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Abstract

This paper presents a novel generalized particle model for the parallel optimization of the resource allocation and task
assignment in complex environment of enterprise computing. The generalized particle model (GPM) transforms the
optimization process into the kinematics and dynamics of massive particles in a force-field. The GPM approach has many
advantages in terms of the high-scale parallelism, multi-objective optimization, multi-type coordination, multi-degree
personality, and the ability to handle complex factors. Simulations show the effectiveness and suitability of the proposed

GPM approach to optimize the enterprise computing.
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1. Introduction

The distributed enterprise computing is featured
by the geographically distributed resources and
jobs, heterogeneous collection of autonomous
systems, and collaboration based large-scale pro-
blem-solving. Since enterprise computing always
involves the resource allocation, task assignment,
and behavior coordination, their optimization in
complex environment is of great significance for the
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quality-assurance and performance-improvement of
enterprise computing.

Most of optimization methods [1-11] currently
used for the resource allocation and task assignment
in enterprise computing have the below limitations
and disadvantages:

e Do not consider the complex environment
related to multi-type coordinate, multi-degree
autonomy, multi-objective optimization and
multi-granularity coalition [1-4].

e Do not consider complex coordinations such as
unilateral, unaware and unconscious coordina-
tions, besides bilateral and conscious cooperation
or competition [10].

® Only consider completely unselfish or completely
selfish entity which tries to increase either the
aggregate utility or personal utility [2,5].
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o Need the global control, global information
access and global objective, hence lead to series
or small-scale parallel computation [8,9].

® Do not consider stochastic, emergent and con-
current phenomena such as congestion, failure
and priority change [11].

To overcome the above limitations, this paper
proposes a novel generalized particle model (GPM)
which transforms the optimization of enterprise
computing into the kinematics and dynamics of
massive particles in a force-field. The features of the
GPM-based optimization include the large-scale
parallelism, multi-objective optimization, multi-type
coordination, multi-degree autonomy, multi-granu-
larity coalition, and the ability to deal with complex
factors, e.g. congestion, failure, and priority. Simu-
lations show the effectiveness and suitability of the
proposed GPM approach to the enterprise comput-
ing optimization.

The structure of this paper is as follows. Section 2
elucidates the generalized particle model for the
resource allocation and task assignment. Section 3
discusses the generalized particle algorithm and its
properties. Section 4 highlights simulations and
comparisons. Finally, we conclude in Section 5.

2. Generalized particle model

Consider the parallel distributed resource alloca-
tion among users of enterprise computing. Let
G(t) = {Gy,..., Gy} be a finite set of resource users,
and A(t) ={A4,,...,A4,} be a finite set of resource
suppliers in the time session 7. The supplier A;
provides the user G; with the resource a;(¢) at time ¢,
and meanwhile the user G; offers the payment p; ()
for the unit resource of A4;. The supplier 4; uses the
intention strength {;(¢) with respect to the user G; to
describe the influence of complex environment, such
as interaction, congestion, failure, and priority. We
thus obtain an assignment matrix S(¢) = [si(¢)],1xm>
as shown in Fig. 1, where s;;(2) = (a;(2), p;(2), {;(9)).
For convenience, they are normalized such that
0<a;()<1,0<py(n<1,and —1<{;< + 1.

The conceptual diagram of a GPM for the
enterprise computing optimization is shown in
Fig. 2, where the particle sz in a force-field
corresponds to the entry s; in the assignment
matrix S. A particle may be driven by several kinds
of forces that are produced by the force-field, other
particles and itself. The gravitational force pro-
duced by the force-field tries to drive a particle to

G . G
an(t),pu(t), Cu(t) a1 (t); Prm (1), Cim (1)

A

Ai (l”( ) le( ) <1l( ) ‘Lmb( ) prm( > (mt( )

A | an(t), pra(t), Gui(t) A ()5 Prom (1), G (1)

Fig. 1. The assignment matrix for the enterprise computing
optimization, S(t) = [six(1)],,,» Where s;;(7) = (a,-j(t),pl-j(t), ().

upper boundary of force-field F

‘\1 Si;
/I;ﬁ 1

bottom boundary of force-field

Fig. 2. Generalized particle model for the enterprise computing
optimization.

move towards boundaries of the force-field, which
embodies the tendency that a particle pursues
maximizing the aggregate benefit of systems. The
pushing or pulling forces produced by other
particles are used to embody social coordinations
among resource suppliers and users. The self-
driving force produced by a particle itself represents
autonomy and personality of individual supplier
and users. The resultant force on a particle drives
the particle to move in the force-field. In this way,
the GPM transforms the optimization problem of
resource allocation for enterprise computing into
the kinematics and dynamics of particles in a force-
field.

