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Abstract

This paper presents a novel generalized particle model for the parallel optimization of the resource allocation and task

assignment in complex environment of enterprise computing. The generalized particle model (GPM) transforms the

optimization process into the kinematics and dynamics of massive particles in a force-field. The GPM approach has many

advantages in terms of the high-scale parallelism, multi-objective optimization, multi-type coordination, multi-degree

personality, and the ability to handle complex factors. Simulations show the effectiveness and suitability of the proposed

GPM approach to optimize the enterprise computing.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The distributed enterprise computing is featured
by the geographically distributed resources and
jobs, heterogeneous collection of autonomous
systems, and collaboration based large-scale pro-
blem-solving. Since enterprise computing always
involves the resource allocation, task assignment,
and behavior coordination, their optimization in
complex environment is of great significance for the
e front matter r 2006 Elsevier B.V. All rights reserved
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quality-assurance and performance-improvement of
enterprise computing.

Most of optimization methods [1–11] currently
used for the resource allocation and task assignment
in enterprise computing have the below limitations
and disadvantages:
�

.

Do not consider the complex environment
related to multi-type coordinate, multi-degree
autonomy, multi-objective optimization and
multi-granularity coalition [1–4].

�
 Do not consider complex coordinations such as

unilateral, unaware and unconscious coordina-
tions, besides bilateral and conscious cooperation
or competition [10].

�
 Only consider completely unselfish or completely

selfish entity which tries to increase either the
aggregate utility or personal utility [2,5].
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�
 Need the global control, global information
access and global objective, hence lead to series
or small-scale parallel computation [8,9].

�

Fig. 1. The assignment matrix for the enterprise computing

optimization, SðtÞ ¼ ½sikðtÞ�n�m, where sijðtÞ ¼ haijðtÞ; pijðtÞ; zijðtÞi.

bottom boundary of force-field F

upper boundary of force-field F

Fig. 2. Generalized particle model for the enterprise computing

optimization.
Do not consider stochastic, emergent and con-
current phenomena such as congestion, failure
and priority change [11].

To overcome the above limitations, this paper
proposes a novel generalized particle model (GPM)
which transforms the optimization of enterprise
computing into the kinematics and dynamics of
massive particles in a force-field. The features of the
GPM-based optimization include the large-scale
parallelism, multi-objective optimization, multi-type
coordination, multi-degree autonomy, multi-granu-
larity coalition, and the ability to deal with complex
factors, e.g. congestion, failure, and priority. Simu-
lations show the effectiveness and suitability of the
proposed GPM approach to the enterprise comput-
ing optimization.

The structure of this paper is as follows. Section 2
elucidates the generalized particle model for the
resource allocation and task assignment. Section 3
discusses the generalized particle algorithm and its
properties. Section 4 highlights simulations and
comparisons. Finally, we conclude in Section 5.

2. Generalized particle model

Consider the parallel distributed resource alloca-
tion among users of enterprise computing. Let
GðtÞ ¼ fG1; . . . ;Gmg be a finite set of resource users,
and AðtÞ ¼ fA1; . . . ;Ang be a finite set of resource
suppliers in the time session t. The supplier Ai

provides the user Gj with the resource aijðtÞ at time t,
and meanwhile the user Gj offers the payment pijðtÞ

for the unit resource of Ai. The supplier Ai uses the
intention strength zijðtÞ with respect to the user Gj to
describe the influence of complex environment, such
as interaction, congestion, failure, and priority. We
thus obtain an assignment matrix SðtÞ ¼ ½sikðtÞ�n�m,
as shown in Fig. 1, where sijðtÞ ¼ haijðtÞ, pijðtÞ, zijðtÞi.
For convenience, they are normalized such that
0paijðtÞp1, 0ppijðtÞp1, and �1pzijpþ 1.

The conceptual diagram of a GPM for the
enterprise computing optimization is shown in
Fig. 2, where the particle sik in a force-field
corresponds to the entry sik in the assignment
matrix S. A particle may be driven by several kinds
of forces that are produced by the force-field, other
particles and itself. The gravitational force pro-
duced by the force-field tries to drive a particle to
move towards boundaries of the force-field, which
embodies the tendency that a particle pursues
maximizing the aggregate benefit of systems. The
pushing or pulling forces produced by other
particles are used to embody social coordinations
among resource suppliers and users. The self-
driving force produced by a particle itself represents
autonomy and personality of individual supplier
and users. The resultant force on a particle drives
the particle to move in the force-field. In this way,
the GPM transforms the optimization problem of
resource allocation for enterprise computing into
the kinematics and dynamics of particles in a force-
field.

