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The T2 control chart is widely adopted in multivariate statistical process control. However, when dealing
with asymmetrical or multimodal distributions using the traditional T2 control chart, some points with
relatively high occurrence possibility might be excluded, while some points with relatively low occurrence
possibility might be accepted. Motived by the thought of the highest posterior density credible region, we
develop a control chart based on the highest possibility region to solve this problem. It is shown that the
proposed multivariate control chart will not only meet the false alarm requirement, but also ensure that all
the in-control points are with relatively high occurrence possibility. The advantages and effectiveness of
the proposed control chart are demonstrated by some numerical examples in the end.

Keywords: multivariate statistical process control; false alarm; highest possibility region; asymmetrical
distributions; multimodal distributions; T2 control chart

1. Introduction

In industrial applications, engineers often encounter the cases where several correlated quality
characteristics need to be controlled and monitored simultaneously [3,12,13]. The multivariate
control chart is widely utilized to solve this problem [15,19]. Due to the great efforts devoted
by researchers, a large number of papers on control charts have been published in statistics and
quality relevant journals [17,24,25,28,31]. For the recent advances in control chart design, such
as economic design and optimal design, the readers can refer to Cheng and Mao [4] and Epprecht
et al. [8] and the references therein for details.

In multivariate control fields, the traditional T 2 control chart has been widely adopted in practice.
When dealing with processes with symmetrical and unimodal distributions, the T 2 control chart
facilitates two preferred features: (1) the false alarm requirement is satisfied and (2) all the in-
control points have higher occurrence possibility than the out-of-control points. In order to monitor
small changes in the processes, multivariate cumulative SUM control chart [7,10,21,27,28] and
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1674 T.-T. Gang et al.

multivariate exponentially weighted moving average control chart [1,14,16,18,20,29,32,33] are
often used.

However, those control charts are all under a very restrictive assumption, that is, the considered
processes are all with multivariate normal distributions, which show great limitations in real
quality control problems. Sun and Tsung [26] developed a new multivariate control chart named
K-Chart using support vector machine (SVM), in which the restriction on the distributions of the
processes is removed. Chiu et al. [5] studied how to obtain the proper parameters of SVM and
apply SVM to construct a control chart to monitor the means of the processes with multivariate
non-normal distributions. In Gani et al. [9], the K-Chart was applied to a real industrial problem
successfully. However, the false alarm requirement is not considered in the K-Chart.An alternative
way to obtain the control chart is by studying the distribution of the T 2 statistics of multivariate
non-normal distributions. In Chou et al. [6], a kind of kernel density estimation (KDE)-based T 2

control charts are introduced. Phaladiganon et al. [22] proposed bootstrap-based T 2 multivariate
control charts, which performed comparably with the KDE-based T 2 control charts. Nevertheless,
none of the above methods consider the occurrence possibility of the in-control points.

It is noted that both the KDE-based T 2 control chart and the bootstrap-based T 2 chart meet the
false alarm requirement, i.e. the average run length which is reciprocal to the false alarm level,
for asymmetrical or multimodal distributions. Nevertheless, there might be some out-of-control
points with relatively high occurrence possibility and some in-control points with relatively low
occurrence possibility [30]. This phenomenon does not coincide with quality control in practice,
since producers only want to exclude the bad states of the processes and maintain the good ones.
As mentioned in the co-author’s recent work [30], the null hypothesis of control chart should
focus on the occurrence possibility of each data point besides the false alarm requirement, where
the possibility means the density function for continuous distributions and the probability mass
function for discrete distributions, respectively.

In this paper, a multivariate control chart based on the highest possibility region (HPR) is
proposed to ensure that all the in-control points have higher occurrence possibility than the out-
of-control points, where the HPR denotes the confidence region with the minimum area. In Section
2, the T 2 control chart is introduced and some of its merits are analysed. Section 3 is devoted
to descriptions of the in-control region and control limit based on the highest density region.
The advantages of the proposed control chart over the existed control charts and its relation to the
T 2 control chart are discussed in Section 4. In Section 5, some concluding remarks are given.