Definition 1. Let u;(¢) be the utility of particle sy at
time ¢, and let J(f) be the aggregate utility of all
particles. They are defined by

uir(t) = oik[1 — exp(—py(Dau (1)), (1)

n m

J(0y= o) > (o), ()

i=1 k=1

where o, >0, and o is related to the activities of
supplies 4; and user G;, such as congestion degree,
failure rate, and priority level.

Definition 2. At time ¢, the potential energy function
P(r) that is related to the gravitational force of
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force-field F is defined by

m

P(t) =& In i Z exp[—ui(1)/2e*] — & Inmn,  (3)

i=1 k=1

where 0 <e< 1.

Definition 3. At time ¢, the potential energy function
QO(r) that is related to interactive forces among
particles is defined by

o =¢Y
i=1

=3 [t exp=genn 0,51,

ik

2

S aw(0) - i)
k=1

“4)
where 0 < &< 1; r; is the capacity of resource supplier
A;. The second term of () represents social
coordinations among them, where —1<{; < + 1.

Definition 4. The hybrid energy function of the
particle sy at time ¢ is defined by

Tty = =2 uge () — 227 (0) + 2 P(2) + 20 0(0),
(5)

where 0< 24, 20,09, 1P < 1.

Definition 5. Let the coordinate origin be located at

the central line between the upper and bottom

boundaries of force-field F, and ¢, () be the vertical

coordinate of particle sy at time ¢. The dynamic
equation for particle s is defined by

dgy(0)/de = PP (0) + PR, (6)

PO = —qu () + yvi(o), (6a)

POt = Iy + ; Wi (t) + -21 wiug(1),  (6b)
J= j=

where y>1, I is a constant bias. The weight wy
represents the polymerization strength of particles,
sic and sy, and w; represents the polymerization
strength of particles, s and s;. The dynamic state
vik(?) 1s a piecewise linear function of ¢, (7), which is
defined by

0 if ¢3(1)<0,
vi(t) = { qu() 1 0<qu(<1, (7)
1 if g (0)>1.
Parallel Algorithm (GPMA).

Costep 1. Initiate in parallel ai(2y), py(to) and
gi(to) forie{l,...,n}, ke{l,...,m}.

Costep 2. By Eq. (1), calculate in parallel the
utility uu(¢) of every particle s; in force-field F at
time .

Costep 3. Calculate in parallel ?’5}()(1) by Eq. (6a),
and 'Pf,f (1) by Eq. (6b) of every particle s.

Costep 4. If all particles reach their equilibrium
states at time ¢, then finish with success; otherwise,
modify ay and p;, by the following Egs. (8) and (9),
respectively, then go to Costep 2:

Oup(t) |, dJ(1) .3 dP(1)
dpy(0)/de = 2 + 2
/A= Fy g & T S dp0)
do() 5
— @ +.9¢.(0), 8
ik dpik(t) ik qk() ( )
Quy(t) 2 dJ (1) 3 dP(2)
: S e Y — 9
(D41 = 24 0@ T Gag ()~ dag(t)
do()
@ ®)
)'ik daik(t) + j'ik %k(t)’ (9)

where 0 < ig.i) <lI.

3. Properties of generalized particle model

We summarize properties of GPM to optimize
enterprise computing in the below lemmas and
theorems, which involve the correctness, conver-
gency and stability of GPM. Their proofs are given
in Appendix.

Lemma 1. The first and second terms of Egs. (8), (9)
enable the particle sy, to increase the personal utility
of the resource supplier A; from the user Gy, in direct

proportion to (Zg,l{) + oc/lgi)).

Lemma 2. Updating p; and ay by Egs. (8), (9),
respectively, gives rise to monotonic increase of the
aggregate utility of all the particles, in direct
proportion to aif.z).

Lemma 3. If ¢ is very small, then decreasing the
potential energy P(t) of Eq. (3) amounts to increasing
the minimal utility of all the particles.

