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We investigate the nonextensivity and the q-distribution of a relativistic gas under an external electromagnetic field. We derive an 
expression for the nonextensive parameter q based on the relativistic generalized Boltzmann equation, the relativistic q-H theorem 
and the relativistic version of the q-power-law distribution function in the nonextensive q-kinetic theory. We thus provide the 
connection between the parameter q≠1 and the spatial-temporal derivatives of the temperature field of the gas as well as the 
four-potential, and thereby present a clearly physical meaning for the nonextensivity for the relativistic gas. 
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In recent years, nonextensive statistical mechanics (NSM) 
has been considered as one of the generalizations of Boltz-
mann-Gibbs (BG) statistics. NSM has been studied on the 
basis of Tsallis entropy [1], with the nonextensive parame-
ter q different from unity, in the form of 
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where pi is the probability that the system under considera-
tion is in its ith configuration and k is Boltzmann constant. 
This entropy is nonextensive for the parameter q≠1 and the 
deviation of q from unity is said to represent the degree of 
nonextensivity. Taking the limit q→1, Sq reduces to the BG 
entropy, lni i iS k p p  , and extensivity is recovered. 

NSM has attracted a great deal of attention both from 
theoretical study and experimental observation [2]. When 
many traditional theories in BG statistics have been gener-
alized in the framework of NSM and have been applied to 
various interesting fields, we need to know under what  

circumstances, e.g. which class of nonextensive systems and 
under what physical situations, can NSM be used for the 
statistical description. Thus, understanding the physical 
meaning of q and determining this parameter from the un-
derlying microscopic dynamics of the systems under con-
sideration has become very important problems in NSM and 
for its applications. In this aspect, some theoretical research 
has been done (e.g. see [3–11] and the references therein), 
in which self-gravitating systems and plasma systems have 
offered the best framework to research the nonextensive 
effects [4–8,12–24]. 

In particular, the expression for the nonextensive param-
eter q has been determined rigorously by the generalized 
Maxwell-Boltzmann (MB) distribution, the generalized 
Boltzmann equation and the q-H theorem in the framework 
of NSM, thus the nonextensivity is related to some nonequi-
librium properties of the systems with long-range interac-
tions (e.g. gravitational forces and Coulombian forces) 
[4–11]. In other words, we now know that, for NSM, the 
parameter q different from unit is related to the temperature 
gradient and the potentials of the systems such as self-grav-     
itating systems and plasma systems. Thus NSM can be  
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reasonably applied to describing the thermodynamic prop-
erties of the systems under an external field when they are 
in the nonequilibrium stationary-state. Recently, the above 
theory has led to an experimental test of NSM using the 
solar sound speeds in the helioseismological measurements 
[21].  

Recently, the stationarity, ergodicity and entropy in rela-
tivistic systems were analyzed [25], and a close connection 
between time parameters and entropy in special relativity 
was revealed. The generalized Boltzmann equation and the 
q-H theorem for a relativistic case are studied in the 
q-kinetic theory, where an expression of the nonextensive 
four-entropy flux is given [26] by 
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Following the lines from the kinetic theory presented in 
[4,5,8], in this work, we derive the expression of the nonex-
tensive parameter q≠1 for the relativistic gas and then pre-
sent it a physical interpretation for a relativistic gas under an 
external electromagnetic field. 