2. T2 control limits for multivariate distribution

Consider a p-dimensional random vector X = (X1, . . . , Xp)
T which follows a multivariate normal

distribution with known mean vector μ and covariance matrix �. Then the T 2 statistic

T 2 = (X − μ)T�−1(X − μ) (1)

follows χ2 distribution, and the upper control limit (UCL) for the multivariate normal distribution
is given by

UCL = χ2
1−α(p), (2)

where α is the false alarm level and χ2
1−α(p) is the 1 − α quantile of a χ2 distribution with p

freedom degree. Denote the T 2 control region as �T2 for the sake of simplicity. The properties of
T 2 control chart are represented in the following theorem.

Theorem 2.1 If the process vector X = (X1, . . . , Xp)
T follows a multivariate normal distribution

with mean μ and covariance matrix �, and the false alarm level is α, then the T2 control limit
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satisfies

P(X ∈ �T2) =
∫

· · ·
∫

X∈�T2

f (x)dx = 1 − α (3)

and

f (x) > f (y), ∀x ∈ �T2 , ∀y /∈ �T2 , (4)

where f(x) is the density function of multivariate normal distribution, and

�T2 = {x|T 2(x) ≤ χ2
1−α(p)}, where T 2(x) = (x − μ)T�−1(x − μ).

Proof For a given false alarm α, the T 2 control region is given by �T2 = {x|T 2(x) ≤ χ2
1−α(p)}

since T 2 ∼ χ2(p), thus we have P(T 2 ≤ T 2
0 = χ2

1−α(p)) = 1 − α as in Equation (3).
The density mass function of multivariate normal distribution is given by

f (x) = 1

(2π)p/2|�|1/2
e−(1/2)(x−μ)T�−1(x−μ) = 1

(2π)p/2|�|1/2
e−T2(x)/2.

One can observe that f (x) is strictly decreasing on T 2(x). Then for ∀x ∈ �T2 and ∀y /∈ �T2 , one
has T 2(x) ≤ T 2

0 < T 2(y), which implies

f (x) > f (y), ∀x ∈ �T2 , ∀y /∈ �T2 .

Thus the proof is completed. �

Example 2.1 Consider the multivariate normal distribution X ∼ N(μ, �), i.e. f (x1, x2) =
1/2π |�|1/2e−(1/2)(x−μ)T�−1(x−μ), where μ = [0, 0]T and � =

(
1 0.5

0.5 1

)
. Suppose the false

alarm level α = 0.1. Then the T 2 control region is given by �T2 = {x|T 2(x) = xT�−1x ≤ 4.6052}.
From Theorem 2.1, we have

f (x) > f (y), ∀x ∈ �T2 , ∀y /∈ �T2 .

If the process vector departures from a multivariate normal distribution, the UCL based on the
χ2 distribution might be inaccurate. In such a case, the kernel smoothing technique can be used
to estimate the distribution of the T 2 statistics, and the UCL of the T 2 chart can thus be obtained.
In the following, we will give the kernel estimator of the UCL when the density function f (x) is
asymmetrical.

Generate a data set {X(1), X(2), . . . , X(n)}, where X(i) = (X(i)
1 , . . . , X(i)

p )T, following a multivariate
distribution f (x). The value of the T 2 statistic for X(i) is then given by

T 2
i = (X(i) − μ)T�−1(X(i) − μ). (5)

The kernel estimator of the T 2 distribution, which is denoted by FK, is given by

FK(y) = n−1
n∑

j=1

�

{
y − T 2

j

h

}
, (6)

where � is a kernel function outlined in Polansky and Baker [23] and h is a smoothing parameter
which varies with respect to different values of T 2. Since the UCL is the 1 − α quantile of the T 2

distribution, the control limit UCL can be obtained as follows:

UĈL = FK−1(1 − α). (7)
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1676 T.-T. Gang et al.

Example 2.2 Chou et al. [6] considered a two-dimensional process X following a bivariate
exponential distribution, where the mean vector is μ = [1, 1]T and covariance matrix is � = ( 1 0

0 1

)
.