Lemma 4. The third terms of Egs. (8), (9) enable the
particle sy to increase the minimal utility of all the
particles, in direct proportion to ig;j)w?k(t), where

@i (1) = exp[—(u(t))* /2¢%] ZeXp[—uik(t)z/%z].
p)

Lemma 5. The fourth terms of Egs. (8), (9) enable

the particle sy. to monotonic decrease of the potential
L. . “4)

energy Q(t), in direct proportion to the value of ;.
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Theorem 1. Updating p; and ay by Egs. (8), (9),
respectively, gives rise to decreasing the hybrid energy
function Ty (), where every particle may autono-
mously determine its optimization objective according
to its own personality and intention.

Theorem 2. The algorithm GPMA can dynamically
optimize in parallel the resource allocation for
enterprise computing in the context of multi-type
social coordination, multi-degree autonomy and
multi-objective optimization.

(2)

Lemma 6. If y—1> — 'I’E,?(l)>0, a;;{:’((t;)<l for
@y

45(<0 and qu(H)>1; and a;;:é?;l —vy for

0<qy ()< remain valid, then a stable equilibrium
point of the particle sy will be either (q;(t)<0,
bi() = 0) or (qu(t)> 1, vs(t) = 1) (see Fig. 3).

(2)
Lemma 7. If y>1,—?f§z)(t)<0 and aaq;’:((f))<l for

q:(t) > 1 remain valid, then a stable equilibrium point
of the particle sy will be (q;(t)>1,vy(f) = 1).

AR 0)
g (1)
stable equilibrium point of the particle sy will be

(7)< 0,vi(1) = 0).

Lemma 9. If y>1,
oD (1)
Oqy (1)
equilibrium point (qy(¢t) = 1,va(f) = 1) is saddle

. . avP (1) ' —0
point. Moreover, if y>1, RO <1 for qu(t) =1

Lemma 8. <1 for q;(t) <0 remain valid, then a

v 0
s <1 for qu()=1"" and

>1—y for q;(t) = 170 remain valid, then the

¥ (1)
ik _ 110 . .
and RG] =1 —v for q4(t) = 17" remain valid, then
vy, )
Wi 0) 2
yi(t), ¥>1
<o) > -1
n vik(t)
Segment 1 53 ’ ’

p 71> -0 >0

s9
b3 q

5 Segment II\ D5

1 2

saddle point

P2

R ik (t
stable point_ pg 3 alt)

—v@ (1) <0
Segment 11

—qik(t)-..

Fig. 3. When y>1, the possible equilibrium points of the
dynamic status v (f) of a particle sz. The point where —‘I’E,f)(t)
equals ‘Pf,l)(t) is an equilibrium point. The symbols, e, A and <,
denote a stable equilibrium point, saddle point and unstable

equilibrium point, respectively.

the equilibrium point (q;(t) = 0,vx(¢) = 0) is saddle
point.

Theorem 3. If y>1 and 0<q;(t0) <1 remain valid,
then the dynamical Eq. (6) has a stable equilibrium
point iff 0< — EPE,E)([)<"/ -1

Theorem 4. If the condition of Theorem 3 remains
valid, then GPM will converge to a stable equilibrium
state.

4. Simulations

Some simulation results on the algorithm GPMA
for the enterprise computing optimization in the
context of resource allocation and task assignment
in complex environment are given as follows.

® Influence of problem size on the utility for
enterprise computing optimization: For different
problem sizes, the transients of the minimal
personal utility among all the particles and the
aggregate utility of all the particles during
executing the algorithm GPMA are shown in
Figs. 4 and 5, respectively. We can see that for
different problem sizes using the GPMA always
gives rise to the increase of the minimal personal
utility.

® The influence of problem size on optimization
criteria: In order to evaluate the optimality
performance of GPMA, we use the three criteria:

the minimum utility of different problem complexity

0.035
0.03
0.025
2
= - = utility 40by40
= -+ utility 30by30
0.02 — utility 20by20
§ — utility T0by10
g
=t
-2 0.015
g
Q
< i
001 | }°
0.005
0
0 5 10 15 20 25 30 35 40 45 50

iteration no

Fig. 4. For different problem sizes, the transient of minimal
personal utility among all the particles during executing the
algorithm GPMA, where the number of particles 100, 400, 900,
1600 corresponds to problem sizes: 10 x 10; 20 x 20; 30 x 30;
40 x 40, respectively.
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the total utility value of different problem complexity
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s0 |
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g
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Fig. 5. For different problem sizes, the transient of the aggregate
utility of all the particles during executing the algorithm GPM.