1  The physical interpretation for q-parameter 

We consider a relativistic gas of N-point particles of mass m 
enclosed in a volume V and under the action of an external 
Lorentz four-force field, 
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where the particles have four-momentum p p = (E/c, p) 

at the point ( , )x x ct  r  of the space-time, with the 

energy E/c =
2 2 2m cp , Q is the charge of the particle, 

and Fuv is the Maxwell electromagnetic tensor. The index μ 
takes its usual values 0, 1, 2, 3, which identify one time and 
three space coordinates. The states of this gas can be char-
acterized by a Lorentz invariant one-particle distribution 
function, fq(x, p). Thus at each time t, fq(x, p)d3xd3p gives the 
number of particles in the volume element d3xd3p around 
the space position x and momentum p. The evolution equa-
tion of the relativistic distribution function is assumed to be 
the relativistic generalized Boltzmann equation in the q- 
kinetic theory [26]: 
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where 1( , )c t
     are the respective derivatives with 

respect to the time-space coordinates, and Cq(f) is the rela-
tivistic q-collisional term. The relativistic version of the 
power-law distribution in the framework of NSM can be 
obtained as a natural consequence of the relativistic q-H 

theorem: 
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where (x) and (x) are arbitrary space-time-dependent 
parameters. For the above relativistic gas in the presence of 
an external electromagnetic field, it can be written [26,27] 
as 

 

1
1 1( )

( , ) 1 1 ,
q

q q

u p c QA x U
f x p nB q

kT

 


          
    

 

(6) 

where n is the particle number density, Bq a normalization 
constant, u the Gibbs function per particles, Uμ the mean 
four-velocity of the gas and A(x) is the four-potential. It is 
clear that, in the limit q→1, eq. (6) recovers to the well- 
known relativistic Juttner distribution [28,29]: 
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To determine the expression for the nonextensive param-
eter, according to the relativistic q-H theorem, the solution 
of eq. (4) will evolve towards the power-law distribution 
function, eq. (6), the q-collision term vanishes, Cq(fq)=0, and 
eq. (4) reduces to 
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In other words [30], the distribution function (6) must 
satisfy eq. (8). For the sake of convenience, we can write 
the equation for 1 ( , )q

qf x p  as 
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From eq. (6), we have 
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Then, 
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and 
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Substituting eqs. (11) and (12) into eq. (9), we have 
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Eq. (13) is considered identically null for any arbitrary 
variable p, and hence the sum of the coefficients of each 
power for p must be zero. We therefore derive the sum of 
the coefficients in eq. (13), for the first-order term in p, as 
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and, for the second-order term in p, as 
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Substituting eq. (15) into eq. (14), we find the relation 
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Furthermore, let Fv be a dissymmetry tensor and make use 
of the relation [30] 

 .F A A  
      (17) 

Eq. (16) becomes 
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Thus, we obtained an expression for the nonextensive 
parameter q≠1 for the relativistic gas under an external 

electromagnetic field. Eq. (18) provides a connection be-
tween the parameter q≠1 and the space-time derivatives of 
the temperature field of the gas as well as the four-potential, 
and therefore provides a clearly physical interpretation for 
the nonextensivity for the relativistic gas. We find that q is 
different from unity if and only if the quantity T  is dif-

ferent from zero. If the temperature field satisfies 0T  , 

then we have q=1, corresponding to the standard case in BG 
statistics. If the temperature field is 0T  , then we have 

q≠1, corresponding to the case of NSM. Thus, the nonex-
tensive parameter q≠1 is related closely to the spatial- 
temporal inhomogeneity of the temperature field of a 
nonequilibrium relativistic gas in an external electromag-
netic field. 

2  Conclusion 

In summary, we investigated the nonextensivity and the 
power-law distribution of a relativistic gas under the influ-
ence of an external electromagnetic field. We derived an 
expression for the nonextensive parameter q based on the 
generalized relativistic Boltzmann equation, the relativistic 
q-H theorem, and the relativistic version of the q-power-law 
distribution function in the nonextensive q-kinetic theory. 
We thus provided the connection between the parameter 
q≠1 and the space-time derivatives of the temperature field 
of the gas as well as the four-potential, and thereby we can 
present a clearly physical meaning for the nonextensive 
parameter q≠1 for the relativistic gas. Nonextensivity is 
related closely to the spatial-temporal inhomogeneity of the 
temperature field of a nonequilibrium relativistic gas under 
an external electromagnetic field. 
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