When α = 0.0113, the T 2 control limits are given by �T2 = {x|(x1 − 1)2 + (x2 − 1)2 ≤ 19.44}.
One can observe that (3.14, 4) ∈ � and (0.19, 5.49) /∈ �, however,

f (3.14, 4) = 0.0008 < f (0.19, 5.94) = 0.0022. (8)

The KDE-based T 2 control limit of asymmetrical or multimodal distributions satisfies the false
alarm level requirement, but do not have the good property as described in Equation (4). In
other words, the KDE-based T 2 control region may contain points with relatively low occurrence
possibility, which is unreasonable in practice.

3. Multivariate control chart based on the highest density region

As analysed in Section 2, although the KDE-based T 2 control chart meets the false alarm require-
ment for asymmetrical or multimodal distributions, there might be some out-of-control points
with relatively high occurrence possibility and some in-control points with relatively small occur-
rence possibility. From the decision procedure of a control chart [30], the decision is carried out
by comparing each plotted data point with the control limits. In other words, the corresponding
hypothesis test is actually conducted based on single data. Thus, the hypothesis test of control
chart should also focus on the probability or density of individual data besides the false alarm
probability.

In Bayesian statistics, for any given coverage rate, the highest posterior density credible region
results in the minimum area credible region, which has the property that the possibility of all
the points within the highest posterior density credible region is higher than the ones outside.
Motivated by this idea, a multivariate control chart based on the HPR will be proposed in this
section, which has the good properties described by Equations (3) and (4) for even asymmetrical
and/or multimodal distributions.

3.1 Control limits based on the highest density region

Consider a process vector X = (X1, . . . , Xp)
T which follows a continuous joint distribution with

density function f (x) : Rp → R. Assume that the false alarm level is α. Then the corresponding
null hypothesis is given by

H0 : P(X ∈ �) = 1 − α and f (x) > f (y), ∀x ∈ �, ∀y /∈ �, (9)

where � is the acceptance region of the null hypothesis H0.
Equivalently, � is called the in-control region based on the highest density region, since any

point x is in-control if and only if x ∈ �. Furthermore, if the density function f (x) is continuous,
the in-control region � will be the solution of

P(X ∈ �T2) =
∫

· · ·
∫

f (x1,...,xp)≥c
f (x)dx = 1 − α. (10)

Then the control limit E(�) = {x|f (x) = c} is called the control limit based on the highest density
region which is corresponding to an equal probability zone. Denote the HPR’s control region as
�HPR for sake of simplify.

For multivariate unimodal distribution, �HPR is a simple-connected region. However, if the
continuous distribution is multimodal, the control region �HPR might be composed of a set of
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Journal of Applied Statistics 1677

distributed self-simple-connected regions, i.e. �HPR = �1 ∪ �2 ∪ · · · ∪ �k , k ≤ m, where m is
the number of peaks.

If the process variable X follows a multivariate discrete distribution with probability mass
function p(x), and the false alarm level is α, the null hypothesis corresponding to Equation (9) is
then given by

H0 : P(X ∈ �HPR) ≥ 1 − α and p(x) > p(y), ∀x ∈ �HPR, ∀y /∈ �HPR, (11)

where �HPR is the in-control region based on the highest probability region for a multivariate
discrete distribution. The control limit E(�HPR) = {x|p(x) = c} satisfies the following equation:

P(X ∈ �HPR) =
∑

p(x)≥c

p(x) ≥ 1 − α. (12)

According to the above constructing process of control limits based on the HPR, it is known that
the proposed control limits not only satisfy the false alarm requirement for all distributions, but
also ensure the in-control points have higher occurrence possibility than any out-of-control point,
which are exactly the properties described by Equations (3) and (4). When p = 1, the proposed
method reduced to that of Yang et al. [30]. In the next section, the calculation of HPR’s control
limit will be introduced.

