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Minimum-Distance Parametric Estimation Under
Progressive Type-I Censoring

Narayanaswamy Balakrishnan, Member, IEEE, Laurent Bordes, and Xuejing Zhao

Abstract—The objective of this paper is to provide a new esti-
mation method for parametric models under progressive Type-I
censoring. First, we propose a Kaplan-Meier nonparametric esti-
mator of the reliability function taken at the censoring times. It
is based on the observable number of failures, and the number of
censored units occurring from the progressive censoring scheme at
the censoring times. This estimator is then shown to asymptotically
follow a normal distribution. Next, we propose a minimum-dis-
tance method to estimate the unknown Euclidean parameter of a
given parametric model. This method leads to consistent, asymp-
totically normal estimators. The maximum likelihood estimation
method based on group-censored samples is discussed next, and
the efficiencies of these two methods are compared numerically.
Then, based on the established results, we derive a method to ob-
tain the optimal Type-I progressive censoring scheme, Finally we
illustrate all these results through a Monte Carlo simulation study,
and an illustrative example.

Index Terms—Asymptotic distribution, Kaplan-Meier esti-
mator, martingale, maximum likelihood estimator, minimum-dis-
tance estimator, minimum variance linear estimator, Nelson-Aalen
estimator, optimal progressive censoring scheme, progressive
Type-I censoring scheme.

ACRONYMS

MLE maximum likelihood estimate(or)

MDE minimum distance estimate(or)

WSBE weighted sum of the best estimator

OWSBE sum of the best estimator with optimal weights

CDF cumulative distribution function

CHF cumulative hazard function

NOTATION

real -dimensional Euclidean space

total number of units placed on test
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number of censored stage

parameter set
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number of units failed in

number of units censored at time

proportion of the censored units,
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, and

filtration

likelihood function

Fisher’s information matrix

converge in probability

converge in distribution

I. INTRODUCTION

I N PRACTICAL life-testing experiments, one often en-
counters incomplete data (such as censored data, and

truncated data) for which many inferential methods have been
developed; see, for example, [1]–[4] for elaborate discussions
in this direction. When it is necessary to reduce the cost and/or
the duration of a life-testing experiment, one may choose to
terminate the experiment early, which results in the so-called
censored sampling plan, or censored sampling scheme. Many
types of censoring have been discussed in the literature, with the
most common censoring schemes being Type-I right censoring,
and Type-II right censoring. Generalizations of these censoring
schemes to progressive Type-I, and Type-II right censoring
have also been discussed [5]. Progressively censored samples
are observed when, at various stages of an experiment, some of
the surviving units are removed from further observation. The
remaining units are then continued on test under observation,
either until failure, or until a subsequent stage of censoring.
Progressive censoring schemes have been found to be useful in
reliability analysis, product testing, and animal carcinogenicity
experiments.

Considerable attention has been paid in recent years to
parametric, semi-parametric, and nonparametric estimation
under progressive Type-II censoring [6]–[10]; whereas for pro-
gressive Type-I censoring, relatively little work has been done.

0018-9529/$26.00 © 2010 IEEE
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From a non-parametric estimation viewpoint, [11] has studied
the asymptotic behavior of the estimator of the reliability
function under two types of progressive Type-I censoring using
both martingale, and empirical processes theory. References
[12]–[14] discussed the problem of estimation, and asymptotics
for progressively Type-I right censored step-stress experiments,
under an exponential cumulative exposure model. References
[15], and [16] similarly discussed the same step-stress problem
in the case of Type-I, and Type-II hybrid censored samples.
Reference [17] considered some problems relating to the max-
imum likelihood estimation for the exponential distribution
under progressive Type-I censoring, and changing failure rates.

In this paper, we consider a progressively Type-I cen-
sored sample defined by the progressive censoring scheme

(or in [0, 1); see [11]), and
pre-fixed censoring times . Suppose -indepen-
dent units are placed simultaneously on a life-test at time
0. Let denote the number of observed
failures in the time interval , with . If at time

the number of surviving units is more than
, then is the number of surviving units that are selected at

random, and removed (censored) from the life-test at time .
Otherwise, all the surviving units are removed from the test.
The life-test ends at time (at the latest), which means that
all surviving units at time are all censored at that time point.

