the scattered field

elsewhere.

where , . For conciseness, a function defined over
the cavity aperture is extended to the whole ground plane by
introducing the operator such that

elsewhere.

Therefore, for , .
From the Maxwell’s equations, it is clear that the Fourier

transform of the scattered field above the ground plane
satisfies the equation

(3)

Here is the Fourier transform of the defined by

By solving (3) with the radiation condition at infinity, the
Fourier transform of the scattered field is the outgoing
propagation modes expressed by

Hence, the scattered field above the ground plane are the
inverse Fourier transforms

For , , equivalently

(4)

by noting that . When ,
an application of the Gauss’s law above the ground
plane implies that can alternatively be written as

(5)

For completeness, the derivation of (5) is provided in Appendix.
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Therefore, by (4) and (5), the total magnetic field above
the ground plane takes the following form:

(6)

(7)

III. MODE MATCHING METHOD

The electric field over the cavity aperture
is extended periodically to the whole ground
plane, i.e., the zero extension of the cavity modes

and

in (4)–(7) are replaced by the periodic functions
and

respectively
on the whole ground plane. Such approximation has better
accuracy with larger size of the cavity aperture. In the extreme
case when the size of the cavity aperture goes to infinity, the
approximation is exact.
Note that the Fourier transform of sine and cosine functions

are given by

where is the standard Dirac delta function. Therefore, for the
Fourier transform of the periodic extension of the cavity modes
to whole ground plane, some simple calculations yield

(8)

(9)

(10)

(11)

(12)
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(13)

Here .
By substituting (1), (8)–(13) into (6) and (7), finally on the

cavity aperture , the magnetic field

(14)

(15)

In addition,
and can be ex-
panded as the sum of the corresponding modes. Now and

have the same mode expansion, the unknown coefficients
, , are solved by imposing the continuity condition

over the cavity aperture

and an application of the Gauss’s law . More pre-
cisely, for each fixed and , the coefficients , and

are calculated by solving a 3 3 linear system, where the
entries for the first two rows of the linear system are given by
collecting the coefficients of the samemodes in and

, and the entries for the last row are given by col-
lecting the coefficients of the modes resulting from the Gauss’s
law .
The advantage of the mode matching method over the tradi-

tional finite difference and finite element is apparent. We only
need to calculate the coefficients , and by solving
3 3 linear system times, where ,

, and is the wavelength. The calculation may be easily
accelerated in a parallel way.
The mode matching solution is convergent in the sense of the

distribution. That is, for any smooth func-
tion when both and go to infinity. Here represents
the mode matching solution and is the exact electric field.
To calculate the scattered far field, the modal coefficients
, , are substituted back to the formulas (1), (4) and

(5). By the method of stationary phase [16], at point in
spherical coordinate, asymptotically the scattered field is given
by

The Fourier transforms and can be evalu-
ated easily since the integrals are defined on the cavity aperture

.

IV. NUMERICAL RESULTS

Several numerical results are presented to demonstrate the ef-
ficiency of the new mode matching method. The incident wave

where is the polarization angle, and are the standard unit
vectors in the spherical coordinate, and is the incident direc-
tion given by
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Fig. 2. (a) Magnitude of the electric field for when 100 modes are used;
(b) the magnitude when 300 modes are used.

First, we consider a normal incident wave with
polarization that impinges on a wide and shallow cavity. The
wavenumber , and .
In this case, the scattering from the cavity becomes a total reflec-
tion problem. Thus the exact magnitude
over the cavity aperture.We employ the newmodematching

method to calculate the electric field . Two different numbers
of modes are used, and the corresponding magnitude of the elec-
tric field over the capture is plotted for (Fig. 2). It is clear
that the magnitude of the numerical solution converges to the
magnitude of the exact electric field over the cavity aper-
ture as the number of the mode increases.
Next, the backscatter radar cross section (RCS) of the cavity

with size , and is calculated.
The same example is also presented in [14]. When , the
RCS of the and polarizations are shown for various in-
cident angles in Fig. 3. Other than the first 5 degrees for the
polarization and the last 5 degrees for the polarizations,

the numerical result shows excellent agreement with the calcu-
lations by the modal approach presented in [14]. The RCS of the
cavity when is also calculated for various incident an-
gles, and the comparison with the calculations in [14] is shown
in Fig. 4. The agreement between the two approaches is also ex-
cellent for .

Fig. 3. RCS of the cavity with size , and .
( plane). The solid line is the RCS calculated by the new mode matching
method, and the circle is the RCS calculated by the modal approach presented
in [14]. (a): polarization; (b): polarization.

Fig. 4. RCS of the cavity with size , and (
polarization). . The solid line is the RCS calculated by the new mode
matching method, and the circle is the RCS calculated by the modal approach
presented in [14].

The last example considers the scattering from a cavity of ex-
treme large size with , , and .
Fig. 5 shows the backscatter RCS for the and polariza-
tions respectively.
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Fig. 5. RCS of the cavity with size , , and .
(a): polarization; (b): polarization.

V. CONCLUSION

A new mode matching method is presented for the scattering
from three dimensional large cavities. The method is based on
the periodic extension of the electric field over the cavity aper-
ture to the whole ground plane. It shares the low computational
cost with the usual modal approach by solving only the coeffi-
cients of the modes. In addition, the method leads to better accu-
racy for larger cavities than it is for the smaller cavities, which
is well suited for the computation of the scattering from very
large cavities. In the extreme case when the size of the cavity
aperture goes to infinity, the numerical solution converges to the
exact solution.

APPENDIX
DERIVATION OF THE FORMULA (5)

The Fourier transform of the scattered field are the out-
going propagation modes expressed by

(16)

It is easily seen that

(17)

On the other hand, by the application of the Gauss’s law,

(18)

Therefore, (16)–(18) implies that

By taking the inverse Fourier transform and noting
that ,

, we arrive at formula (5).
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