Definition 1. Let uikðtÞ be the utility of particle sik at
time t, and let JðtÞ be the aggregate utility of all
particles. They are defined by

uikðtÞ ¼ aik½1� expð�pikðtÞaikðtÞÞ�, (1)

JðtÞ ¼ a
Xn

i¼1

Xm

k¼1

uikðtÞ, (2)

where aik, aX0, and aik is related to the activities of
supplies Ai and user Gj , such as congestion degree,
failure rate, and priority level.

Definition 2. At time t, the potential energy function
PðtÞ that is related to the gravitational force of
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force-field F is defined by

PðtÞ ¼ �2 ln
Xn

i¼1

Xm

k¼1

exp½�u2
ikðtÞ=2�

2� � �2 lnmn, (3)

where 0o�o1.

Definition 3. At time t, the potential energy function
QðtÞ that is related to interactive forces among
particles is defined by

QðtÞ ¼ x
Xn

i¼1

Xm

k¼1

aikðtÞ � riðtÞ

�����
�����
2

�
X
i;k

Z uik

0

f½1þ expð�zikxÞ��1 � 0:5gdx,

ð4Þ

where 0oxo1; ri is the capacity of resource supplier
Ai. The second term of QðtÞ represents social
coordinations among them, where �1pzijpþ 1.

Definition 4. The hybrid energy function of the
particle sik at time t is defined by

GikðtÞ ¼ �l
ð1Þ
ik uikðtÞ � lð2Þik JðtÞ þ lð3Þik PðtÞ þ lð4Þik QðtÞ,

(5)

where 0olð1Þik ; l
ð2Þ
ik ; l

ð3Þ
ik ; l

ð4Þ
ik p1.

Definition 5. Let the coordinate origin be located at
the central line between the upper and bottom
boundaries of force-field F, and qikðtÞ be the vertical
coordinate of particle sik at time t. The dynamic
equation for particle sik is defined by

dqikðtÞ=dt ¼ Cð1Þik ðtÞ þCð2Þik ðtÞ; ð6Þ

Cð1Þik ðtÞ ¼ �qikðtÞ þ gvikðtÞ; ð6aÞ

Cð2Þik ðtÞ ¼ I ik þ
Pm
j¼1

wjkujkðtÞ þ
Pn
j¼1

wijuijðtÞ; ð6bÞ

8>>>><
>>>>:
where g41, I ik is a constant bias. The weight wjk

represents the polymerization strength of particles,
sik and sjk, and wij represents the polymerization
strength of particles, sik and sij. The dynamic state
vikðtÞ is a piecewise linear function of qikðtÞ, which is
defined by

vikðtÞ ¼

0 if qikðtÞo0;

qikðtÞ if 0pqikðtÞp1;

1 if qikðtÞ41:

8><
>: (7)

Parallel Algorithm (GPMA).

Costep 1. Initiate in parallel aikðt0Þ, pikðt0Þ and
qikðt0Þ for i 2 f1; . . . ; ng, k 2 f1; . . . ;mg.
Costep 2. By Eq. (1), calculate in parallel the
utility uikðtÞ of every particle sik in force-field F at
time t.

Costep 3. Calculate in parallel Cð1Þik ðtÞ by Eq. (6a),
and Cð2Þik ðtÞ by Eq. (6b) of every particle sik.

Costep 4. If all particles reach their equilibrium
states at time t, then finish with success; otherwise,
modify aik and pik by the following Eqs. (8) and (9),
respectively, then go to Costep 2:

dpikðtÞ=dt ¼ lð1Þik

quikðtÞ

qpikðtÞ
þ lð2Þik

dJðtÞ

dpikðtÞ
� lð3Þik

dPðtÞ

dpikðtÞ

� lð4Þik

dQðtÞ

dpikðtÞ
þ lð5Þik qikðtÞ, ð8Þ

daikðtÞ=dt ¼ lð1Þik

quikðtÞ

qaikðtÞ
þ lð2Þik

dJðtÞ

daikðtÞ
� lð3Þik

dPðtÞ

daikðtÞ

� lð4Þik

dQðtÞ

daikðtÞ
þ lð5Þik qikðtÞ, ð9Þ

where 0olð5Þik p1.