In the case of the exponential distribution , where
is the hazard rate, under a single-stage Type-I censored sample
(i.e., case ), [18] obtained an estimator of as

(1)

and showed the asymptotic property that

where denotes the reliability function, and denotes the
weak convergence.

When the failure times are observed, where
is random, the maximum likelihood estimator of is

(2)

and further

Fig. 1 gives a comparison of the variances of and
as a function of when . It can be seen that the op-
timal censoring time for the MLE in (2) is , while for
Bartholomew’s estimator in (1) the optimal censoring time is fi-
nite. This result implies that, for the estimator in (1), an optimal
censoring time can be determined by minimizing the vari-
ance of the estimator.

Because order statistics arising from a multi-stage progres-
sive censoring scheme are both left, and right truncated, it is

Fig. 1. Comparison of variances for � � � � �: Bartholomew’s estimator
��� versus the MLE ���.

difficult to handle the likelihood function; and for this reason,
most of the inferential works are numerical in nature [9]. What
we propose here is to use only partial information from such a
progressively Type-I censored sample, to use the information on
the number of failures occurring in each interval , and
the number of censored units at each time . The main idea here
is to develop a non-parametric estimate of the reliability func-
tion at points [2], [4]. Then, for a given parametric model,
the unknown Euclidean parameter is obtained by the value
which minimizes a distance between the parametric reliability
function and its nonparametric reliability estimate. In this sense,
the work here extends the work of [18] because in (1) min-
imizes .

Properties of consistency and asymptotic normality of the
proposed estimator are considered. Moreover, given esti-
mates of , a minimum variance linear combination of these
estimates can be obtained from an -stage sampling scheme.
Furthermore, the maximum likelihood estimator for group-cen-
sored data is used. The efficiencies of these estimators are
compared. Finally, we propose a method of determining an
optimal progressive censoring scheme, and illustrate all the
results developed here through a Monte Carlo simulation study,
and an illustrative example provided in the following section.

The organization of the rest of this paper is as follows. First,
we present a motivating example dealing with warranty anal-
ysis in Section II. We then discuss in Section III the construc-
tion of a nonparametric estimator of the reliability function,
and its asymptotic behavior. Then in Section IV, for regular
parametric models, we propose a minimum-distance method
of estimation, and discuss its asymptotic properties. Next, in
Section V, we show how the maximum likelihood estimator
under group-censoring works, and then provide some numer-
ical results in Section VI. We further discuss a method of deter-
mining an optimal progressive censoring scheme in Section VII.
The motivating example presented earlier in Section II is the
basis we use in Section VIII to illustrate all the inferential re-
sults developed in the preceding sections. Finally, we present
some concluding remarks in Section IX. All proofs are given in
the Appendix.
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TABLE I
WARRANTY DATA ON � � ���� UNITS WITH � � � WARRANTY TYPES

II. A MOTIVATING EXAMPLE

A consignment of units are sold by a dealer of-
fering a basic warranty of 3 years for each unit, with options
to purchase additional warranty for 2 or 4 more years. Of those
1000 units, 700 went to customers who just chose the basic war-
ranty of 3 years, while 200 went to customers who chose an ad-
ditional warranty for 2 more years, and the remaining 100 went
to customers who chose an additional warranty for 4 more years.

In the first 3 years, 29 of the 1000 units failed out of which 21
were from customers with a basic warranty of 3 years, 6 were
from customers with additional warranty of 2 years, and 2 were
from customers with additional warranty of 4 years. The re-
maining 679 units with a basic warranty of 3 years get censored,
which means . Of the remaining 292 surviving units
(past 3 years) with additional warranty, 24 units failed within
the next 2 years, of which 16 were from customers with an addi-
tional warranty only for 2 years, so the remaining 178 units with
additional warranty of only 2 years get censored, which means

. Finally, of the remaining 90 surviving units (past 5
years) with additional warranty for 2 more years, 18 units failed
during this warranty period, which means .