RUR and USR of different problem complexity
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Fig. 6. For different problem sizes, the transients of the
aggregate utilization rate of resources and the aggregate
satisfactory degree of users during executing the algorithm
GPMA.

the fairness FN, resource utilization rate RUR,
and user satisfactory degree USD. For different
problem sizes, the transients of the aggregate
utilization rate of resource suppliers, and aggre-
gate satisfactory degree of resource users are
shown in Fig. 6.

® Comparisons: The comparisons between the
algorithm GPMA and the famous Max—Min
algorithm (MMA) are shown in Fig. 7, which
demonstrate that, for different problem sizes,

09 E

08

0.7

° Ll
g L
= 05 | o 1
= H
> pas
04 o 1
kS — RUR in GPM
< - - USR in GPM
03 | , —- - Fairness in GPM )
= ... RUR in MM
o | . -~ USRin MM ]
- K —+ fairness in MM
a
o1 7 1
4
./.
0 : . : : ]
0 10 2 30 40 50 60
iteration

Fig. 7. For 30 x 30 problem size, the performance comparison
between GPAA and the Max—Min Algorithm in terms of
transients of the allocation fairness, aggregate utilization rate of
resource suppliers, and aggregate satisfactory degree of resource
users.

GPMA can converge to a stable equilibrium
solution much faster than the MMA. The
algorithm GPMA exhibits much better optim-
ality performance than MMA in terms of the
aggregate utilization rate of resource suppliers
and aggregate satisfactory degree of resource
users, whereas they have almost approximately
equal allocation fairness.

5. Conclusions

We propose a new generalized particle model
(GPM) for parallel optimization of resource alloca-
tion and task assignment in complex environment
for enterprise computing. We give the GPM-based
algorithm and prove its properties in detail. GPM
may deal with multi-type coordination, multi-degree
autonomy, multi-objective optimization, multi-
granularity coalition, and some complex factors
such as congestion, failure and priority. The GPM
approach also has advantages in terms of paralle-
lism and feasibility for hardware implementation by
VLSI technology.

Appendix

Proof of Lemma 1. Denote the jth terms of Egs. (8)

and (9) by (%);‘ and (%) ;> respectively. (—dag‘,(t))l

and (%)1 give rise to the utility differential of the
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particle s as follows:

 Ouy (1) <dp,~k(t)> Ou (1) <da,-k(t)>
0] d¢ Oay (1) dr /,

= (@ufk(t))2 n <6ufk(l)>2 ~0.
opir(1) ai (1)
Similarly, (2£2), and (240)) give rise to

_ Ou(1) <dpik(f)> Qu (1) <ddik(f)>
C Opy(t)\ dt dag()\ dt /,
-, Oui (1) dJ(2) b)) Oui (1) dJ(2)
K Opy(t) dpy(r) ™ day (1) day(?)
_ 0 Ouy(t) 0J(1) Ouu(r)
& Bpu(t) duu(t) Opy (1)
Jre) Ouy(¢) 0J(1) Ouyu(1)
* day (1) du(t) daudr)

ou; (z)>2 (au,-k(r)>2

,(2) k

= ol + =0.

[ <aptk(t) aaik(t)
Therefore, the joint differential of utility u;(¢) is
directly proportional to (}(1) + odgi)). O

d”tk(t)/dt

(duy(2)/d1),

Proof of Lemma 2. It is straightforward from the
proof of Lemma 1. [

Proof of Lemma 3. Suppose that
maXak{—ufk(t)}. We have

26
ZZexp(—u?km/st)]

i=1 k=1

H(t) =

[exp(H(1)/26)] <

<[mnexp(H(t)/ 232)]2£

Taking the logarithm of both sides of the above
inequalities leads to

H()<2n Z i exp(—3,(1)/2¢%)

i=1 k=1
<H(t) + 2¢* Inmn.

Since mn is constant and ¢ is very small, we have

H(f) ~ 2¢% In Z Z exp(—u (1)/2¢%)

i=1 k=1
—2¢2 Inmn = 2P(1).