3. Properties of generalized particle model

We summarize properties of GPM to optimize
enterprise computing in the below lemmas and
theorems, which involve the correctness, conver-
gency and stability of GPM. Their proofs are given
in Appendix.

Lemma 1. The first and second terms of Eqs. (8), (9)
enable the particle sik to increase the personal utility

of the resource supplier Ai from the user Gk, in direct

proportion to ðlð1Þik þ alð2Þik Þ.

Lemma 2. Updating pik and aik by Eqs. (8), (9),
respectively, gives rise to monotonic increase of the

aggregate utility of all the particles, in direct

proportion to alð2Þik .

Lemma 3. If � is very small, then decreasing the

potential energy PðtÞ of Eq. (3) amounts to increasing

the minimal utility of all the particles.

Lemma 4. The third terms of Eqs. (8), (9) enable the

particle sik to increase the minimal utility of all the

particles, in direct proportion to lð3Þik o2
ikðtÞ, where

o2
ikðtÞ ¼ exp½�ðuikðtÞÞ

2=2�2�
Xm

i¼1

exp½�uikðtÞ
2=2�2�

,
.

Lemma 5. The fourth terms of Eqs. (8), (9) enable

the particle sik to monotonic decrease of the potential

energy QðtÞ, in direct proportion to the value of lð4Þik .
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Theorem 1. Updating pik and aik by Eqs. (8), (9),
respectively, gives rise to decreasing the hybrid energy

function GikðtÞ, where every particle may autono-

mously determine its optimization objective according

to its own personality and intention.

Theorem 2. The algorithm GPMA can dynamically

optimize in parallel the resource allocation for

enterprise computing in the context of multi-type

social coordination, multi-degree autonomy and

multi-objective optimization.

Lemma 6. If g� 14�Cð2Þik ðtÞ40,
qCð2Þ

ik
ðtÞ

qqikðtÞ
o1 for

qikðtÞo0 and qikðtÞ41; and
qCð2Þ

ik
ðtÞ

qqikðtÞ
X1� g for

0oqikðtÞo1 remain valid, then a stable equilibrium

point of the particle sik will be either ðqikðtÞo0;
vikðtÞ ¼ 0Þ or ðqikðtÞ41; vikðtÞ ¼ 1Þ (see Fig. 3).

Lemma 7. If g41;�Cð2Þik ðtÞo0 and
qCð2Þ

ik
ðtÞ

qqikðtÞ
o1 for

qikðtÞ41 remain valid, then a stable equilibrium point

of the particle sik will be ðqikðtÞ41; vikðtÞ ¼ 1Þ.

Lemma 8.
qCð2Þ

ik
ðtÞ

qqikðtÞ
o1 for qikðtÞo0 remain valid, then a

stable equilibrium point of the particle sik will be

ðqikðtÞo0; vikðtÞ ¼ 0Þ.

Lemma 9. If g41,
qCð2Þ

ik
ðtÞ

qqikðtÞ
o1 for qikðtÞ ¼ 1þ0 and

qCð2Þ
ik
ðtÞ

qqikðtÞ
X1� g for qikðtÞ ¼ 1�0 remain valid, then the

equilibrium point ðqikðtÞ ¼ 1; vikðtÞ ¼ 1Þ is saddle

point. Moreover, if g41,
qCð2Þ

ik
ðtÞ

qqikðtÞ
o1 for qikðtÞ ¼ 1�0

and
qCð2Þ

ik
ðtÞ

qqikðtÞ
X1� g for qikðtÞ ¼ 1þ0 remain valid, then
Fig. 3. When g41, the possible equilibrium points of the

dynamic status vikðtÞ of a particle sik. The point where �Cð2Þik ðtÞ

equals Cð1Þik ðtÞ is an equilibrium point. The symbols, �, n and },

denote a stable equilibrium point, saddle point and unstable

equilibrium point, respectively.
the equilibrium point ðqikðtÞ ¼ 0; vikðtÞ ¼ 0Þ is saddle

point.