We thus arrive in this case at a 3-stage progressively Type-I
censored data set, as presented in Table I. Based on these war-
ranty data, we may wish to estimate parameters such as the mean
lifetime of a unit, or the reliability function of the unit. For these
purposes, we may develop either parametric or nonparametric
methods of estimation based on such progressively Type-I cen-
sored data, and these form the subject matter of the following
sections. The results for the warranty data in Table I are detailed
in Section VIII.

III. NONPARAMETRIC ESTIMATION OF THE RELIABILITY

In this section, we construct a nonparametric estimator of the
reliability function, and then discuss its asymptotic properties
based on discrete martingale theory. We suppose that the true
model is defined by a univariate unknown parameter

(the case with will be discussed later in
Section IV).

A. The Nonparametric Estimator

We suppose that the -independent units in the life-test all
have the same lifetime distribution function (and reliability
function ), with , and that for

the function is one-to-one. This assumption
means that, when , there exists a unique
such that

(3)

Remark 3.1: For example, in the exponential case, we have
, and so for .

Now, given a nonparametric estimate of the reliability level
, we can obtain an estimator of the unknown Euclidean pa-

rameter . For corresponding to a single-stage Type-I
censored sampling plan, it is easy to see that the variable
has a binomial distribution with parameters . Then,

is an estimator of , and so may be esti-
mated by .

In the case of , we can still estimate by . More-
over, the random variable , if not null, contains information
that can be accounted for. Indeed, conditional on

, the lifetimes of the remaining units under
test follow a left-truncated distribution with density

see [1]. Then, conditional on , and
, the random variable has a binomial distribution with

parameters , and .
Consequently, is approximated by

. And because is
approximated by , we can approximate by

which results in
as a second estimate of . If we now estimate by

the value that is as close as possible to both and , we obtain
the estimator for .

Remark 3.2: For the exponential case, we obtain

In the case of , by means of induction, we have for
that

We can show that is approximated by

with the convention that . Using this approximation, we
can estimate by

(4)

and then, using the above estimators of , we can propose a
linear estimator of as

(5)
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where is a -valued vector such that
.

We will show later in Section III-D that may be chosen so
that is the best linear combination of the in the sense of
the minimum variance criterion.

Remark 3.3: The estimators in (4), and (5) take into ac-
count only partial information from the progressively censored
sample. Indeed, to estimate , we only need to know the ,
and the , because

and

B. Nelson-Aalen, and Kaplan-Meier Type Estimators

Let us introduce the discrete time filtration
, where with

. Let us consider the counting processes

and

for . Let us write for
, with , and . Then, we have

the following result.
Proposition 3.4: The discrete time process

, defined by , is an
-martingale.
Let be the cumulative hazard rate func-

tion, where for ,

Note that we have interest in these quantities because, for dis-
crete distributions, the correspond to the cumulative hazard
rate calculated at each time point . Moreover, the reliability

is naturally linked to the cumulative hazard rate function by
the product integral, which means that the relation between the

and the is given by

It yields the following estimators for the , and the . Be-
cause, for a -distributed random variable , we have

it is natural to estimate , and by

and

respectively. Finally, the reliability function is estimated by

as given earlier in Section III-A.

C. Asymptotic Properties

Let us introduce the process , where
for .

Proposition 3.5: The discrete time process
, where

is an -martingale.
Let us introduce, for , the quantities (provided

they exist)

with , and limits with respect to the convergence in prob-
ability.

Proposition 3.6: For , the limits , and exist,
and satisfy

Corollary 3.7: For , we have, as ,
(I) ,

(II) , and
(III) .
By means of induction,

and

Theorem 3.8: If , then as , we have
, where is a matrix whose -th entry

is given by

Moreover, the matrix defined by
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is a consistent estimator of where

Now, let us introduce three matrices:

...
. . .

...

...
. . .

...

and

...
. . .

...

Applying the -method, we obtain the following corollary.
Corollary 3.9: If , then as , we have

, and , where
, and . Moreover, , and
are consistent estimators of , and , respectively.

D. The Minimum Variance Linear Estimator

Given estimators of (obtained in
Section III-A), let , and .
Suppose that is a continuously differentiable
function (or, equivalently, that is a continuously
differentiable function with ).