3.2 Calculation of HPR’s control limit

For multivariate density function f (x), the HPR’s control limit with false alarm level α can be
obtained from the definition described as in Equation (10). The procedure for solving the HPR’s
control limit can be summarized as follows:

Step 1. Choose a value d from the value range of f (x).
Step 2. Solve the equation f (x) ≥ d, and the region � = {x|f (x) ≥ d} is obtained.
Step 3. Calculate the integral P = ∫ · · · ∫X∈�

f (x)dx.
Step 4. If |P − (1 − α)| is less than the prescribed small positive value ε, then � will be the

control region; if (1 − α) − P, set d = d − e where e is a small positive constant and return to
Step 2; and if P − (1 − α), set d = d + e and return to Step 2.

In many cases, it is difficult to obtain an analytic solution to the integral in Step 3. And the
following approximating algorithm based on the Monte Carlo method [11] can be used instead.

Step 1′. Generate a set of independent random data x(i) = {x(i)
1 , . . . , x(i)

p }, i ∈ {1, . . . , n},
following the density function f (x).

Step 2′. Calculate the corresponding density value f (x(i)) and arrange the set f (x(1)), . . . , f (x(n))

in increasing order. The obtained set is denoted by f1, . . . , fn.
Step 3′. In order to obtain the control limit fα which satisfies P(f (x) ≥ fα) = 1 − α, set j =

�n ∗ (1 − α)�, where �x� denotes the maximum integer not exceeding x. If |j/n − (1 − α)| < ε,
the control limit is given by fj, otherwise set n = n + d, where d is determined with respect to
the false alarm requirement and return to Step 1′. Generally, d should be made large if the false
alarm requirement is small.

For a multivariate discrete probability mass function P(x), the above procedure still works by
replacing the integral in Step 3 by the sum of probability mass function P(x).

4. Comparison between HPR’s control chart and some existed control charts

In this section, the HPR’s control limits will be compared with some existed control charts,
for example, the multivariate normal T 2 control chart and KDE-based T 2 multivariate control
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1678 T.-T. Gang et al.

chart. And HPR’s control limit of mixed multivariate normal distribution and mixture Pois-
son distribution will be calculated as the examples of multimodal and discrete distributions,
respectively.

For multivariate normal distribution, the HPR’s control chart is identified with traditional T 2

control chart based on Theorem 2.1, which is summarized in the following corollary.

Corollary 3.1 Consider a process vector X which follows multivariate normal distribution
with density function f(x). Then for any given false alarm level α and T 2

0 = χ2
1−α(p), the HPR’s

control region �HPR = {x|f (x) ≥ fα = (1/(2π)p/2|�|1/2) e−T2
0 /2}, where μ and � are the mean

and covariance matrix of the distribution, respectively, is equivalent to the T2 control region
�T2 = {x|T 2(x) = (X − μ)T�−1(X − μ) ≤ T 2

0 }.

Example 3.1 (Example 2.1 continued) Consider a process with two-dimensional normal distri-
bution f (x1, x2). One can obtain the HPR’s control region �HPR = {(x1, x2, f (x1, x2))|f (x1, x2) ≥
0.0184} by using the algorithms shown in Section 3.2. The obtained HPR’s control region and
the T 2 control region �T2 = {(x1, x2, 0)|T 2 = 4

3 (x2
1 − x1x2 + x2

2) ≤ 4.6052} are both illustrated
in Figure 1. It is found that �T2 is actually the projection of �HPR on the X–Y coordinate plane.
In other words, the obtained two regions are equivalent on the X–Y coordinate plane in this case.

Example 3.2 (Example 2.2 continued) By using the algorithms in Section 3.2, it is obtained
that the HPR’s control limit of the bivariate exponential distribution in Example 2.2 can be given
by �HPR = {(x1, x2)|f (x1, x2) ≥ 0.0015} when α = 0.0113. Compared with the T 2 control limits
�T2 = {(x1, x2)|(x1 − 1)2 + (x2 − 1)2 ≤ 19.44} in Example 2.2, the minimum density of points
in �T2 is 0.0002651, which is much less than the minimum density of points in �HPR (the value
is 0.0015 in this example). In other words, there might exist some points within �T2 with smaller
possibility than those outside �T2 and within �HPR, which is shown in Figure 2.