Theorem 3. If g41 and 0pqikðt0Þp1 remain valid,
then the dynamical Eq. (6) has a stable equilibrium

point iff 0o�Cð2Þik ðtÞog� 1.

Theorem 4. If the condition of Theorem 3 remains

valid, then GPM will converge to a stable equilibrium

state.

4. Simulations

Some simulation results on the algorithm GPMA
for the enterprise computing optimization in the
context of resource allocation and task assignment
in complex environment are given as follows.
�
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Influence of problem size on the utility for

enterprise computing optimization: For different
problem sizes, the transients of the minimal
personal utility among all the particles and the
aggregate utility of all the particles during
executing the algorithm GPMA are shown in
Figs. 4 and 5, respectively. We can see that for
different problem sizes using the GPMA always
gives rise to the increase of the minimal personal
utility.

�
 The influence of problem size on optimization

criteria: In order to evaluate the optimality
performance of GPMA, we use the three criteria:
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the fairness FN, resource utilization rate RUR,
and user satisfactory degree USD. For different
problem sizes, the transients of the aggregate
utilization rate of resource suppliers, and aggre-
gate satisfactory degree of resource users are
shown in Fig. 6.

�
 Comparisons: The comparisons between the

algorithm GPMA and the famous Max–Min
algorithm (MMA) are shown in Fig. 7, which
demonstrate that, for different problem sizes,
GPMA can converge to a stable equilibrium
solution much faster than the MMA. The
algorithm GPMA exhibits much better optim-
ality performance than MMA in terms of the
aggregate utilization rate of resource suppliers
and aggregate satisfactory degree of resource
users, whereas they have almost approximately
equal allocation fairness.

5. Conclusions

We propose a new generalized particle model
(GPM) for parallel optimization of resource alloca-
tion and task assignment in complex environment
for enterprise computing. We give the GPM-based
algorithm and prove its properties in detail. GPM
may deal with multi-type coordination, multi-degree
autonomy, multi-objective optimization, multi-
granularity coalition, and some complex factors
such as congestion, failure and priority. The GPM
approach also has advantages in terms of paralle-
lism and feasibility for hardware implementation by
VLSI technology.

Appendix
Proof of Lemma 1. Denote the jth terms of Eqs. (8)

and (9) by h
dpikðtÞ

dt
ij and h

daikðtÞ
dt
ij, respectively. h

daikðtÞ
dt
i1

and hdpikðtÞ
dt
i1 give rise to the utility differential of the
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particle sik as follows:

hduikðtÞ=dti1 ¼
quikðtÞ

qpikðtÞ

dpikðtÞ

dt

� �
1

þ
quikðtÞ

qaikðtÞ

daikðtÞ

dt

� �
1

¼ lð1Þik

quikðtÞ

qpikðtÞ

� �2

þ
quikðtÞ

qaikðtÞ

� �2
" #

X0.

Similarly, hdpikðtÞ
dt
i2 and hdaikðtÞ

dt
i2 give rise to

hduikðtÞ=dti2 ¼
quikðtÞ

qpikðtÞ

dpikðtÞ

dt

� �
2

þ
quikðtÞ

qaikðtÞ

daikðtÞ

dt

� �
2

¼ lð2Þik

quikðtÞ

qpikðtÞ

dJðtÞ

dpikðtÞ
þ lð2Þik

quikðtÞ

qaikðtÞ

dJðtÞ

daikðtÞ

¼ lð2Þik

quikðtÞ

qpikðtÞ

qJðtÞ

quikðtÞ

quikðtÞ

qpikðtÞ

þ lð2Þik

quikðtÞ

qaikðtÞ

qJðtÞ

quikðtÞ

quikðtÞ

qaikðtÞ

¼ alð2Þik

quikðtÞ

qpikðtÞ

� �2

þ
quikðtÞ

qaikðtÞ

� �2
" #

X0.

Therefore, the joint differential of utility uikðtÞ is

directly proportional to ðlð1Þik þ alð2Þik Þ. &

Proof of Lemma 2. It is straightforward from the
proof of Lemma 1. &

Proof of Lemma 3. Suppose that HðtÞ ¼

maxi;kf�u2
ikðtÞg. We have

½expðHðtÞ=2�2Þ�2�
2

p
Xn

i¼1

Xm

k¼1

expð�u2
ikðtÞ=2�

2Þ

" #2�2

p½mn expðHðtÞ=2�2Þ�2�
2

.