Then, define two new diagonal matrices:

and

Corollary 3.10: If , then as , we have
, where . Moreover,

is a consistent estimator of .
Remark 3.11: For the exponential case, the matrix is

simply

Now, we seek the best linear estimate of as follows. Let
be an real vector with components

summing to 1, and be an estimator of . Then,
we seek such that

subject to the condition , where .
Then, it is easy to obtain by the Lagrangian multiplier method
that

which is consistently estimated by

With this result, we finally obtain the minimum variance linear
estimator of as

(6)

IV. MINIMUM-DISTANCE ESTIMATOR

In this section, we consider a parametric model defined by the
Euclidean parameter . We then propose a simple
estimator of , and discuss its asymptotic properties as well.

A. Estimation of the Parameter

We propose to estimate by minimizing the square of the Eu-
clidean distance between and its non-parametric
estimate. The estimator is therefore defined by

(7)

Remark 4.1: Some other distance function can also be used
for this purpose; for example, for the Weibull distribution, the

transformation leads to the solution of a
simple linear regression problem.

B. Asymptotic Behavior of the Estimator

Let us denote by the unknown parameter,
and its corresponding estimator. Define

and

We then have
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The asymptotic behavior of the estimator is obtained under
three assumptions:

(1) the space is compact,
(2) the mapping belong to for

, and
(3) the matrix is positive-definite.

Then, the functions , and satisfy the following results.
Lemma 4.2: Under Assumptions (A1)–(A3), we have
(I) ,

(II) ,
and

(III)
.

We can now state the following consistency result.
Theorem 4.3: Let be the estimator of defined by (7). If

is a contrast function, i.e., iff , then we have

as .
Moreover, the estimator satisfies the following version of

the central limit theorem. Let the matrix be with
entries .

Theorem 4.4: Let be the estimator of defined by (7). If
is a contrast function, then we have

(8)

where is as defined in Corollary 3.10, and de-
fined by

is consistently estimated by .

V. MAXIMUM LIKELIHOOD ESTIMATOR UNDER

GROUP-CENSORING

In addition to the above nonparametric estimation method, we
can also use the maximum likelihood principle for group-cen-
sored data to estimate the unknown Euclidean parameter . For
the special case of the exponential distribution, we can obtain
the estimator as well as its asymptotic variance in a closed form.

From the partial information from , we can
estimate by the maximum likelihood estimation method (see
[17] for an application to the exponential model with changing
failure rates, and [19] for an application to the exponential dis-
tribution), based on the likelihood function

We can therefore estimate by maximizing the log-likelihood
function as

(9)

Then the score function is

and the estimator can be derived by solving . For a
regular parametric model, we can show that

(10)

where is the Fisher information matrix given by

with

and

For the exponential case, the above information matrix re-
duces to

VI. NUMERICAL STUDY AND EXAMPLES

In this section, we evaluate the behavior of all the estimators
using Monte Carlo simulations.

A. Numerical Examples for the Exponential Distribution

We consider the -stage procedure with . The esti-
mator is defined by (4). We chose

, and for . Then, at time
, 20% of the units still functioning are removed from

the sample, which means that . The experiment
terminates at time , i.e., the lifetimes of all surviving units at
time are censored.
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TABLE II
ESTIMATION OF THE HAZARD RATE 0.5 OF AN EXPONENTIAL DISTRIBUTION FOR THE 4-STAGE PROGRESSIVE CENSORING: MEAN, AND STANDARD DEVIATION

(WITHIN PARENTHESES) OF � � ���� BARTHOLOMEW’S �� �, WSBE, AND MLE ESTIMATES

TABLE III
MINIMUM DISTANCE ESTIMATES OF THE HAZARD RATE 0.5 OF AN

EXPONENTIAL DISTRIBUTION FOR THE 4-STAGE PROGRESSIVE CENSORING:
MEAN, AND STANDARD DEVIATION (WITHIN PARENTHESES) OF � � ����,

MDE, AND OWSBE ESTIMATES

Because the estimator in (5) is based on the weighted sum
of several Bartholomew’s estimators, it is denoted by WSBE;
while the estimator in (9), based on the maximum likelihood
method, is denoted by MLE. The WSBE is obtained here with
weights . The performance of these two
estimators is illustrated for various sample sizes in Table II, and
for each sample size the mean and the standard deviation were
obtained from simulated samples. We can see that
the two estimators behave quite similarly, but for small sample
size, the WSBE seems to outperform the MLE in terms of bias.