It results that the potential energy P(¢) at the time ¢
represents the minimum among all the u; (7). Hence
decreasing the potential energy P(f) will result in
increasing the minimum among all the u;(¢)’s. O

Proof of Lemma 4. Similar to the proof of the
Lemma 1, the third terms of Egs. (8), (9) give rise to
the utility differential of the particle s; as follows:

<duik<r>> _ 0 0P0) (au,-k<t>)2 N (auik(t))z
dr /5~ 7% duy(r) | \Qau(t) pp() |’

Thus the third terms of Egs. (8), (9) cause the

component, (dP (t) of 4 (’) as follows:
dP(n)\ _ 0P(t) /duy (1)
de / dug(t)\ dt /,
0 oP (l)
ik auzk(t)

2
o (a”ik(t)) i <auik([)> <.
Oaix (1) Opi(2)
It turns out that the third terms of Egs. (8), (9) give
rise to monotonic decrease of P(f). Then by Lemma
3, they result in the increase of the minimal utility

arglong all the particles, in direct proportion to
Q% (1), O

Proof Lemma 5. Similar to the proof of the Lemma
1, the fourth terms of Egs. (8), (9) give rise to the
utility differential of the particle sy as follows:

<du,»k<r>> _ @000 (auik(o)z N (auik(t))z
e/, * duy (1) | \Oai(1) Opi (1) )
Hence we have
<dQ(t)> _00(») <d“ik(t)>

dt /  Qug()\ dt /,

_ @ [aQ(l)r

W B (1)
dui()\* | (Qui()\’
XKaa[k(z)) +(Geis) ]@' -

Proof of Theorem 1. It follows that

4
> (dug()/d),
=
M 0 oJ (1) @) OP(1)
P’k A ) )

w200 ][ (a0 | (w0
i Qui(t) Oai (1) Oaik (1)

0! (aulk(r)>2 N (au,»k(n)Z
Oujr (1) | \Oau(?) Opu(t)
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and thus
dl(n)\  oru(7) 4
< dz > B @uik([) /:Zl<dulk(t)/d[>j
ory(n]?
- |

2 2
y (auik(l)) i <auik(t)> <.
Oax (1) Opy(t)
Therefore, updating pl. ) and a by Eqgs. (8) and (9),

respectively, gives rise to monotonlcally decreasing
the hybrid energy function 'y (7). O

Proof of Theorem 2. It is straightforward from
Lemmas 1-5 and Theorem 1. In summary, (A
i( )) represents the autonomy degree to maximize
the personal utility of individual resource supplier
and user; A(k represents the autonomous strength to
pursue the aggregate utility of systems; /1(3) 2 (1)
represents the autonomous degree to maximize the
minimal personal utility among all the particles. The
A,i) represents the personality in terms of interac-
tions. [

Proof of Lemma 6. Let y>1 hold true. ‘Pﬁ,l()(t) of
particle s; is a piecewise linear function of the
stimulus ¢;(z), as shown by three segments:
Segment I, Segment 11, and Segment III in Fig. 3.
By Eq. (6), a point is an equilibrium point, i.e.
dgy(0)/de = 0, iff =¥ (1) = ¥{(2) at the point. We
see that an equilibrium point may be on Segment I,
IT or 11T in the case of y — 1> — 'P},?(l)>0.
Suppose that the particle si is at an equilibrium
point on Segment III or Segment I at time ¢, and an
arbitrarily small perturbation Ag; to the equili-

PP
e < 1 and

brium point occurs at time #;, Since

PP 1R 0 and . N
3, — L lor ¢x(1)<0 and g, (1)>1, we have
QP | VW
C
Oqu () 0qy(0)
and
39 _ daw| _ daw| _ day
dt dt dz dr |,
= A[avf,?m + ‘Pf,?(t)]
W) AL
+ |C|quk'
Oqu ()~ 0qy (1)

dql/c

Hence —j%|,, is always against Ag,, in other words,
the perturbatlon will be suppressed and the particle
sy hence returns to the original equilibrium point.
On the other hand, however, in the case of an
equilibrium point on Segment II, because there are

LaR0) v ’
s = 1 —vand Zion =y — 1>0, we have
¥R o)
Oqu (1)~ Ogy()
and
doy|  [orgo evPol,
dt 0q,,. (1) da. die = lclAgy,
3l Qi qlk([)

which leads to the perturbation unchanged or
intensified, so that the particle s departs from the
original equilibrium point on Segment I1. Therefore,
an equilibrium point (g;(¢)<0,v(#) = 0) on Seg-
ment I or (¢qu;(9)>1,vx(#) =1) on Segment III,
e.g. points p;, p, in Fig. 3, is stable; and an
equilibrium point on Segment II is unstable, e.g. the
point s,. [

Proof of Lemma 7. Due toy>1and —?’Ei)(t) <0, an
equilibrium point must be on Segment I1I, e.g. pg in
Fig. 3. Moreover as stated in the proof of