Taking the logarithm of both sides of the above
inequalities leads to

HðtÞp2�2 ln
Xn

i¼1

Xm

k¼1

expð�u2
ikðtÞ=2�

2Þ

pHðtÞ þ 2�2 lnmn.

Since mn is constant and � is very small, we have

HðtÞ � 2�2 ln
Xn

i¼1

Xm

k¼1

expð�u2
ikðtÞ=2�

2Þ

� 2�2 lnmn ¼ 2PðtÞ.

It results that the potential energy PðtÞ at the time t

represents the minimum among all the uikðtÞ. Hence
decreasing the potential energy PðtÞ will result in
increasing the minimum among all the uikðtÞ’s. &
Proof of Lemma 4. Similar to the proof of the
Lemma 1, the third terms of Eqs. (8), (9) give rise to
the utility differential of the particle sik as follows:

duikðtÞ

dt

� �
3

¼ �lð3Þik

qPðtÞ

quikðtÞ

quikðtÞ

qaikðtÞ

� �2

þ
quikðtÞ

qpikðtÞ

� �2
" #

.

Thus the third terms of Eqs. (8), (9) cause the
component, hdPðtÞ

dt
i, of dPðtÞ

dt
as follows:

dPðtÞ

dt

� �
¼

qPðtÞ

quikðtÞ

duikðtÞ

dt

� �
3

¼ � lð3Þik

qPðtÞ

quikðtÞ

� �2

�
quikðtÞ

qaikðtÞ

� �2

þ
quikðtÞ

qpikðtÞ

� �2
" #

p0.

It turns out that the third terms of Eqs. (8), (9) give
rise to monotonic decrease of PðtÞ. Then by Lemma
3, they result in the increase of the minimal utility
among all the particles, in direct proportion to
lð3Þik o2

ikðtÞ. &

Proof Lemma 5. Similar to the proof of the Lemma
1, the fourth terms of Eqs. (8), (9) give rise to the
utility differential of the particle sik as follows:

duikðtÞ

dt

� �
4

¼ �lð4Þik

qQðtÞ

quikðtÞ

quikðtÞ

qaikðtÞ

� �2

þ
quikðtÞ

qpikðtÞ

� �2
" #

.

Hence we have

dQðtÞ

dt

� �
¼

qQðtÞ

quikðtÞ

duikðtÞ

dt

� �
4

¼ � lð4Þik

qQðtÞ

quikðtÞ

� �2

�
quikðtÞ

qaikðtÞ

� �2

þ
quikðtÞ

qpikðtÞ

� �2
" #

p0: &

Proof of Theorem 1. It follows that

X4
j¼1

hduikðtÞ=dtij

¼ lð1Þik þ lð2Þik

qJðtÞ

quikðtÞ
� lð3Þik

qPðtÞ

quikðtÞ

�

�lð4Þik

qQðtÞ

quikðtÞ

�
quikðtÞ

qaikðtÞ

� �2

þ
quikðtÞ

qaikðtÞ

� �2
" #

¼ �
qGikðtÞ

quikðtÞ

quikðtÞ

qaikðtÞ

� �2

þ
quikðtÞ

qpikðtÞ

� �2
" #
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and thus

dGikðtÞ

dt

� �
¼

qGikðtÞ

quikðtÞ

X4
j¼1

hduikðtÞ=dtij

¼ �
qGikðtÞ

quikðtÞ

� �2

�
quikðtÞ

qaikðtÞ

� �2

þ
quikðtÞ

qpikðtÞ

� �2
" #

p0.

Therefore, updating p
ðjÞ
ik and a

ðjÞ
ik by Eqs. (8) and (9),

respectively, gives rise to monotonically decreasing
the hybrid energy function GikðtÞ. &

Proof of Theorem 2. It is straightforward from
Lemmas 1–5 and Theorem 1. In summary, ðlð1Þik þ

alð2Þik Þ represents the autonomy degree to maximize
the personal utility of individual resource supplier
and user; lð2Þik represents the autonomous strength to
pursue the aggregate utility of systems; lð3Þik o2

ikðtÞ

represents the autonomous degree to maximize the
minimal personal utility among all the particles. The
lð4Þik represents the personality in terms of interac-
tions. &

Proof of Lemma 6. Let g41 hold true. Cð1Þik ðtÞ of
particle sik is a piecewise linear function of the
stimulus qikðtÞ, as shown by three segments:
Segment I, Segment II, and Segment III in Fig. 3.
By Eq. (6), a point is an equilibrium point, i.e.
dqikðtÞ=dt ¼ 0, iff �Cð2Þik ðtÞ ¼ Cð1Þik ðtÞ at the point. We
see that an equilibrium point may be on Segment I,
II or III in the case of g� 14�Cð2Þik ðtÞ40.