We compare the performance of the minimum distance
estimator (MDE) in (7) to the WSBE with optimal weights
(OWSBE) defined in (6). The numerical results presented in
Table III show that these two estimators have good performance
even with small sample sizes.

B. Multivariate Case:

Table IV presents estimation results of a Weibull distribution
for 4-stage progressively Type-I censored samples with ,

, , , and . The Weibull distribution
has the reliability function

where is the shape parameter, is the scale parameter,
and in this case . Defining ,

, and , we have for

Replacing in the above equation the unknown quantities
by their corresponding non-parametric estimates ,

and solving

we estimate the regression parameters , and by
, and , respectively.

Results on in Table IV show that this estimator does not
behave well. We observe especially large bias, and standard de-
viation for small to moderate sample sizes, which show that
this estimator converges quite slowly. Alternatively, we can es-
timate by 1) the minimum-distance method leading to the es-
timator defined by (7), or 2) the WSBE with optimal weights
(OWSBE), and compare the behavior of the minimum-distance
estimator (MDE) with the OWSBE. The corresponding numer-
ical results are presented in Table IV. From these results, see
that the OWSBE behaves poorly, while the MDE shows good
convergence properties.

In Table V, we have presented some numerical results for the
MDE with the log-logistic distribution with . Yet
again, we see that, even for small to moderate sample sizes, this
method yields estimators with a good performance.

VII. SEQUENTIAL PROGRESSIVE TYPE-I CENSORING PLANS

In this section, we discuss how an optimal progressive Type-I
censoring plan can be determined by using MDE, and MLE.
For each of these estimators, we give the asymptotic variance-
covariance matrix as a function of the unknown parameter .
This matrix is consistently estimated by providing estimates into
the expression whenever we have a consistent estimator of ,
from which we determine the optimal censoring times by using
the determinant criterion.

A. Univariate Case

Suppose that belongs to , and assume that , ,
and are given. We now present a step-by-step
method that enables the determination of an -stage optimal
progressive censoring plan. We denote by the MLE or MDE
of that uses the available information on .

Step 1. Given the first censoring time (and using ),
obtain .
Step 2. Calculate the asymptotic variance of as a func-
tion of , , and , replacing by . Then, find the
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TABLE IV
REGRESSION ESTIMATES OF THE WEIBULL PARAMETERS: MEAN, AND STANDARD DEVIATION (WITHIN PARENTHESES) BASED ON � � ���� TYPE-I

PROGRESSIVELY CENSORED SAMPLES (� � �, � � �, � � �, � � �, � � �, AND � � ���)

TABLE V
MINIMUM-DISTANCE ESTIMATES OF THE LOG-LOGISTIC DISTRIBUTION

PARAMETERS: MEAN, AND STANDARD DEVIATION (WITHIN PARENTHESES)
OBTAINED FROM � � ���� PROGRESSIVELY TYPE-I CENSORED SAMPLES

WITH � � ��� �� �� �� �����	, AND � � ���
� ��
���
�������
	

value of that minimizes this asymptotic variance. Ob-
serve until time , and calculate , the new MDE or
MLE of .
...
Step i. Calculate the asymptotic variance of as a func-
tion of , and , replacing by . Then,
find by minimizing this asymptotic variance. Observe
until time to calculate , the new MDE or MLE of .
Finally, stop when .

1) Sequential Progressive Censoring Plans Using the MLE:
We look for an optimal progressive censoring plan by using
the maximum likelihood estimation method for group-censored
data. Denote by the variance of the -stage estimator as
given in (10).

then for , we have

For the exponential case, upon using the -independence be-
tween and the given parameters , , we obtain

(11)

for which it is easy to see that the solution is
. Thus, we retrieve the result of [17].

Optimal Progressive Censoring Plans Using the MDE: Be-
cause we have
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by using the -method, we obtain

The optimal value of the -th censoring time is therefore equal
to

(12)

For an exponentially distributed sample, and for the same
reason as explained above, we obtain

(13)

which also leads to optimal sequential censoring times as
.