Lemma 6, arlk(r) <1 for ¢;(f)>1 guarantees that

any equilibrium point (g;(¢)>1,vz(#) = 1) on Seg-
ment III is stable. [

Proof of Lemma 8. By assumptions, an equilibrium
point must be on the Segment I. By Lemma 6, it
follows that an equilibrium point (g;(¢) <0, vi(?) =
0) is stable. O

Proof of Lemma 9. Consider the equilibrium point
s3 in Fig. 3, ie. (g4(0) = 1,vx() = 1). It follows
from the proof of Lemma 6 that a positive
perturbation of g; will be suppressed, whereas a
negative perturbation intensified, that is, s3 is saddle
point.

Similarly, we can prove that the equilibrium point
(g (1) = 0, v (f) = 0) is also saddle point. [
Proof of Theorem 3. Note that P )(t) is not an

ik
6‘1[_ ()

explicit function of ¢, (¢). Thus, s =0 holds true
and the condition 1 — y< dlp"“((r;)gl of Lemmas 6-8

is satisfied. It follows that an equilibrium point on
Segment II is unstable, the points s; and s3 in Fig. 3
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are saddle points, and a stable equilibrium point
must be on Segment I or III.

Sufficiency Proof . W(z)(t)<y 1 implies that at
the point s3 there is dq" ?’f}()(l) + 'I’(2)(t) =

y—1+ qff,?(r)>o, ie. aﬂl(z);é (7). Thus the
point s3 is no equilibrium point of Eq. (6). More-
over, dg;" >0 at the point s3 leads to the increase of
¢ from value 1. It turns out that it is impossible
that the dynamic state of the particle s;; evolves into
Segment II from Segment III via the point s3.

On the other hand, —¥,(¢#) >0 means that at the
point s; there is ‘t‘j’—;" = 'Pf,,?(t) + Y/f.i)(t) = 'I/E,f)(t)<0.
Thus the point s is no equilibrium point of Eq. (6).
Moreover, %<O at the point s; leads to the
decrease of g; from zero. It turns out that it is
impossible that the dynamic state of the particle sj
evolves into Segment II from Segment I via the
point sy.

Because an equilibrium point on Segment II is
unstable and the points, s; and s3, are not
equilibrium points, the dynamic state of the particle
sy must evolve irreversibly into Segment I from
Segment II via the point sy, or irreversibly into
Segment III from Segment II via the point s3.
Therefore, Eq. (6) has a stable equilibrium point on
Segment I or III.

Necessity Proof . Suppose that the Eq. (6) has a
stable equilibrium point. By contrary, we assume

—‘I’E?(t))y —1 or —Y’Ei)(t)go. In the case of
—'I’ﬁ,?(t))y — 1, the condition 0<g;(%)<1 leads
to that the dynamic state of particle s; never evolves
into Segment III (where —E{’fi)(t)gy — 1) from
Segment II via the saddle point s3. In the case of
—‘I’fi)(t)<0, the condition 0 < g, (f9) <1 leads to the
dynamic state of particle s; never evolves into

Segment I (where —‘PE,?(Z)?O) from Segment II via
the saddle point s;. Hence the state of particle sy
always stagnates on Segment II, in contradiction
with the assumption of existing stable equili-
brium point. Therefore, 0 < — 'I’g,f)(t)<y — 1 holds
true. O

Proof of Theorem 4. We define a Lyapunov func-
tion L(¢) of GPM by

£ = S-{ 0501 = Do’

ik

"du(x) %)
+ \/0 T[_lpik (X)] dx}

(2)

ik

By the conditions, y>1, and —¥
have

IL(OI< Y (¢ — Dlva(’|
ik

"dwir(x)
+ Z/O dx

Z(v — Dloa(1)’]

/ dvir () (7 — 1)dx

H<y—1, we

PP ()l dx

dx

< Z(v = Dlva® 1+ = DY ).
ik ik

Since 0<vy(f)<1 and y>1, |L(¢)| is bounded.
Moreover, since

o) { 1 if 0<gi(n<1,

dg;(t) | 0 otherwise,

we obtain

dL(t dog(¢ dou (¢
T S R B P U

Zd””‘(’) [ — Do() + P20

do(2) dg (1)

de  dt
_ dvir(1) (dgy (1) 2<0_
7w dgu () \ de

The bounded L(¢) will monotonically decrease as
the time elapses. Thus, the dynamics of GPM must
converge to a stable equilibrium state. [
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