Suppose that the particle sik is at an equilibrium
point on Segment III or Segment I at time t0, and an
arbitrarily small perturbation Dqik to the equili-

brium point occurs at time t1, Since
qCð2Þ

ik
ðtÞ

qqikðtÞ
o1 and

qCð1Þ
ik
ðtÞ

qqikðtÞ
¼ �1 for qikðtÞo0 and qikðtÞ41, we have

c ¼
qCð1Þik ðtÞ

qqikðtÞ
þ

qCð2Þik ðtÞ

qqikðtÞ

" #
o0

and

D
dqik

dt
¼

dqik

dt

����
t1

�
dqik

dt

����
t0

¼
dqik

dt

����
t1

¼ D½Cð1Þik ðtÞ þCð2Þik ðtÞ�

�
qCð1Þik ðtÞ

qqikðtÞ
þ

qCð2Þik ðtÞ

qqikðtÞ

" #
Dqik ¼ �jcjDqik.
Hence dqik

dt
jt1 is always against Dqik; in other words,

the perturbation will be suppressed and the particle
sik hence returns to the original equilibrium point.

On the other hand, however, in the case of an
equilibrium point on Segment II, because there are
qCð2Þ

ik
ðtÞ

qqikðtÞ
X1� g and

qCð1Þ
ik
ðtÞ

qqikðtÞ
¼ g� 140; we have

c ¼
qCð2Þik ðtÞ

qqikðtÞ
þ

qCð1Þik ðtÞ

qqikðtÞ

" #
X0

and

dqik

dt

����
t1

�
qCð1Þik ðtÞ

qqikðtÞ
þ

qCð2Þik ðtÞ

qqikðtÞ

" #
Dqik ¼ jcjDqik,

which leads to the perturbation unchanged or
intensified, so that the particle sik departs from the
original equilibrium point on Segment II. Therefore,
an equilibrium point ðqikðtÞo0; vikðtÞ ¼ 0Þ on Seg-
ment I or ðqikðtÞ41; vikðtÞ ¼ 1Þ on Segment III,
e.g. points p3, p4 in Fig. 3, is stable; and an
equilibrium point on Segment II is unstable, e.g. the
point s2. &

Proof of Lemma 7. Due to g41 and �Cð2Þik ðtÞo0, an
equilibrium point must be on Segment III, e.g. p6 in
Fig. 3. Moreover, as stated in the proof of

Lemma 6,
qCð2Þ

ik
ðtÞ

qqikðtÞ
o1 for qikðtÞ41 guarantees that

any equilibrium point ðqikðtÞ41; vikðtÞ ¼ 1Þ on Seg-
ment III is stable. &

Proof of Lemma 8. By assumptions, an equilibrium
point must be on the Segment I. By Lemma 6, it
follows that an equilibrium point ðqikðtÞo0; vikðtÞ ¼

0Þ is stable. &

Proof of Lemma 9. Consider the equilibrium point
s3 in Fig. 3, i.e. ðqikðtÞ ¼ 1; vikðtÞ ¼ 1Þ: It follows
from the proof of Lemma 6 that a positive
perturbation of qik will be suppressed, whereas a
negative perturbation intensified, that is, s3 is saddle
point.

Similarly, we can prove that the equilibrium point
ðqikðtÞ ¼ 0; vikðtÞ ¼ 0Þ is also saddle point. &

Proof of Theorem 3. Note that Cð2Þik ðtÞ is not an

explicit function of qikðtÞ. Thus,
qCð2Þ

ik
ðtÞ

qqikðtÞ
¼ 0 holds true

and the condition 1� gpdCð2Þ
ik
ðtÞ

dqikðtÞ
p1 of Lemmas 6–8

is satisfied. It follows that an equilibrium point on
Segment II is unstable, the points s1 and s3 in Fig. 3
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are saddle points, and a stable equilibrium point
must be on Segment I or III.