Remark 7.1: Thus, for an exponential sample, the MLE, and
MDE methods result in the same optimal progressive censoring
plans.}

B. Multivariate Case With

Suppose . In this case, based on the vari-
ance-covariance matrix derived above, we computed the ex-
pected asymptotic variance-covariance matrix of the NP-esti-
mators, and then determined an optimal progressive group-cen-
soring plan based on the -optimality criterion.

Given , assume that is an estimator of satis-
fying

(14)

Because the volume of the asymptotic joint confidence re-
gion of is proportional to the determinant of the asymptotic
variance-covariance matrix of , we can find by
choosing the value of which minimizes the determinant

. This criterion is the so-called -opti-
mality criterion. Therefore, we have

(15)

1) Optimal Progressive Group-Censoring Plan Using the
Maximum Likelihood Estimator: We look for the optimal
progressive censoring plan using the maximum likelihood esti-
mator under group-censored samples. We denote by
the asymptotic variance of the -stage estimator . Then,
the -th optimal censoring time can be determined as

(16)

2) Optimal Progressive Group-Censoring Plan Using the
Minimum-Distance Estimator: In Theorem 4.4, it has been
proved that the -stage MDE estimator is such that

where the asymptotic variance-covariance matrix
, which depends on , is

written as . So, given , and
, we define the -th optimized censoring time as

(17)

Therefore, an optimal multi-stage progressive Type-I cen-
soring scheme can be determined in the following manner. As-
sume that the initial sample size is , and set the censoring pro-
portions to . The first censoring time is fixed to be

. We can then determine the optimal progressive censoring
scheme by repeatedly using formula (17), or (16).

3) Monte Carlo Study: Suppose that the lifetimes of the units
under test are Weibull distributed with scale parameter ,
and shape parameter . At the censoring time , a pro-
portion of surviving units are randomly removed (censored)
from the experiment. For each simulated sample, the censoring
times are determined by one of the above -opti-
mality criteria. We simulated samples, and examined
the empirical behavior of the estimated for various choices of
the , and sample sizes .

For , we fixed to be (0.1, 0.2, 0.4), and
the sample size to be . Table VI sum-
marizes the empirical behavior of the optimal sequential pro-
gressive censoring plan when the MDE method was used, while
Table VII summarizes the empirical behavior of the optimal se-
quential progressive censoring plan when the MLE method was
used. The “true” optimal sequential progressive censoring plans
reported in these tables were calculated by using the known
values of , and .

From the results presented in Tables VI and VII, we observe
the following.

• The larger the proportion of censored units, the smaller are
the censoring times. This relationship means that the whole
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TABLE VI
OPTIMAL PROGRESSIVE CENSORING PLANS USING MINIMUM-DISTANCE ESTIMATOR FOR THE WEIBULL DISTRIBUTION �� � ��: MEAN, AND STANDARD

DEVIATION (WITHIN PARENTHESES)

TABLE VII
OPTIMAL PROGRESSIVE CENSORING PLANS USING MAXIMUM LIKELIHOOD ESTIMATOR FOR THE WEIBULL DISTRIBUTION �� � ��: MEAN, AND STANDARD

DEVIATION (WITHIN PARENTHESES)

TABLE VIII
ESTIMATES OF THE WEIBULL PARAMETERS FOR THE WARRANTY DATA IN

TABLE I

experiment is shorter when the censoring proportions in-
crease.

• Let us denote . Then, we observe that
. This relationship means that the widths

of the time intervals decrease as the number of censoring
stages increase.

• For fixed , a larger sample size corresponds to a larger
censoring time at the th stage. This relationship shows
that the test requires shorter time for a smaller sample size
than for a larger sample size.

• Finally, note that for moderate sample sizes, if is too
large, then it may happen that there is not sufficient data to
estimate properly the optimal value of the next censoring
time (this is indeed the case in Table VI when , or

).

Fig. 2. Empirical (dotted) versus theoretical (plain) reliability function of the
Weibull distribution.