In Figure 2, the HPR’s control region is given by �HPR = S1 ∪ S2 ∪ S4 and the T 2 control area
is given by �T2 = S1 ∪ S3. Since the bivariate exponential distribution is strictly decreasing with

−2
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−4−2024

0.05

0.1

0.15

x
1

HPR’s control region

x
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f(
x 1,x
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−5
0

5

−5
0

5
0

0.05

0.1
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0.2

f(
x 1

,x
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T 2 control region

x2 x1
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Figure 1. The HPR’s control region and T2 control region of a multivariate normal distribution.
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Journal of Applied Statistics 1679

Figure 2. The difference between HPR’s control region and T2 control region.

respect to x1 + x2, then one has that

f (x) > f (y), ∀x ∈ S2 ∪ S4, ∀y ∈ S3.

It can be seen that for Example 2.2, the good property in Equation (4) cannot be guaranteed by
using the KDE-based T 2 control chart. However, Equation (4) is satisfied by using the HPR’s
control chart.

Furthermore, one can obtain that Area_�HPR = 21.14, Area_�T2 = 21.14 and Area_S3 =
5.1413, where Area_X represent the area of X region. Then, Area_S3/Area_�T2 = 20.2%. It
is known that the density of points in S3 is smaller than the minimum density of points in �HPR. In
the T 2 control region, the points with lower density cover 20.2% area of �T2 . From the above com-
parison, one can observe that the HPR’s method achieves better performance than the KDE-based
T 2 control chart for asymmetrical distributions.

In the following, it is shown that the HPR’s control limit can also be applied to distributions
with multimodal distributions or multivariate discrete distributions.

Example 3.3 Consider a multivariate distribution, which is shown in Figure 3. Its density
function is given by

f (x) = 1

4π
(|�1|−1/2e−(x−μ1)

T�−1
1 (x−μ1)/2 + |�2|−1/2e−(x−μ2)

T�−1
2 (x−μ2)/2),

where μ1 = [0, 0]T, μ2 = [3, 4]T, �1 =
(

1 0.5
0.5 1

)
and �2 =

(
1 −0.5

−0.5 1

)
. The false alarm

level is chosen to be α = 0.05. Then HPR’s control limit can be given by �HPR = {x|f (x) ≥
0.029}, which is also shown in Figure 3. It can be seen that �HPR is not a simple-connected region
and the property in Equation (4) is satisfied.

Example 3.4 For the case of discrete distribution, we employ a mixture Poisson distribution
X = (X1, X2), which is given by

P(x1, x2) = 0.5
e−1

x1! + 0.5
e−15 × 15x2

x2! , x1 ≥ 0, x2 ≥ 0.

Then the HPR’s control limit can be obtained as � = {x|p(x) ≥ 0.0404} when α = 0.01.
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1680 T.-T. Gang et al.

Figure 3. The HPR’s regions for a multimodal distribution.

From the above analysis and numerical examples, it is obvious that the HPR’s control chart has
the following properties.

(1) For the given false alarm level α, the HPR’s control region occupies the smallest possible
volume in the sample space, which means that all the in-control points have a higher occurrence
probability than any point out-of-control [2].

(2) The HPR’s control limit actually represents an equal possibility zone, which can be described
by a simple equation even for distributions with high dimensions.

5. Conclusions

The traditional multivariate T 2 control chart only focuses on the false alarm requirement and it
is very inaccurate for non-normal distribution. In this paper, a control chart based on the highest
probability region (HPR’s control limit) is proposed. It is shown that the proposed HPR’s control
limit not only satisfies the false alarm requirement but also ensures that all the in-control points
have higher occurrence possibility than out-of-control ones. It is also shown that the HPR’s control
limit is prominent for asymmetrical or multimodal distributions, where the traditional multivariate
T 2 control limits and KDE-based T 2 control limits are both very inaccurate. Especially, when
considering one-dimensional distribution, the HPR’s control limit reduces to the control limit
based on the narrowest confidence interval proposed by Yang et al. [30], which is the extension
of the 3-Sigma control limits and probability limits. Therefore, it is believed that the proposed
approach enjoys much wider applications. Future work might include applying the approach to
monitoring mean, dispersion and multivariate attribute characteristics.
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