Sufficiency Proof . �Cð2Þik ðtÞog� 1 implies that at
the point s3 there is dqik

dt
¼ Cð1Þik ðtÞ þCð2Þik ðtÞ ¼

g� 1þCð2Þik ðtÞ40, i.e. C1ðtÞa�C2ðtÞ. Thus the
point s3 is no equilibrium point of Eq. (6). More-
over, dqik

dt
40 at the point s3 leads to the increase of

qik from value 1. It turns out that it is impossible
that the dynamic state of the particle sik evolves into
Segment II from Segment III via the point s3.

On the other hand, �C2ðtÞ40 means that at the
point s1 there is dqik

dt
¼ Cð1Þik ðtÞ þCð2Þik ðtÞ ¼ Cð2Þik ðtÞo0.

Thus the point s1 is no equilibrium point of Eq. (6).
Moreover, dqik

dt
o0 at the point s1 leads to the

decrease of qik from zero. It turns out that it is
impossible that the dynamic state of the particle sik

evolves into Segment II from Segment I via the
point s1.

Because an equilibrium point on Segment II is
unstable and the points, s1 and s3, are not
equilibrium points, the dynamic state of the particle
sik must evolve irreversibly into Segment I from
Segment II via the point s1, or irreversibly into
Segment III from Segment II via the point s3.
Therefore, Eq. (6) has a stable equilibrium point on
Segment I or III.

Necessity Proof . Suppose that the Eq. (6) has a
stable equilibrium point. By contrary, we assume

�Cð2Þik ðtÞXg� 1 or �Cð2Þik ðtÞp0. In the case of

�Cð2Þik ðtÞXg� 1, the condition 0oqikðt0Þo1 leads

to that the dynamic state of particle sik never evolves

into Segment III (where �Cð2Þik ðtÞpg� 1) from

Segment II via the saddle point s3. In the case of

�Cð2Þik ðtÞp0, the condition 0oqikðt0Þo1 leads to the

dynamic state of particle sik never evolves into

Segment I (where �Cð2Þik ðtÞX0) from Segment II via

the saddle point s1. Hence the state of particle sik

always stagnates on Segment II, in contradiction
with the assumption of existing stable equili-

brium point. Therefore, 0o�Cð2Þik ðtÞog� 1 holds

true. &
Proof of Theorem 4. We define a Lyapunov func-
tion LðtÞ of GPM by

LðtÞ ¼
X
i;k

½0:5ð1� gÞvikðtÞ
2
�

	

þ

Z t

0

dvikðxÞ

dx
½�Cð2Þik ðxÞ�dx



.

By the conditions, g41; and �Cð2Þik ðtÞog� 1; we
have

jLðtÞjp
X
i;k

ðg� 1ÞjvikðtÞ
2
j

þ
X
i;k

Z t

0

dvikðxÞ

dx

����
����jCð2Þik ðxÞjdx

p
X
i;k

ðg� 1ÞjvikðtÞ
2
j

þ
X
i;k

Z t

0

dvikðxÞ

dx

����
����ðg� 1Þdx

p
X
i;k

ðg� 1ÞjvikðtÞ
2
j þ ðg� 1Þ

X
i;k

jvikðxÞj.

Since 0pvikðtÞp1 and g41, jLðtÞj is bounded.
Moreover, since

dviðtÞ

dqiðtÞ
¼

1 if 0oqiðtÞo1;

0 otherwise;

(

we obtain

dLðtÞ

dt
¼ �

X
i;k

ðg� 1ÞvikðtÞ
dvikðtÞ

dt
�
X
i;k

dvikðtÞ

dt
Cð2Þik ðtÞ

¼ �
X
i;k

dvikðtÞ

dt
½ðg� 1ÞvikðtÞ þCð2Þik ðtÞ�

¼ �
X
i;k

dvikðtÞ

dt

dqikðtÞ

dt

¼ �
X
i;k

dvikðtÞ

dqikðtÞ

dqikðtÞ

dt

� �2

p0.

The bounded LðtÞ will monotonically decrease as
the time elapses. Thus, the dynamics of GPM must
converge to a stable equilibrium state. &
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