VIII. ILLUSTRATIVE EXAMPLE

Let us reconsider the warranty data in Table I. Table VIII
summarizes the minimum distance estimates based on -stage
progressive censoring schemes for ; and the pooled
OWSBE, and the MLEs of the Weibull parameters. We see that
both methods provide quite close estimates. Fig. 2 presents a
plot of the Weibull reliability function with , and
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(a Weibull model that is closely reflected by the estimated pa-
rameters in Table VIII) against the empirical distribution func-
tion obtained from the data in Table I.

IX. CONCLUSIONS

In this paper, we have discussed the parametric estimation
problem under a multi-stage progressive Type-I censoring
scheme. A nonparametric Kaplan-Meier type estimator that
uses partial information from progressively censored samples
enables the estimation of the reliability function at the censoring
times. A minimum-distance method has been proposed to esti-
mate the unknown Euclidean parameter of a parametric model.
We have also proposed a minimum variance linear estimator for
deriving an asymptotically optimal estimator based on esti-
mators of . We have then discussed the asymptotic properties
of all these estimators, and have presented a simple algorithm
for the determination of an optimal sequential progressive
censoring plan. Finally, we have evaluated the performance of
all these estimators by means of Monte Carlo simulations, and
have illustrated the proposed methods applied to warranty data.

APPENDIX

Proof of Proposition 3.4: Let us calculate the compensator
by induction. First, calculate

Then, by using the fact that is predictable, i.e., -mea-
surable, write

to obtain the compensator of by induction.
Proof of Proposition 3.5: Because, conditional on ,

is a binomial random variable with parameters , and , we
have almost surely,
and so we obtain for , almost surely,

The fact that for completes the proof.

Proof of Proposition 3.6: For , we have
. Moreover, as ,

and so we have, for ,

(18)

Now, upon noting that

dividing the above equality by , and then letting tend to ,
we obtain

(19)

for , with . The required formula follows by
using (18), (19), and the fact that .

Proof of Corollary 3.7: Writing ,
we have in probability, which proves (i).
The results in (ii) and (iii) then follow immediately by using the
relationships between the estimators and , and the .

Proof of Theorem 3.8: Note that
. Applying the central limit

theorem for a triangular array of martingale difference (see, for
example, [2]), we have to be asymptotically normal
with zero mean, and a covariance matrix with entries

The diagonal matrix converges in probability to
by Proposition 3.6, and so by Slutsky’s Lemma,

we obtain the expected weak convergence result. The consis-
tency of is straightforward upon using Proposition 3.6, and
Corollary 3.7.

Proof of Lemma 4.2:
Proof of (i): Note that

Moreover, by Corollary 3.9, we have
, so that . Hence,
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Proof of (ii): We have

Because belongs to , and that is com-
pact, we have

which, with Corollary 3.9, yields

Proof of (iii): Write

and then use the same line of proof as above for (ii).
Proof of Theorem 4.3: By the first part of Lemma 4.2, we

have . Let be a real
number, and . Then, we have

and if , we can write

so that

Therefore,

As a consequence, we have

From the fact that , and
that , we have

, and so .
Proof of Theorem 4.4: First, we have

On the other hand, we can also write

and so it follows that

(20)

where .
Let us now introduce

Formula (20) can then be rewritten as

(21)

Because is consistent, using the third part of Lemma 4.2, we
obtain

so (21) becomes

(22)

Let be the minimum eigen value of , and be the min-
imum eigen value of . Because , we have

. Now, we have

For a positive real number , we have

From the fact that , and that
may be arbitrarily small by choosing A large

enough, the above inequality leads to

(23)

Authorized licensed use limited to: McMaster University. Downloaded on June 02,2010 at 11:16:18 UTC from IEEE Xplore.  Restrictions apply. 



BALAKRISHNAN et al.: MINIMUM-DISTANCE PARAMETRIC ESTIMATION UNDER PROGRESSIVE TYPE-I CENSORING 425

Formula (20) becomes

(24)
Upon using the fact that , the third part of Lemma 4.2,
and formula (23), we see that (24) implies that

Therefore,

which, with Corollary 3.9, and Assumption (A3), proves the
central limit result. The consistency of then follows from
Assumptions (A2), and (A3).
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